788 lines
21 KiB
C
788 lines
21 KiB
C
|
/*-
|
||
|
* Copyright (c) 1990 The Regents of the University of California.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by the University of
|
||
|
* California, Berkeley and its contributors.
|
||
|
* 4. Neither the name of the University nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#if defined(LIBC_SCCS) && !defined(lint)
|
||
|
static char sccsid[] = "@(#)fts.c 5.19 (Berkeley) 5/9/91";
|
||
|
#endif /* LIBC_SCCS and not lint */
|
||
|
|
||
|
#include <sys/cdefs.h>
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/stat.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <dirent.h>
|
||
|
#include <errno.h>
|
||
|
#include "fts.h"
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <unistd.h>
|
||
|
|
||
|
static FTSENT *fts_alloc(), *fts_build(), *fts_sort();
|
||
|
static void fts_load(), fts_lfree();
|
||
|
static u_short fts_stat();
|
||
|
static char *fts_path();
|
||
|
|
||
|
#define ISSET(opt) (sp->fts_options & opt)
|
||
|
#define SET(opt) (sp->fts_options |= opt)
|
||
|
|
||
|
#define CHDIR(sp, path) (!ISSET(FTS_NOCHDIR) && chdir(path))
|
||
|
#define FCHDIR(sp, fd) (!ISSET(FTS_NOCHDIR) && fchdir(fd))
|
||
|
|
||
|
/* fts_build flags */
|
||
|
#define BCHILD 1 /* from fts_children */
|
||
|
#define BREAD 2 /* from fts_read */
|
||
|
|
||
|
FTS *
|
||
|
fts_open(argv, options, compar)
|
||
|
char * const *argv;
|
||
|
register int options;
|
||
|
int (*compar)();
|
||
|
{
|
||
|
register FTS *sp;
|
||
|
register FTSENT *p, *root;
|
||
|
register int nitems, maxlen;
|
||
|
FTSENT *parent, *tmp;
|
||
|
int len;
|
||
|
|
||
|
/* Allocate/initialize the stream */
|
||
|
if (!(sp = (FTS *)malloc((u_int)sizeof(FTS))))
|
||
|
return(NULL);
|
||
|
bzero(sp, sizeof(FTS));
|
||
|
sp->fts_compar = compar;
|
||
|
sp->fts_options = options;
|
||
|
|
||
|
/* Logical walks turn on NOCHDIR; symbolic links are too hard. */
|
||
|
if (ISSET(FTS_LOGICAL))
|
||
|
SET(FTS_NOCHDIR);
|
||
|
|
||
|
/* Allocate/initialize root's parent. */
|
||
|
if (!(parent = fts_alloc(sp, "", 0)))
|
||
|
goto mem1;
|
||
|
parent->fts_level = FTS_ROOTPARENTLEVEL;
|
||
|
|
||
|
/* Allocate/initialize root(s). */
|
||
|
maxlen = -1;
|
||
|
for (root = NULL, nitems = 0; *argv; ++argv, ++nitems) {
|
||
|
if (!(len = strlen(*argv))) {
|
||
|
errno = ENOENT;
|
||
|
goto mem2;
|
||
|
}
|
||
|
if (maxlen < len)
|
||
|
maxlen = len;
|
||
|
p = fts_alloc(sp, *argv, len);
|
||
|
p->fts_level = FTS_ROOTLEVEL;
|
||
|
p->fts_parent = parent;
|
||
|
/*
|
||
|
* If comparison routine supplied, traverse in sorted
|
||
|
* order; otherwise traverse in the order specified.
|
||
|
*/
|
||
|
if (compar) {
|
||
|
p->fts_link = root;
|
||
|
root = p;
|
||
|
p->fts_accpath = p->fts_name;
|
||
|
if (!(options & FTS_NOSTAT))
|
||
|
p->fts_info = fts_stat(sp, p, 0);
|
||
|
} else {
|
||
|
p->fts_link = NULL;
|
||
|
if (!root)
|
||
|
tmp = root = p;
|
||
|
else {
|
||
|
tmp->fts_link = p;
|
||
|
tmp = p;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (compar && nitems > 1)
|
||
|
root = fts_sort(sp, root, nitems);
|
||
|
|
||
|
/*
|
||
|
* Allocate a dummy pointer and make fts_read think that we've just
|
||
|
* finished the node before the root(s); set p->fts_info to FTS_NS
|
||
|
* so that everything about the "current" node is ignored.
