/*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)fts.c 5.19 (Berkeley) 5/9/91"; #endif /* LIBC_SCCS and not lint */ #include #include #include #include #include #include #include "fts.h" #include #include #include static FTSENT *fts_alloc(), *fts_build(), *fts_sort(); static void fts_load(), fts_lfree(); static u_short fts_stat(); static char *fts_path(); #define ISSET(opt) (sp->fts_options & opt) #define SET(opt) (sp->fts_options |= opt) #define CHDIR(sp, path) (!ISSET(FTS_NOCHDIR) && chdir(path)) #define FCHDIR(sp, fd) (!ISSET(FTS_NOCHDIR) && fchdir(fd)) /* fts_build flags */ #define BCHILD 1 /* from fts_children */ #define BREAD 2 /* from fts_read */ FTS * fts_open(argv, options, compar) char * const *argv; register int options; int (*compar)(); { register FTS *sp; register FTSENT *p, *root; register int nitems, maxlen; FTSENT *parent, *tmp; int len; /* Allocate/initialize the stream */ if (!(sp = (FTS *)malloc((u_int)sizeof(FTS)))) return(NULL); bzero(sp, sizeof(FTS)); sp->fts_compar = compar; sp->fts_options = options; /* Logical walks turn on NOCHDIR; symbolic links are too hard. */ if (ISSET(FTS_LOGICAL)) SET(FTS_NOCHDIR); /* Allocate/initialize root's parent. */ if (!(parent = fts_alloc(sp, "", 0))) goto mem1; parent->fts_level = FTS_ROOTPARENTLEVEL; /* Allocate/initialize root(s). */ maxlen = -1; for (root = NULL, nitems = 0; *argv; ++argv, ++nitems) { if (!(len = strlen(*argv))) { errno = ENOENT; goto mem2; } if (maxlen < len) maxlen = len; p = fts_alloc(sp, *argv, len); p->fts_level = FTS_ROOTLEVEL; p->fts_parent = parent; /* * If comparison routine supplied, traverse in sorted * order; otherwise traverse in the order specified. */ if (compar) { p->fts_link = root; root = p; p->fts_accpath = p->fts_name; if (!(options & FTS_NOSTAT)) p->fts_info = fts_stat(sp, p, 0); } else { p->fts_link = NULL; if (!root) tmp = root = p; else { tmp->fts_link = p; tmp = p; } } } if (compar && nitems > 1) root = fts_sort(sp, root, nitems); /* * Allocate a dummy pointer and make fts_read think that we've just * finished the node before the root(s); set p->fts_info to FTS_NS * so that everything about the "current" node is ignored. */ if (!(sp->fts_cur = fts_alloc(sp, "", 0))) goto mem2; sp->fts_cur->fts_link = root; sp->fts_cur->fts_info = FTS_NS; /* Start out with at least 1K+ of path space. */ if (!fts_path(sp, MAX(maxlen, MAXPATHLEN))) goto mem3; /* * If using chdir(2), grab a file descriptor pointing to dot to insure * that we can get back here; this could be avoided for some paths, * but almost certainly not worth the effort. Slashes, symbolic links, * and ".." are all fairly nasty problems. Note, if we can't get the * descriptor we run anyway, just more slowly. */ if (!ISSET(FTS_NOCHDIR) && (sp->fts_rfd = open(".", O_RDONLY, 0)) < 0) SET(FTS_NOCHDIR); return(sp); mem3: free(sp->fts_cur); mem2: fts_lfree(root); free(parent); mem1: free(sp); return(NULL); } static void fts_load(sp, p) FTS *sp; register FTSENT *p; { register int len; register char *cp; /* * Load the stream structure for the next traversal. Since we don't * actually enter the directory until after the preorder visit, set * the fts_accpath field specially so the chdir gets done to the right * place and the user can access the first node. */ len = p->fts_pathlen = p->fts_namelen; bcopy(p->fts_name, sp->fts_path, len + 1); if ((cp = rindex(p->fts_name, '/')) && (cp != p->fts_name || cp[1])) { len = strlen(++cp); bcopy(cp, p->fts_name, len + 1); p->fts_namelen = len; } p->fts_accpath = p->fts_path = sp->fts_path; p->fts_info = fts_stat(sp, p, 0); sp->rdev = p->fts_statb.st_dev; } fts_close(sp) FTS *sp; { register FTSENT *freep, *p; int saved_errno; if (sp->fts_cur) { /* * This still works if we haven't read anything -- the dummy * structure points to the root list, so we step through to * the end of the root list which has a valid parent pointer. */ for (p = sp->fts_cur; p->fts_level > FTS_ROOTPARENTLEVEL;) { freep = p; p = p->fts_link ? p->fts_link : p->fts_parent; free(freep); } free(p); } /* Free up child linked list, sort array, path buffer. */ if (sp->fts_child) fts_lfree(sp->fts_child); if (sp->fts_array) free(sp->fts_array); free(sp->fts_path); /* Return to original directory, save errno if necessary. */ if (!ISSET(FTS_NOCHDIR)) { saved_errno = fchdir(sp->fts_rfd) ? errno : 0; (void)close(sp->fts_rfd); } /* Free up the stream pointer. */ free(sp); /* Set errno and return. */ if (!ISSET(FTS_NOCHDIR) && saved_errno) { errno = saved_errno; return(-1); } return(0); } /* * Special case a root of "/" so that slashes aren't appended causing * paths to be written as "//foo". */ #define NAPPEND(p) \ (p->fts_level == FTS_ROOTLEVEL && p->fts_pathlen == 1 && \ p->fts_path[0] == '/' ? 0 : p->fts_pathlen) FTSENT * fts_read(sp) register FTS *sp; { register FTSENT *p, *tmp; register int instr; register char *t; /* If finished or unrecoverable error, return NULL. */ if (!sp->fts_cur || ISSET(FTS_STOP)) return(NULL); /* Set current node pointer. */ p = sp->fts_cur; /* Save and zero out user instructions. */ instr = p->fts_instr; p->fts_instr = FTS_NOINSTR; /* If used fts_link pointer for cycle detection, restore it. */ if (sp->fts_savelink) { p->fts_link = sp->fts_savelink; sp->fts_savelink = NULL; } /* Any type of file may be re-visited; re-stat and re-turn. */ if (instr == FTS_AGAIN) { p->fts_info = fts_stat(sp, p, 0); return(p); } /* * Following a symlink -- SLNONE test allows application to see * SLNONE and recover. */ if (instr == FTS_FOLLOW && (p->fts_info == FTS_SL || p->fts_info == FTS_SLNONE)) { p->fts_info = fts_stat(sp, p, 1); return(p); } /* Directory in pre-order. */ if (p->fts_info == FTS_D) { /* If skipped or crossed mount point, do post-order visit. */ if (instr == FTS_SKIP || ISSET(FTS_XDEV) && p->fts_statb.st_dev != sp->rdev) { if (sp->fts_child) { fts_lfree(sp->fts_child); sp->fts_child = NULL; } p->fts_info = FTS_DP; return(p); } /* * Cd to the subdirectory, reading it if haven't already. If * the read fails for any reason, or the directory is empty, * the fts_info field of the current node is set by fts_build. * If have already read and now fail to chdir, whack the list * to make the names come out right, and set the parent state * so the application will eventually get an error condition. * If haven't read and fail to chdir, check to see if we're * at the root node -- if so, we have to get back or the root * node may be inaccessible. */ if (sp->fts_child) { if (CHDIR(sp, p->fts_accpath)) { p->fts_parent->fts_cderr = errno; for (p = sp->fts_child; p; p = p->fts_link) p->fts_accpath = p->fts_parent->fts_accpath; } } else if (!(sp->fts_child = fts_build(sp, BREAD))) { if ISSET(FTS_STOP) return(NULL); if (p->fts_level == FTS_ROOTLEVEL && FCHDIR(sp, sp->fts_rfd)) { SET(FTS_STOP); return(NULL); } return(p); } p = sp->fts_child; sp->fts_child = NULL; goto name; } /* Move to next node on this level. */ next: tmp = p; if (p = p->fts_link) { free(tmp); /* If reached the top, load the paths for the next root. */ if (p->fts_level == FTS_ROOTLEVEL) { fts_load(sp, p); return(sp->fts_cur = p); } /* User may have called fts_set on the node. */ if (p->fts_instr == FTS_SKIP) goto next; if (p->fts_instr == FTS_FOLLOW) { p->fts_info = fts_stat(sp, p, 1); p->fts_instr = FTS_NOINSTR; } name: t = sp->fts_path + NAPPEND(p->fts_parent); *t++ = '/'; bcopy(p->fts_name, t, p->fts_namelen + 1); return(sp->fts_cur = p); } /* Move up to the parent node. */ p = tmp->fts_parent; free(tmp); if (p->fts_level == FTS_ROOTPARENTLEVEL) { /* * Done; free everything up and set errno to 0 so the user * can distinguish between error and EOF. */ free(p); errno = 0; return(sp->fts_cur = NULL); } sp->fts_path[p->fts_pathlen] = '\0'; /* * Cd back up to the parent directory. If at a root node, have to cd * back to the original place, otherwise may not be able to access the * original node on post-order. */ if (p->fts_level == FTS_ROOTLEVEL) { if (FCHDIR(sp, sp->fts_rfd)) { SET(FTS_STOP); return(NULL); } } else if (CHDIR(sp, "..")) { SET(FTS_STOP); return(NULL); } /* * If had a chdir error when trying to get into the directory, set the * info field to reflect this, and restore errno. The error indicator * has to be reset to 0 so that if the user does an FTS_AGAIN, it all * works. */ if (p->fts_cderr) { errno = p->fts_cderr; p->fts_cderr = 0; p->fts_info = FTS_ERR; } else p->fts_info = FTS_DP; return(sp->fts_cur = p); } /* * Fts_set takes the stream as an argument although it's not used in this * implementation; it would be necessary if anyone wanted to add global * semantics to fts using fts_set. An error return is allowed for similar * reasons. */ /* ARGSUSED */ fts_set(sp, p, instr) FTS *sp; FTSENT *p; int instr; { p->fts_instr = instr; return(0); } FTSENT * fts_children(sp) register FTS *sp; { register FTSENT *p; int fd; /* Set current node pointer. */ p = sp->fts_cur; /* * Set errno to 0 so that user can tell the difference between an * error and a directory without entries. If not a directory being * visited in *pre-order*, or we've already had fatal errors, return * immediately. */ errno = 0; if (ISSET(FTS_STOP) || p->fts_info != FTS_D && p->fts_info != FTS_DNR) return(NULL); /* Free up any previous child list. */ if (sp->fts_child) fts_lfree(sp->fts_child); /* * If using chdir on a relative path and called BEFORE fts_read does * its chdir to the root of a traversal, we can lose -- we need to * chdir into the subdirectory, and we don't know where the current * directory is, so we can't get back so that the upcoming chdir by * fts_read will work. */ if (p->fts_level != FTS_ROOTLEVEL || p->fts_accpath[0] == '/' || ISSET(FTS_NOCHDIR)) return(sp->fts_child = fts_build(sp, BCHILD)); if ((fd = open(".", O_RDONLY, 0)) < 0) return(NULL); sp->fts_child = fts_build(sp, BCHILD); if (fchdir(fd)) return(NULL); (void)close(fd); return(sp->fts_child); } /* * This is the tricky part -- do not casually change *anything* in here. The * idea is to build the linked list of entries that are used by fts_children * and fts_read. There are lots of special cases. * * The real slowdown in walking the tree is the stat calls. If FTS_NOSTAT is * set and it's a physical walk (so that symbolic links can't be directories), * we assume that the number of subdirectories in a node is equal to the number * of links to the parent. This allows stat calls to be skipped in any leaf * directories and for any nodes after the directories in the parent node have * been found. This empirically cuts the stat calls by about 2/3. */ #define ISDOT(a) (a[0] == '.' && (!a[1] || a[1] == '.' && !a[2])) static FTSENT * fts_build(sp, type) register FTS *sp; int type; { register struct dirent *dp; register FTSENT *p, *head; register int nitems; FTSENT *cur; DIR *dirp; int cderr, descend, len, level, maxlen, nlinks, saved_errno; char *cp; /* Set current node pointer. */ cur = sp->fts_cur; /* * Open the directory for reading. If this fails, we're done. * If being called from fts_read, set the fts_info field. */ if (!