which we ought to never do. If we have not hooked IRQ 13, we do
not need any resources in npx_softc to handle numeric coprocessor
exceptions, so let npx@isa detach.
cpu_offline. Use this on amd64/i386 to force a FPU save. As this was
triggered by npxsave_cpu/fpusave_cpu not working for a different CPU,
remove the cpu_info argument and adjust npxsave_*/fpusave_* to use bool
for the save.
OK ad@
branch is still active and will see i386PAE support developement).
Sumary of changes:
- switch xeni386 to the x86/x86/pmap.c, and the xen/x86/x86_xpmap.c
pmap bootstrap.
- merge back most of xen/i386/ to i386/i386
- change the build to reduce diffs between i386 and amd64 in file locations
- remove include files that were identical to the i386/amd64 counterparts,
the build will find them via the xen-ma/machine link.
- introduce a function to reserve an idt entry and use it instead of
manipulating idt_allocmap directly.
- rename idt to xen_idt for amd64 xen. add missing #ifdef XEN.
This branch was a major cleanup and rototill of many of the various OEA
cpu based PPC ports that focused on sharing as much code as possible
between the various ports to eliminate near-identical copies of files in
every tree. Additionally there is a new PIC system that unifies the
interface to interrupt code for all different OEA ppc arches. The work
for this branch was done by a variety of people, too long to list here.
TODO:
bebox still needs work to complete the transition to -renovation.
ofppc still needs a bunch of work, which I will be looking at.
ev64260 still needs to be renovated
amigappc was not attempted.
NOTES:
pmppc was removed as an arch, and moved to a evbppc target.
- Replace most inline assembly with proper functions. As a side effect
this reduces the size of amd64 GENERIC by about 120kB, and i386 by a
smaller amount. Nearly all of the inlines did something slow, or something
that does not need to be fast.
- Make curcpu() and curlwp functions proper, unless __GNUC__ && _KERNEL.
In that case make them inlines. Makes curlwp LKM and preemption safe.
- Make bus_space and bus_dma more LKM friendly.
- Share a few more files between the ports.
- Other minor changes.
It uses an authorization wrapper per device class on the system to
ensure type-safety.
For now, it supports only terminal (TTY) devices, and has two actions
for them: "open terminal" and "privileged set". Sample usage has been
added to i386 and hp300 code for reference.
Update documentation.
FROMBCD()/TOBCD() macros into wrappers around it, resulting in both
smaller code footprint and elimination of possible issues due to
multiple evaluation of macro arguments.
Suggested by Simon Burge and Anders Gavare on tech-kern.
have the DNA trap handler point to npxdna_empty() by default. This way, if
there are no npx devices found and MATH_EMULATE is not configured, we go back
to the old behavior of issuing a SIGKILL and printing:
pid XXX killed due to lack of floating point
rather than panicking.
drivers that attach to it. This allows for other host interface chips
that use the same keyboards and mice, such as the ones in the ARM
IOMD20, ARM7500, and SA-1111. The PC-compatible driver is still
called pckbc(4), and the new abstraction layer is "pckbport", so the
child devices have moved from sys/dev/pckbc to sys/dev/pckbport, which
also contains some code shared between all host controllers. To avoid
incompatibility, pckbdreg.h is still installed in
/usr/include/dev/pckbc.
In theory, this shouldn't cause any behavioural changes in the drivers
concerned. Thy just use rather more function pointers than before. Tested
on i386 and (with a new host driver) acorn32. Compiled on several other
affected architectures.
uvm_swapout_threads will swapout LWPs which are running on another CPU:
- uvm_swapout_threads considers LWPs running on another CPU for swapout
if their l_swtime is high
- uvm_swapout_threads considers LWPs on the runqueue for swapout if their
l_swtime is high but these LWPs might be running by the time uvm_swapout
is called
symptoms of failure: panic in setrunqueue
fixes PR kern/23095
in interrupt controllers in struct pic, and try to keep as much
common code as possible. At the lowest (asm) level, this is done
with CPP macros.
The main structure is now struct intrsource, describing an established
interrupt line, of any kind (soft/hard local apic/legacy apic/IO apic).
For quick masking, there may be a maximum of 32 sources per CPU.
Sources can be assigned to any CPU in the MP case, though currently they
all go to the boot CPU.