|
||
|
*/
|
||
|
if (!(sp->fts_cur = fts_alloc(sp, "", 0)))
|
||
|
goto mem2;
|
||
|
sp->fts_cur->fts_link = root;
|
||
|
sp->fts_cur->fts_info = FTS_NS;
|
||
|
|
||
|
/* Start out with at least 1K+ of path space. */
|
||
|
if (!fts_path(sp, MAX(maxlen, MAXPATHLEN)))
|
||
|
goto mem3;
|
||
|
|
||
|
/*
|
||
|
* If using chdir(2), grab a file descriptor pointing to dot to insure
|
||
|
* that we can get back here; this could be avoided for some paths,
|
||
|
* but almost certainly not worth the effort. Slashes, symbolic links,
|
||
|
* and ".." are all fairly nasty problems. Note, if we can't get the
|
||
|
* descriptor we run anyway, just more slowly.
|
||
|
*/
|
||
|
if (!ISSET(FTS_NOCHDIR) && (sp->fts_rfd = open(".", O_RDONLY, 0)) < 0)
|
||
|
SET(FTS_NOCHDIR);
|
||
|
|
||
|
return(sp);
|
||
|
|
||
|
mem3: free(sp->fts_cur);
|
||
|
mem2: fts_lfree(root);
|
||
|
free(parent);
|
||
|
mem1: free(sp);
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
fts_load(sp, p)
|
||
|
FTS *sp;
|
||
|
register FTSENT *p;
|
||
|
{
|
||
|
register int len;
|
||
|
register char *cp;
|
||
|
|
||
|
/*
|
||
|
* Load the stream structure for the next traversal. Since we don't
|
||
|
* actually enter the directory until after the preorder visit, set
|
||
|
* the fts_accpath field specially so the chdir gets done to the right
|
||
|
* place and the user can access the first node.
|
||
|
*/
|
||
|
len = p->fts_pathlen = p->fts_namelen;
|
||
|
bcopy(p->fts_name, sp->fts_path, len + 1);
|
||
|
if ((cp = rindex(p->fts_name, '/')) && (cp != p->fts_name || cp[1])) {
|
||
|
len = strlen(++cp);
|
||
|
bcopy(cp, p->fts_name, len + 1);
|
||
|
p->fts_namelen = len;
|
||
|
}
|
||
|
p->fts_accpath = p->fts_path = sp->fts_path;
|
||
|
|
||
|
p->fts_info = fts_stat(sp, p, 0);
|
||
|
sp->rdev = p->fts_statb.st_dev;
|
||
|
}
|
||
|
|
||
|
fts_close(sp)
|
||
|
FTS *sp;
|
||
|
{
|
||
|
register FTSENT *freep, *p;
|
||
|
int saved_errno;
|
||
|
|
||
|
if (sp->fts_cur) {
|
||
|
/*
|
||
|
* This still works if we haven't read anything -- the dummy
|
||
|
* structure points to the root list, so we step through to
|
||
|
* the end of the root list which has a valid parent pointer.
|
||
|
*/
|
||
|
for (p = sp->fts_cur; p->fts_level > FTS_ROOTPARENTLEVEL;) {
|
||
|
freep = p;
|
||
|
p = p->fts_link ? p->fts_link : p->fts_parent;
|
||
|
free(freep);
|
||
|
}
|
||
|
free(p);
|
||
|
}
|
||
|
|
||
|
/* Free up child linked list, sort array, path buffer. */
|
||
|
if (sp->fts_child)
|
||
|
fts_lfree(sp->fts_child);
|
||
|
if (sp->fts_array)
|
||
|
free(sp->fts_array);
|
||
|
free(sp->fts_path);
|
||
|
|
||
|
/* Return to original directory, save errno if necessary. */
|
||
|
if (!ISSET(FTS_NOCHDIR)) {
|
||
|
saved_errno = fchdir(sp->fts_rfd) ? errno : 0;
|
||
|
(void)close(sp->fts_rfd);
|
||
|
}
|
||
|
|
||
|
/* Free up the stream pointer. */
|
||
|
free(sp);
|
||
|
|
||
|
/* Set errno and return. */
|
||
|
if (!ISSET(FTS_NOCHDIR) && saved_errno) {
|
||
|
errno = saved_errno;
|
||
|
return(-1);
|
||
|
}
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Special case a root of "/" so that slashes aren't appended causing
|
||
|
* paths to be written as "//foo".
