- Clean up the way cpu-specific tlb/cache functions are configured
and used.
- Add a workaround for a problem whereby cpu* at superhyway? fails
to probe.
- Print more info about the cpu/cache.
- Move the RESVEC handlers back into generic sh5 code and ditch
the panic stack hack.
- Make the on-chip SCIF device the default console on Cayman.
- Add experimental support for booting via a standalone bootstrap
program (not yet committed) and using the boot parameters passed
in by it.
- Add a few more SH elf constants.
- Tick a couple of items off the TODO list.
of the loadable sections to correspond to the physical address of
RAM in the Cayman. This is so sh5gdb uploads the image to the correct
place. (Should've done this ages ago instead of manually running a
script...)
This can be removed when I get a native bootloader written.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
- selecting Simulator/ST50 Debugger targets,
- hard-coding the cpu speed instead of using the speed detection code,
- changing the default kernel IPT size,
- selecting the IRL[0-3] mode to configure in the interrupt controller.
simple config file option.
Also, don't hard code the endian setting in a header file. Rely instead
on the compiler defining __LITTLE_ENDIAN__ and DTRT as appropriate.
SH-5, meet NetBSD.
Let's hope this is the start of a long and fruitful relationship. :-)
This code, funded by Wasabi Systems, adds initial support for the
Hitachi SuperH(tm) SH-5 cpu architecture to NetBSD.
At the present time, NetBSD/evbsh5 only runs on a SH-5 core simulator
which has no simulated devices other than a simple console. However, it
is good enough to get to the "root device: " prompt.
Device driver support for Real SH-5 Hardware is in place, particularly for
supporting the up-coming Cayman evaluation board, and should be quite
easy to get running when the hardware is available.
There is no in-tree toolchain for this port at this time. Gcc-current has
rudimentary SH-5 support but it is known to be buggy. A working toolchain
was obtained from SuperH to facilitate this port. Gcc-current will be
fixed in due course.
The SH-5 architecture is fully 64-bit capable, although NetBSD/evbsh5 has
currently only been tested in 32-bit mode. It is bi-endian, via a boot-
time option and it also has an "SHcompact" mode in which it will execute
SH-[34] user-land instructions.
For more information on the SH-5, see www.superh.com. Suffice to say it
is *not* just another respin of the SH-[34].