(dirp = opendir(cur->fts_accpath))) { if (type == BREAD) cur->fts_info = FTS_DNR; return(NULL); } /* * Nlinks is the number of possible entries of type directory in the * directory if we're cheating on stat calls, 0 if we're not doing * any stat calls at all, -1 if we're doing stats on everything. */ nlinks = ISSET(FTS_NOSTAT) && ISSET(FTS_PHYSICAL) ? cur->fts_statb.st_nlink - (ISSET(FTS_SEEDOT) ? 0 : 2) : -1; /* * If we're going to need to stat anything or we want to descend * and stay in the directory, chdir. If this fails we keep going. * We won't be able to stat anything, but we can still return the * names themselves. Note, that since fts_read won't be able to * chdir into the directory, it will have to return different path * names than before, i.e. "a/b" instead of "b". Since the node * has already been visited in pre-order, have to wait until the * post-order visit to return the error. This is all fairly nasty. * If a program needed sorted entries or stat information, they had * better be checking FTS_NS on the returned nodes. */ if (nlinks || type == BREAD) if (FCHDIR(sp, dirfd(dirp))) { if (type == BREAD) cur->fts_cderr = errno; descend = nlinks = 0; cderr = 1; } else { descend = 1; cderr = 0; } else descend = 0; /* * Figure out the max file name length that can be stored in the * current path -- the inner loop allocates more path as necessary. * We really wouldn't have to do the maxlen calculations here, we * could do them in fts_read before returning the path, but it's a * lot easier here since the length is part of the dirent structure. * * If not changing directories set a pointer so that we can just * append each new name into the path. */ maxlen = sp->fts_pathlen - cur->fts_pathlen - 1; len = NAPPEND(cur); if (ISSET(FTS_NOCHDIR)) { cp = sp->fts_path + len; *cp++ = '/'; } level = cur->fts_level + 1; /* Read the directory, attaching each entry to the `link' pointer. */ for (head = NULL, nitems = 0; dp = readdir(dirp);) { if (!ISSET(FTS_SEEDOT) && ISDOT(dp->d_name)) continue; if (!(p = fts_alloc(sp, dp->d_name, (int)dp->d_namlen))) goto mem1; if (dp->d_namlen > maxlen) { if (!fts_path(sp, (int)dp->d_namlen)) { /* * No more memory for path or structures. Save * errno, free up the current structure and the * structures already allocated. */ mem1: saved_errno = errno; if (p) free(p); fts_lfree(head); (void)closedir(dirp); errno = saved_errno; cur->fts_info = FTS_ERR; SET(FTS_STOP); return(NULL); } maxlen = sp->fts_pathlen - sp->fts_cur->fts_pathlen - 1; } p->fts_pathlen = len + dp->d_namlen + 1; p->fts_parent = sp->fts_cur; p->fts_level = level; if (nlinks) { /* Build a file name for fts_stat to stat. */ if (ISSET(FTS_NOCHDIR)) { p->fts_accpath = p->fts_path; bcopy(p->fts_name, cp, p->fts_namelen + 1); } else p->fts_accpath = p->fts_name; p->fts_info = fts_stat(sp, p, 0); if (nlinks > 0 && p->fts_info == FTS_D) --nlinks; } else if (cderr) { p->fts_info = ISSET(FTS_NOSTAT) ? FTS_NSOK : FTS_NS; p->fts_accpath = cur->fts_accpath; } else { p->fts_accpath = ISSET(FTS_NOCHDIR) ? p->fts_path : p->fts_name; p->fts_info = FTS_NSOK; } p->fts_link = head; head = p; ++nitems; } (void)closedir(dirp); /* * If not changing directories, reset the path back to original * state. */ if (ISSET(FTS_NOCHDIR)) { if (cp - 1 > sp->fts_path) --cp; *cp = '\0'; } /* * If descended after called from fts_children or called from * fts_read and didn't find anything, get back. If can't get * back, we're done. */ if (descend && (!nitems || type == BCHILD) && CHDIR(sp, "..")) { cur->fts_info = FTS_ERR; SET(FTS_STOP); return(NULL); } /* If we didn't find anything, just do the post-order