|
||
|
*/
|
||
|
#define NAPPEND(p) \
|
||
|
(p->fts_level == FTS_ROOTLEVEL && p->fts_pathlen == 1 && \
|
||
|
p->fts_path[0] == '/' ? 0 : p->fts_pathlen)
|
||
|
|
||
|
FTSENT *
|
||
|
fts_read(sp)
|
||
|
register FTS *sp;
|
||
|
{
|
||
|
register FTSENT *p, *tmp;
|
||
|
register int instr;
|
||
|
register char *t;
|
||
|
|
||
|
/* If finished or unrecoverable error, return NULL. */
|
||
|
if (!sp->fts_cur || ISSET(FTS_STOP))
|
||
|
return(NULL);
|
||
|
|
||
|
/* Set current node pointer. */
|
||
|
p = sp->fts_cur;
|
||
|
|
||
|
/* Save and zero out user instructions. */
|
||
|
instr = p->fts_instr;
|
||
|
p->fts_instr = FTS_NOINSTR;
|
||
|
|
||
|
/* If used fts_link pointer for cycle detection, restore it. */
|
||
|
if (sp->fts_savelink) {
|
||
|
p->fts_link = sp->fts_savelink;
|
||
|
sp->fts_savelink = NULL;
|
||
|
}
|
||
|
|
||
|
/* Any type of file may be re-visited; re-stat and re-turn. */
|
||
|
if (instr == FTS_AGAIN) {
|
||
|
p->fts_info = fts_stat(sp, p, 0);
|
||
|
return(p);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Following a symlink -- SLNONE test allows application to see
|
||
|
* SLNONE and recover.
|
||
|
*/
|
||
|
if (instr == FTS_FOLLOW &&
|
||
|
(p->fts_info == FTS_SL || p->fts_info == FTS_SLNONE)) {
|
||
|
p->fts_info = fts_stat(sp, p, 1);
|
||
|
return(p);
|
||
|
}
|
||
|
|
||
|
/* Directory in pre-order. */
|
||
|
if (p->fts_info == FTS_D) {
|
||
|
/* If skipped or crossed mount point, do post-order visit. */
|
||
|
if (instr == FTS_SKIP ||
|
||
|
ISSET(FTS_XDEV) && p->fts_statb.st_dev != sp->rdev) {
|
||
|
if (sp->fts_child) {
|
||
|
fts_lfree(sp->fts_child);
|
||
|
sp->fts_child = NULL;
|
||
|
}
|
||
|
p->fts_info = FTS_DP;
|
||
|
return(p);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Cd to the subdirectory, reading it if haven't already. If
|
||
|
* the read fails for any reason, or the directory is empty,
|
||
|
* the fts_info field of the current node is set by fts_build.
|
||
|
* If have already read and now fail to chdir, whack the list
|
||
|
* to make the names come out right, and set the parent state
|
||
|
* so the application will eventually get an error condition.
|
||
|
* If haven't read and fail to chdir, check to see if we're
|
||
|
* at the root node -- if so, we have to get back or the root
|
||
|
* node may be inaccessible.
