- to identify device instance, using hardware address.
- when console accesses device, using statically mapped address.
- when tty accesses device, using handler given by bus_space_map().
no need device ixpcom in evbarm/conf/files.evbarm move it to
arm/ixp12x0/files.ixp12x0
ixp12x0_com.c:
some fix around address handling
1. Do not call bus_space_map() in ixpcominit(). Calling bus_space_map()
is not safe here, because bus_space_map() calls uvm_km_valloc() but
uvm is not yet initialized.
2. Use dv_unit to determine console instead comparering iobase.
Now you can attach ixpcom0 with physical address like this:
ixpcom* at ixpsip? addr 0x90000000 size 0x4000
Statically mapped address (0xf0000000) is still usable.
ixp12x0_clk:
1. access PLL_CFG register via bus_space
2. Make the delay() working correctly. (bug fix)
3. Start the timer device without interrupt on attach time.
Now delay() called before cpu_initclocks() works fine.
ixp12x0_pci:
1.Mapping PCI type0/1 configuration space to the upper address.
2."PCI I/O Cycle Access" mapping to same virtual address(VA==PA)
but size of this mapping increase to 1MByte because fails
cause couldnt set L2 table.
3.use bus_space address handling in ixp12x0_pci.c.
and development board, based around their BECC companion chip. Despite
its name, the board can run in big- or little-endian mode (we currently
run only in the latter).
cd ${KERNSRCDIR}/${KERNARCHDIR}/compile && ${PRINTOBJDIR}
This is far simpler than the previous system, and more robust with
objdirs built via BSDOBJDIR.
The previous method of finding KERNOBJDIR when using BSDOBJDIR by
referencing _SRC_TOP_OBJ_ from another directory was extremely
fragile due to the depth first tree walk by <bsd.subdir.mk>, and
the caching of _SRC_TOP_OBJ_ (with MAKEOVERRIDES) which would be
empty on the *first* pass to create fresh objdirs.
This change requires adding sys/arch/*/compile/Makefile to create
the objdir in that directory, and descending into arch/*/compile
from arch/*/Makefile. Remove the now-unnecessary .keep_me files
whilst here.
Per lengthy discussion with Andrew Brown.
* Define an ARM_INTR_IMPL option, which specifies a header file
describing the interrupt implementation for the platform. Use
this instead of the list of EVBARM_BOARDTYPE checks.
* Make the s3c2xx0 interrupt dispatch code a bit more generic, and move
it to a generic location so that other platforms can use it.
This eliminates all uses of the EVBARM_BOARDTYPE stuff, so delete it.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
add rd, pc, #foo - . - 8 -> adr rd, foo
ldr rd, [pc, #foo - . - 8] -> ldr rd, foo
Also, when saving the return address for a function pointer call, use
"mov lr, pc" just before the call unless the return address is somewhere
other than just after the call site.
Finally, a few obvious little micro-optimisations like using LDR directly
rather than ADR followed by LDR, and loading directly into PC rather than
bouncing via R0.
attached to "obio") on the IQ80310 and IQ80321. It makes more sense
to do it this way for this type of system (the goal being to encapsulate
as much information about the board as possible into one file).
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.