visit */ if (!nitems) { if (type == BREAD) cur->fts_info = FTS_DP; return(NULL); } /* Sort the entries. */ if (sp->fts_compar && nitems > 1) head = fts_sort(sp, head, nitems); return(head); } static u_short fts_stat(sp, p, follow) FTS *sp; register FTSENT *p; int follow; { int saved_errno; /* * If doing a logical walk, or application requested FTS_FOLLOW, do * a stat(2). If that fails, check for a non-existent symlink. If * fail, return the errno from the stat call. */ if (ISSET(FTS_LOGICAL) || follow) { if (stat(p->fts_accpath, &p->fts_statb)) { saved_errno = errno; if (!lstat(p->fts_accpath, &p->fts_statb)) { errno = 0; return(FTS_SLNONE); } errno = saved_errno; bzero(&p->fts_statb, sizeof(struct stat)); return(FTS_NS); } } else if (lstat(p->fts_accpath, &p->fts_statb)) { bzero(&p->fts_statb, sizeof(struct stat)); return(FTS_NS); } /* * Cycle detection is done as soon as we find a directory. Detection * is by brute force; if the tree gets deep enough or the number of * symbolic links to directories high enough something faster might * be worthwhile. */ if (S_ISDIR(p->fts_statb.st_mode)) { register FTSENT *t; register dev_t dev; register ino_t ino; dev = p->fts_statb.st_dev; ino = p->fts_statb.st_ino; for (t = p->fts_parent; t->fts_level > FTS_ROOTLEVEL; t = t->fts_parent) if (ino == t->fts_statb.st_ino && dev == t->fts_statb.st_dev) { sp->fts_savelink = p->fts_link; p->fts_link = t; return(FTS_DC); } return(FTS_D); } if (S_ISLNK(p->fts_statb.st_mode)) return(FTS_SL); if (S_ISREG(p->fts_statb.st_mode)) return(FTS_F); return(FTS_DEFAULT); } #define R(type, nelem, ptr) \ (type *)realloc((void *)ptr, (u_int)((nelem) * sizeof(type))) static FTSENT * fts_sort(sp, head, nitems) FTS *sp; FTSENT *head; register int nitems; { register FTSENT **ap, *p; /* * Construct an array of pointers to the structures and call qsort(3). * Reassemble the array in the order returned by qsort. If unable to * sort for memory reasons, return the directory entries in their * current order. Allocate enough space for the current needs plus * 40 so we don't realloc one entry at a time. */ if (nitems > sp->fts_nitems) { sp->fts_nitems = nitems + 40; if (!(sp->fts_array = R(FTSENT *, sp->fts_nitems, sp->fts_array))) { sp->fts_nitems = 0; return(head); } } for (ap = sp->fts_array, p = head; p; p = p->fts_link) *ap++ = p; qsort((void *)sp->fts_array, nitems, sizeof(FTSENT *), sp->fts_compar); for (head = *(ap = sp->fts_array); --nitems; ++ap) ap[0]->fts_link = ap[1]; ap[0]->fts_link = NULL; return(head); } static FTSENT * fts_alloc(sp, name, len) FTS *sp; char *name; register int len; { register FTSENT *p; /* * Variable sized structures; the name is the last element so * we allocate enough extra space after the structure to store * it. */ if (!(p = (FTSENT *)malloc((size_t)(sizeof(FTSENT) + len)))) return(NULL); bcopy(name, p->fts_name, len + 1); p->fts_namelen = len; p->fts_path = sp->fts_path; p->fts_instr = FTS_NOINSTR; p->fts_cderr = 0; p->fts_number = 0; p->fts_pointer = NULL; return(p); } static void fts_lfree(head) register FTSENT *head; { register FTSENT *p; /* Free a linked list of structures. */ while (p = head) { head = head->fts_link; free(p); } } /* * Allow essentially unlimited paths; certain programs (find, rm, ls) need to * work on any tree. Most systems will allow creation of paths much longer * than MAXPATHLEN, even though the kernel won't resolve them. Add an extra * 128 bytes to the requested size so that we don't realloc the path 2 bytes * at a time. */ static char * fts_path(sp, size) FTS *sp; int size; { sp->fts_pathlen += size + 128; return(sp->fts_path = R(char, sp->fts_pathlen, sp->fts_path)); }