|
||
|
*/
|
||
|
if (sp->fts_child) {
|
||
|
if (CHDIR(sp, p->fts_accpath)) {
|
||
|
p->fts_parent->fts_cderr = errno;
|
||
|
for (p = sp->fts_child; p; p = p->fts_link)
|
||
|
p->fts_accpath =
|
||
|
p->fts_parent->fts_accpath;
|
||
|
}
|
||
|
} else if (!(sp->fts_child = fts_build(sp, BREAD))) {
|
||
|
if ISSET(FTS_STOP)
|
||
|
return(NULL);
|
||
|
if (p->fts_level == FTS_ROOTLEVEL &&
|
||
|
FCHDIR(sp, sp->fts_rfd)) {
|
||
|
SET(FTS_STOP);
|
||
|
return(NULL);
|
||
|
}
|
||
|
return(p);
|
||
|
}
|
||
|
p = sp->fts_child;
|
||
|
sp->fts_child = NULL;
|
||
|
goto name;
|
||
|
}
|
||
|
|
||
|
/* Move to next node on this level. */
|
||
|
next: tmp = p;
|
||
|
if (p = p->fts_link) {
|
||
|
free(tmp);
|
||
|
|
||
|
/* If reached the top, load the paths for the next root. */
|
||
|
if (p->fts_level == FTS_ROOTLEVEL) {
|
||
|
fts_load(sp, p);
|
||
|
return(sp->fts_cur = p);
|
||
|
}
|
||
|
|
||
|
/* User may have called fts_set on the node. */
|
||
|
if (p->fts_instr == FTS_SKIP)
|
||
|
goto next;
|
||
|
if (p->fts_instr == FTS_FOLLOW) {
|
||
|
p->fts_info = fts_stat(sp, p, 1);
|
||
|
p->fts_instr = FTS_NOINSTR;
|
||
|
}
|
||
|
|
||
|
name: t = sp->fts_path + NAPPEND(p->fts_parent);
|
||
|
*t++ = '/';
|
||
|
bcopy(p->fts_name, t, p->fts_namelen + 1);
|
||
|
return(sp->fts_cur = p);
|
||
|
}
|
||
|
|
||
|
/* Move up to the parent node. */
|
||
|
p = tmp->fts_parent;
|
||
|
free(tmp);
|
||
|
|
||
|
if (p->fts_level == FTS_ROOTPARENTLEVEL) {
|
||
|
/*
|
||
|
* Done; free everything up and set errno to 0 so the user
|
||
|
* can distinguish between error and EOF.
|
||
|
*/
|
||
|
free(p);
|
||
|
errno = 0;
|
||
|
return(sp->fts_cur = NULL);
|
||
|
}
|
||
|
|
||
|
sp->fts_path[p->fts_pathlen] = '\0';
|
||
|
|
||
|
/*
|
||
|
* Cd back up to the parent directory. If at a root node, have to cd
|
||
|
* back to the original place, otherwise may not be able to access the
|
||
|
* original node on post-order.
|
||
|
*/
|
||
|
if (p->fts_level == FTS_ROOTLEVEL) {
|
||
|
if (FCHDIR(sp, sp->fts_rfd)) {
|
||
|
SET(FTS_STOP);
|
||
|
return(NULL);
|
||
|
}
|
||
|
}
|
||
|
else if (CHDIR(sp, "..")) {
|
||
|
SET(FTS_STOP);
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If had a chdir error when trying to get into the directory, set the
|
||
|
* info field to reflect this, and restore errno. The error indicator
|
||
|
* has to be reset to 0 so that if the user does an FTS_AGAIN, it all
|
||
|
* works.
|
||
|
*/
|
||
|
if (p->fts_cderr) {
|
||
|
errno = p->fts_cderr;
|
||
|
p->fts_cderr = 0;
|
||
|
p->fts_info = FTS_ERR;
|
||
|
} else
|
||
|
p->fts_info = FTS_DP;
|
||
|
return(sp->fts_cur = p);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fts_set takes the stream as an argument although it's not used in this
|
||
|
* implementation; it would be necessary if anyone wanted to add global
|
||
|
* semantics to fts using fts_set. An error return is allowed for similar
|
||
|
* reasons.
