& strobe cycle. These bracket DELAY()'s of BROKEN_LPT_DELAY
microseconds. This can be used to kludge around mysterious hangs and
reboots some users experience. The cause of these failures is still
not known, but is conjectured to be hardware bug originated failures
in the bus cycle.
and system call now just return EFAULT). A complete fix will
presumably have to wait for UBC and/or for vnode locking protocols to
be revamped to allow use of shared locks.
These patches include:
Added framebuffer mapping for color framebuffer to support color wscons
which is coming soon.
Renamed wskbdmap_mfii[ch] to wskbdmap_next[ch]
Changed video to be white on black instead of black on white.
Now handles and discards mouse interrupts.
Video and keyboard is now working on mono machines.
offset and size of the requested region to be mapped, so that the
udv_attach() can use the device d_mmap() entry to check mappability
of the requested region.
magic number and a pointer to the bootinfo data.
XXX: A bootinfo_magic record is not checked for at the moment, even
though test bootblocks initialise the bootinfo data with one.
o Use the bootinfo symtab information in preference to searching for a
valid a.out exec header after _end for initialising DDB.
XXX: Should retire a.out exec header support altogether. Loosing the
ability to load symbols from old bootblocks isn't much of a loss.
After 1.4?
o Add "booted kernel" machdep sysctl.
pointer to just underneath _start. Allows bootblocks (or other kernel
calling programs) to pass more than 4 arguments if it sets up the stack
properly.
The 4kB figure may be overkill - on the pmax it only needs to be a dozen
of so bytes.
in not just used to access memory but is bassed to bus_space_xxx_n()
methods. For debugging purposes, bus_space can have additional constraints
which will be properly met by BUS_SPACE_ALIGNED_POINTER().
"BUS_SPACE_ALIGNED_POINTER()".
Equal to the param.h "ALIGNED_POINTER()" normally, but obeys additional
requirements of the bus_space_xxx_n() macros. (BUS_SPACE_DEBUG)
PTEs is ignored when in kernel mode. Hack around this just like we do on the
i386, by adding a prepass to copyout() to check for write permission on the
destination pages.
* Don't bother pulling PT_M and PT_H bits from pv_flags; they can't ever be
set there!
* Actually make pmap_clear_reference() do something useful.
* Also set the referenced bit (PT_H) when emulating a write fault.
If we're doing modified bit emulation, we must revoke write permission in
pmap_clear_modify(). This is non-negotiable. I will revoke write permission
in pmap_clear_modify(), or suffer the wrath of a thousand bricks.
same uid or by root.
This code is from FreeBSD. (Whilst it was originally obtained from OpenBSD,
FreeBSD fixed it to work with multicast. To quote the commit message:
- Don't bother checking for conflicting sockets if we're binding to a
multicast address.
- Don't return an error if we're binding to INADDR_ANY, the conflicting
socket is bound to INADDR_ANY, and the conflicting socket has
SO_REUSEPORT set.
)
directories which aren't under the recipient's root.
Clean up of many error conditions involving descriptor passing, to
eliminate infinite loops, panics, premature garbage collection of
sockets, and descriptor leaks:
- Avoid letting unp_gc() see descriptors with a refcount of zero by
removing them from the socket's queue before releasing them.
- Avoid socket leak in PRU_ABORT (this will also gc descriptors queued
on a not-yet accepted socket when the accepting socket goes away).
- Put in block comment explaining how unp_gc() should work.
- Correctly manage unp_defer count so we don't get stuck in an infinite
loop with nothing to do.
- Don't tie MARK and DEFER bits so closely together.
- Mark descriptors queued on not-yet-accepted sockets as well.
- Don't call sorflush on non-socket, it doesn't work very well.
- Deal with discard of NULL file pointer.
- Hopefully cause GC to converge faster by only deferring sockets in
unp_mark().
limit into account when checking against the limit; fdp->fd_nfiles may
be greater than the current descriptor limit, and there may be space
in fdp->fd_ofiles beyond the limit. If we say it's available,
unp_externalize will get confused and panic when fdalloc fails.
deadlock in VOP_FSYNC() if the unreferenced vnode picked for
reclamation happened to be stacked on top of a vnode the process
already had locked. This could happen if the same filesystem was
accessed both through a union mount and directly; it seemed to happen
most frequently when the direct access was through NFS.
Avoid this deadlock by changing vinvalbuf to pass a new FSYNC_RECLAIM
flag bit to VOP_FSYNC() to indicate that a reclaim is in progress and
only a `shallow' fsync is necessary.
Do nothing in *_fsync() in umapfs, nullfs, and unionfs when
FSYNC_RECLAIM is set; the underlying vnodes will shortly be released
in *_reclaim and may be reclaimed (and fsync'ed) later.
was changes to comments only, but..)
Build vfs_getcwd.c as standard part of kernel.
Add implementation of fchroot(), since two emulations already had it.
Call vn_isunder() in fchdir(), chroot(), and fchroot() to make it harder
to escape chroot().
Add kernel implementation of getcwd() which uses this cache, falling
back to reading the filesystem on a cache miss.
Along for the ride: add new VOP_FSYNC flag FSYNC_RECLAIM indicating
that a reclaim is being done, so only a "shallow" fsync is needed.
* Rearrange the speed mapping table and adjust the code so that the highest
rate can actually be used. Previously we ended up rounding up slightly
lower speeds and then losing because set_params couldn't set the mode
back to the current one.
* Allow 260 as a valid I/O address, since the SB1 can be jumpered to this.
* Change the MPU-401 code so it can be attached as a separate device.
(XXX Really, the SB code ought to just attach a subdevice itself.)
* Do not attach an OPL on the SB1. Writing to the OPL registers at
SB_base+0 on this card wedges my machine.
(XXX Should we access it at 388 instead? The Creative web site claims
that this board *does* have an OPL2, but I haven't played with this
extensively.)
* Allocate the SB DMA channels at open time, rather than attach time, so
that a single DRQ can be used for multiple cards (if only one is in use
at a given time).
(XXX Let me tell you why this is a horrible hack. If the ISA DMA code
tries to allocate a bounce buffer after boot time, it will generally fail,
because there is no contiguous memory below 16MB and the code to allocate
contiguous pages doesn't know how to move things around. Now, we
shouldn't ever be using bounce buffers here, because we use
isa_dmamem_alloc(). So we just turn off BUS_DMA_ALLOCNOW and we don't
actually try to. That's cool, and it even works, but isa_dmamem_alloc()
has the same problem. It just happens that we allocate the ring buffers
at boot time, and whenever we reallocate them (due to the buffer size
changing), we just deallocated the previous (contiguous) buffer, so we get
lucky. This is absolutely disgusting and needs to be fixed.)