- move per VP data into struct sadata_vp referenced from l->l_savp
* VP id
* lock on VP data
* LWP on VP
* recently blocked LWP on VP
* queue of LWPs woken which ran on this VP before sleep
* faultaddr
* LWP cache for upcalls
* upcall queue
- add current concurrency and requested concurrency variables
- make process exit run LWP on all VPs
- make signal delivery consider all VPs
- make timer events consider all VPs
- add sa_newsavp to allocate new sadata_vp structure
- add sa_increaseconcurrency to prepare new VP
- make sys_sa_setconcurrency request new VP or wakeup idle VP
- make sa_yield lower current concurrency
- set sa_cpu = VP id in upcalls
- maintain cached LWPs per VP
* lpt device is defined in MI place (dev/ppbus/files.ppbus), dev/ic/lpt.c
is included there too; dev/ic/lpt.c is not included if ppbus is
configured or if there is alternative platform lpt (like for pc532)
* g/c MD lpt definitions and custom puc/upc attachments,
glue moved to conf/files and dev/pci/files.pci respectively; remove
device lpt definition from dev/isa/files.isa
* add ppbus parport attribute, atppc device attachments, adjust plip and lpt
glue
process context ('reaper').
From within the exiting process context:
* deactivate pmap and free vmspace while we can still block
* introduce MD cpu_lwp_free() - this cleans all MD-specific context (such
as FPU state), and is the last potentially blocking operation;
all of cpu_wait(), and most of cpu_exit(), is now folded into cpu_lwp_free()
* process is now immediatelly marked as zombie and made available for pickup
by parent; the remaining last lwp continues the exit as fully detached
* MI (rather than MD) code bumps uvmexp.swtch, cpu_exit() is now same
for both 'process' and 'lwp' exit
uvm_lwp_exit() is modified to never block; the u-area memory is now
always just linked to the list of available u-areas. Introduce (blocking)
uvm_uarea_drain(), which is called to release the excessive u-area memory;
this is called by parent within wait4(), or by pagedaemon on memory shortage.
uvm_uarea_free() is now private function within uvm_glue.c.
MD process/lwp exit code now always calls lwp_exit2() immediatelly after
switching away from the exiting lwp.
g/c now unneeded routines and variables, including the reaper kernel thread
an offset between ss_sp and struct sa_stackinfo_t (located in struct
__pthread_st) when calling sa_register. The kernel increments the
sast_gen counter in struct sastack when an upcall stack is used.
libpthread increments the sasi_stackgen counter in struct
sa_stackinfo_t when an upcall stack is freed. The kernel compares the
two counters to decide if a stack is free or in use.
- add struct sa_stackinfo_t with sasi_stackgen to count stack use in
userland
- add sast_gen to struct sastack to count stack use in kernel
- add SA_FLAG_STACKINFO to enable the stackinfo_offset argument in the
sa_register syscall
- add sa_stackinfo_offset to struct sadata for offset between ss_sp
and struct sa_stackinfo_t
- add ssize_t stackinfo_offset argument to sa_register, initialize
struct sadata's sa_stackinfo_offset from it if SA_FLAG_STACKINFO is
set
- add sa_getstack, sa_getstack0, sa_stackused and sa_setstackfree
functions to find/use/free upcall stacks and use these where
appropriate
- don't record stack for upcall in sa_upcall0
- pass sau to sa_switchcall instead of l2 (l2 = curlwp in sa_switchcall)
- add sa_vp_blocker to struct sadata to pass recently blocked lwp to
sa_switchcall
- delay finding a stack for blocked upcalls to sa_switchcall
- add sa_stacknext to struct sadata pointing to next most likely free
upcall stack; also g/c sa_stackslist in struct sadata and sast_list
in struct sastack
- add L_SA_WOKEN flag: LWP is on sa_woken queue
- add L_SA_RECYCLE flag: LWP should be recycled in sa_setwoken
- replace l_upcallstack with L_SA_WOKEN/L_SA_RECYCLE/L_SA_BLOCKING
flags
- g/c now unused sast_blocker in struct sastack
- make sa_switchcall, sa_upcall0 and sa_upcall_getstate static in
kern_sa.c
- call sa_upcall_userret only once in userret
- split sa_makeupcalls out of sa_upcall_userret and use to process
the sa_upcalls queue
- on process exit: mark LWPs sleeping in saunblock interruptible; also
there are no LWPs sleeping on l->l_upcallstack anymore; also clear
sa_wokenq_head to prevent unblocked upcalls
additional changes:
- cleanup timerupcall sa_vp == curlwp check
- add check in sa_yield if we didn't block on our way here and we
wouldn't any longer be the LWP on the VP
- invalidate sa_vp_ofaultaddr after resolving pagefault
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
generate unblocked upcalls in sa_unblock_userret(), before signal
delivery/p_userret handling in userret().
Also defer getting state for preempted upcalls because on some ports
preemption can happen between sa_unblock_userret() and sa_upcall_userret().
uvm_swapout_threads will swapout LWPs which are running on another CPU:
- uvm_swapout_threads considers LWPs running on another CPU for swapout
if their l_swtime is high
- uvm_swapout_threads considers LWPs on the runqueue for swapout if their
l_swtime is high but these LWPs might be running by the time uvm_swapout
is called
symptoms of failure: panic in setrunqueue
fixes PR kern/23095
* _UC_MACHINE_PC() - access the program counter
* _UC_MACHINE_INTRV() - access the integer return value register
* _UC_MACHINE_SET_PC() - set the program counter (this requires
special handling on some platforms).
which is automatically included during kernel config, and add comments
to individual machine-dependant majors.* files to assign new MI majors
in MI file.
Range 0-191 is reserved for machine-specific assignments, range
192+ are MI assignments.
Follows recent discussion on tech-kern@