|
||
|
*/
|
||
|
/* ARGSUSED */
|
||
|
fts_set(sp, p, instr)
|
||
|
FTS *sp;
|
||
|
FTSENT *p;
|
||
|
int instr;
|
||
|
{
|
||
|
p->fts_instr = instr;
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
FTSENT *
|
||
|
fts_children(sp)
|
||
|
register FTS *sp;
|
||
|
{
|
||
|
register FTSENT *p;
|
||
|
int fd;
|
||
|
|
||
|
/* Set current node pointer. */
|
||
|
p = sp->fts_cur;
|
||
|
|
||
|
/*
|
||
|
* Set errno to 0 so that user can tell the difference between an
|
||
|
* error and a directory without entries. If not a directory being
|
||
|
* visited in *pre-order*, or we've already had fatal errors, return
|
||
|
* immediately.
|
||
|
*/
|
||
|
errno = 0;
|
||
|
if (ISSET(FTS_STOP) || p->fts_info != FTS_D && p->fts_info != FTS_DNR)
|
||
|
return(NULL);
|
||
|
|
||
|
/* Free up any previous child list. */
|
||
|
if (sp->fts_child)
|
||
|
fts_lfree(sp->fts_child);
|
||
|
|
||
|
/*
|
||
|
* If using chdir on a relative path and called BEFORE fts_read does
|
||
|
* its chdir to the root of a traversal, we can lose -- we need to
|
||
|
* chdir into the subdirectory, and we don't know where the current
|
||
|
* directory is, so we can't get back so that the upcoming chdir by
|
||
|
* fts_read will work.
|
||
|
*/
|
||
|
if (p->fts_level != FTS_ROOTLEVEL || p->fts_accpath[0] == '/' ||
|
||
|
ISSET(FTS_NOCHDIR))
|
||
|
return(sp->fts_child = fts_build(sp, BCHILD));
|
||
|
|
||
|
if ((fd = open(".", O_RDONLY, 0)) < 0)
|
||
|
return(NULL);
|
||
|
sp->fts_child = fts_build(sp, BCHILD);
|
||
|
if (fchdir(fd))
|
||
|
return(NULL);
|
||
|
(void)close(fd);
|
||
|
return(sp->fts_child);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is the tricky part -- do not casually change *anything* in here. The
|
||
|
* idea is to build the linked list of entries that are used by fts_children
|
||
|
* and fts_read. There are lots of special cases.
|
||
|
*
|
||
|
* The real slowdown in walking the tree is the stat calls. If FTS_NOSTAT is
|
||
|
* set and it's a physical walk (so that symbolic links can't be directories),
|
||
|
* we assume that the number of subdirectories in a node is equal to the number
|
||
|
* of links to the parent. This allows stat calls to be skipped in any leaf
|
||
|
* directories and for any nodes after the directories in the parent node have
|
||
|
* been found. This empirically cuts the stat calls by about 2/3.
|
||
|
*/
|
||
|
#define ISDOT(a) (a[0] == '.' && (!a[1] || a[1] == '.' && !a[2]))
|
||
|
|
||
|
static FTSENT *
|
||
|
fts_build(sp, type)
|
||
|
register FTS *sp;
|
||
|
int type;
|
||
|
{
|
||
|
register struct dirent *dp;
|
||
|
register FTSENT *p, *head;
|
||
|
register int nitems;
|
||
|
FTSENT *cur;
|
||
|
DIR *dirp;
|
||
|
int cderr, descend, len, level, maxlen, nlinks, saved_errno;
|
||
|
char *cp;
|
||
|
|
||
|
/* Set current node pointer. */
|
||
|
cur = sp->fts_cur;
|
||
|
|
||
|
/*
|
||
|
* Open the directory for reading. If this fails, we're done.
|
||
|
* If being called from fts_read, set the fts_info field.
|
||
|
*/
|
||
|
if (!(dirp = opendir(cur->fts_accpath))) {
|
||
|
if (type == BREAD)
|
||
|
cur->fts_info = FTS_DNR;
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Nlinks is the number of possible entries of type directory in the
|
||
|
* directory if we're cheating on stat calls, 0 if we're not doing
|
||
|
* any stat calls at all, -1 if we're doing stats on everything.
|
||
|
*/
|
||
|
nlinks =
|
||
|
ISSET(FTS_NOSTAT) && ISSET(FTS_PHYSICAL) ?
|
||
|
cur->fts_statb.st_nlink - (ISSET(FTS_SEEDOT) ? 0 : 2) : -1;
|
||
|
|
||
|
/*
|
||
|
* If we're going to need to stat anything or we want to descend
|
||
|
* and stay in the directory, chdir. If this fails we keep going.
|
||
|
* We won't be able to stat anything, but we can still return the
|
||
|
* names themselves. Note, that since fts_read won't be able to
|
||
|
* chdir into the directory, it will have to return different path
|
||
|
* names than before, i.e. "a/b" instead of "b". Since the node
|
||
|
* has already been visited in pre-order, have to wait until the
|
||
|
* post-order visit to return the error. This is all fairly nasty.
|
||
|
* If a program needed sorted entries or stat information, they had
|
||
|
* better be checking FTS_NS on the returned nodes.
|
||
|
*/
|
||
|
if (nlinks || type == BREAD)
|
||
|
if (FCHDIR(sp, dirfd(dirp))) {
|
||
|
if (type == BREAD)
|
||
|
cur->fts_cderr = errno;
|
||
|
descend = nlinks = 0;
|
||
|
cderr = 1;
|
||
|
} else {
|
||
|
descend = 1;
|
||
|
cderr = 0;
|
||
|
}
|
||
|
else
|
||
|
descend = 0;
|
||
|
|
||
|
/*
|
||
|
* Figure out the max file name length that can be stored in the
|
||
|
* current path -- the inner loop allocates more path as necessary.
|
||
|
* We really wouldn't have to do the maxlen calculations here, we
|
||
|
* could do them in fts_read before returning the path, but it's a
|
||
|
* lot easier here since the length is part of the dirent structure.
|
||
|
*
|
||
|
* If not changing directories set a pointer so that we can just
|
||
|
* append each new name into the path.
|
||
|
*/
|
||
|
maxlen = sp->fts_pathlen - cur->fts_pathlen - 1;
|
||
|
len = NAPPEND(cur);
|
||
|
if (ISSET(FTS_NOCHDIR)) {
|
||
|
cp = sp->fts_path + len;
|
||
|
*cp++ = '/';
|
||
|
}
|
||
|
|
||
|
level = cur->fts_level + 1;
|
||
|
|
||
|
/* Read the directory, attaching each entry to the `link' pointer. */
|
||
|
for (head = NULL, nitems = 0; dp = readdir(dirp);) {
|
||
|
if (!ISSET(FTS_SEEDOT) && ISDOT(dp->d_name))
|
||
|
continue;
|
||
|
|
||
|
if (!(p = fts_alloc(sp, dp->d_name, (int)dp->d_namlen)))
|
||
|
goto mem1;
|
||
|
if (dp->d_namlen > maxlen) {
|
||
|
if (!fts_path(sp, (int)dp->d_namlen)) {
|
||
|
/*
|
||
|
* No more memory for path or structures. Save
|
||
|
* errno, free up the current structure and the
|
||
|
* structures already allocated.
|
||
|
*/
|
||
|
mem1: saved_errno = errno;
|
||
|
if (p)
|
||
|
free(p);
|
||
|
fts_lfree(head);
|
||
|
(void)closedir(dirp);
|
||
|
errno = saved_errno;
|
||
|
cur->fts_info = FTS_ERR;
|
||
|
SET(FTS_STOP);
|
||
|
return(NULL);
|
||
|
}
|
||
|
maxlen = sp->fts_pathlen - sp->fts_cur->fts_pathlen - 1;
|
||
|
}
|
||
|
|
||
|
p->fts_pathlen = len + dp->d_namlen + 1;
|
||
|
p->fts_parent = sp->fts_cur;
|
||
|
p->fts_level = level;
|
||
|
|
||
|
if (nlinks) {
|
||
|
/* Build a file name for fts_stat to stat. */
|
||
|
if (ISSET(FTS_NOCHDIR)) {
|
||
|
p->fts_accpath = p->fts_path;
|
||
|
bcopy(p->fts_name, cp, p->fts_namelen + 1);
|
||
|
} else
|
||
|
p->fts_accpath = p->fts_name;
|
||
|
p->fts_info = fts_stat(sp, p, 0);
|
||
|
if (nlinks > 0 && p->fts_info == FTS_D)
|
||
|
--nlinks;
|
||
|
} else if (cderr) {
|
||
|
p->fts_info = ISSET(FTS_NOSTAT) ? FTS_NSOK : FTS_NS;
|
||
|
p->fts_accpath = cur->fts_accpath;
|
||
|
} else {
|
||
|
p->fts_accpath =
|
||
|
ISSET(FTS_NOCHDIR) ? p->fts_path : p->fts_name;
|
||
|
p->fts_info = FTS_NSOK;
|
||
|
}
|
||
|
|
||
|
p->fts_link = head;
|
||
|
head = p;
|
||
|
++nitems;
|
||
|
}
|
||
|
(void)closedir(dirp);
|
||
|
|
||
|
/*
|
||
|
* If not changing directories, reset the path back to original
|
||
|
* state.
|
||
|
*/
|
||
|
if (ISSET(FTS_NOCHDIR)) {
|
||
|
if (cp - 1 > sp->fts_path)
|
||
|
--cp;
|
||
|
*cp = '\0';
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If descended after called from fts_children or called from
|
||
|
* fts_read and didn't find anything, get back. If can't get
|
||
|
* back, we're done.
|
||
|
*/
|
||
|
if (descend && (!nitems || type == BCHILD) && CHDIR(sp, "..")) {
|
||
|
cur->fts_info = FTS_ERR;
|
||
|
SET(FTS_STOP);
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
/* If we didn't find anything, just do the post-order visit */
|
||
|
if (!nitems) {
|
||
|
if (type == BREAD)
|
||
|
cur->fts_info = FTS_DP;
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
/* Sort the entries. */
|
||
|
if (sp->fts_compar && nitems > 1)
|
||
|
head = fts_sort(sp, head, nitems);
|
||
|
return(head);
|
||
|
}
|
||
|
|
||
|
static u_short
|
||
|
fts_stat(sp, p, follow)
|
||
|
FTS *sp;
|
||
|
register FTSENT *p;
|
||
|
int follow;
|
||
|
{
|
||
|
int saved_errno;
|
||
|
|
||
|
/*
|
||
|
* If doing a logical walk, or application requested FTS_FOLLOW, do
|
||
|
* a stat(2). If that fails, check for a non-existent symlink. If
|
||
|
* fail, return the errno from the stat call.
|
||
|
*/
|
||
|
if (ISSET(FTS_LOGICAL) || follow) {
|
||
|
if (stat(p->fts_accpath, &p->fts_statb)) {
|
||
|
saved_errno = errno;
|
||
|
if (!lstat(p->fts_accpath, &p->fts_statb)) {
|
||
|
errno = 0;
|
||
|
return(FTS_SLNONE);
|
||
|
}
|
||
|
errno = saved_errno;
|
||
|
bzero(&p->fts_statb, sizeof(struct stat));
|
||
|
return(FTS_NS);
|
||
|
}
|
||
|
} else if (lstat(p->fts_accpath, &p->fts_statb)) {
|
||
|
bzero(&p->fts_statb, sizeof(struct stat));
|
||
|
return(FTS_NS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Cycle detection is done as soon as we find a directory. Detection
|
||
|
* is by brute force; if the tree gets deep enough or the number of
|
||
|
* symbolic links to directories high enough something faster might
|
||
|
* be worthwhile.
|
||
|
*/
|
||
|
if (S_ISDIR(p->fts_statb.st_mode)) {
|
||
|
register FTSENT *t;
|
||
|
register dev_t dev;
|
||
|
register ino_t ino;
|
||
|
|
||
|
dev = p->fts_statb.st_dev;
|
||
|
ino = p->fts_statb.st_ino;
|
||
|
for (t = p->fts_parent; t->fts_level > FTS_ROOTLEVEL;
|
||
|
t = t->fts_parent)
|
||
|
if (ino == t->fts_statb.st_ino &&
|
||
|
dev == t->fts_statb.st_dev) {
|
||
|
sp->fts_savelink = p->fts_link;
|
||
|
p->fts_link = t;
|
||
|
return(FTS_DC);
|
||
|
}
|
||
|
return(FTS_D);
|
||
|
}
|
||
|
if (S_ISLNK(p->fts_statb.st_mode))
|
||
|
return(FTS_SL);
|
||
|
if (S_ISREG(p->fts_statb.st_mode))
|
||
|
return(FTS_F);
|
||
|
return(FTS_DEFAULT);
|
||
|
}
|
||
|
|
||
|
#define R(type, nelem, ptr) \
|
||
|
(type *)realloc((void *)ptr, (u_int)((nelem) * sizeof(type)))
|
||
|
|
||
|
static FTSENT *
|
||
|
fts_sort(sp, head, nitems)
|
||
|
FTS *sp;
|
||
|
FTSENT *head;
|
||
|
register int nitems;
|
||
|
{
|
||
|
register FTSENT **ap, *p;
|
||
|
|
||
|
/*
|
||
|
* Construct an array of pointers to the structures and call qsort(3).
|
||
|
* Reassemble the array in the order returned by qsort. If unable to
|
||
|
* sort for memory reasons, return the directory entries in their
|
||
|
* current order. Allocate enough space for the current needs plus
|
||
|
* 40 so we don't realloc one entry at a time.
|
||
|
*/
|
||
|
if (nitems > sp->fts_nitems) {
|
||
|
sp->fts_nitems = nitems + 40;
|
||
|
if (!(sp->fts_array =
|
||
|
R(FTSENT *, sp->fts_nitems, sp->fts_array))) {
|
||
|
sp->fts_nitems = 0;
|
||
|
return(head);
|
||
|
}
|
||
|
}
|
||
|
for (ap = sp->fts_array, p = head; p; p = p->fts_link)
|
||
|
*ap++ = p;
|
||
|
qsort((void *)sp->fts_array, nitems, sizeof(FTSENT *), sp->fts_compar);
|
||
|
for (head = *(ap = sp->fts_array); --nitems; ++ap)
|
||
|
ap[0]->fts_link = ap[1];
|
||
|
ap[0]->fts_link = NULL;
|
||
|
return(head);
|
||
|
}
|
||
|
|
||
|
static FTSENT *
|
||
|
fts_alloc(sp, name, len)
|
||
|
FTS *sp;
|
||
|
char *name;
|
||
|
register int len;
|
||
|
{
|
||
|
register FTSENT *p;
|
||
|
|
||
|
/*
|
||
|
* Variable sized structures; the name is the last element so
|
||
|
* we allocate enough extra space after the structure to store
|
||
|
* it.
|
||
|
*/
|
||
|
if (!(p = (FTSENT *)malloc((size_t)(sizeof(FTSENT) + len))))
|
||
|
return(NULL);
|
||
|
bcopy(name, p->fts_name, len + 1);
|
||
|
p->fts_namelen = len;
|
||
|
p->fts_path = sp->fts_path;
|
||
|
p->fts_instr = FTS_NOINSTR;
|
||
|
p->fts_cderr = 0;
|
||
|
p->fts_number = 0;
|
||
|
p->fts_pointer = NULL;
|
||
|
return(p);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
fts_lfree(head)
|
||
|
register FTSENT *head;
|
||
|
{
|
||
|
register FTSENT *p;
|
||
|
|
||
|
/* Free a linked list of structures. */
|
||
|
while (p = head) {
|
||
|
head = head->fts_link;
|
||
|
free(p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allow essentially unlimited paths; certain programs (find, rm, ls) need to
|
||
|
* work on any tree. Most systems will allow creation of paths much longer
|
||
|
* than MAXPATHLEN, even though the kernel won't resolve them. Add an extra
|
||
|
* 128 bytes to the requested size so that we don't realloc the path 2 bytes
|
||
|
* at a time.
|
||
|
*/
|
||
|
static char *
|
||
|
fts_path(sp, size)
|
||
|
FTS *sp;
|
||
|
int size;
|
||
|
{
|
||
|
sp->fts_pathlen += size + 128;
|
||
|
return(sp->fts_path = R(char, sp->fts_pathlen, sp->fts_path));
|
||
|
}
|