NetBSD/sys/dev/pci/if_fxp.c

1822 lines
47 KiB
C
Raw Normal View History

1998-07-05 10:49:00 +04:00
/* $NetBSD: if_fxp.c,v 1.18 1998/07/05 06:49:15 jonathan Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
*/
/*
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
*/
1998-07-05 04:51:04 +04:00
#include "opt_inet.h"
1998-07-05 10:49:00 +04:00
#include "opt_ns.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/if_fxpreg.h>
#include <dev/pci/if_fxpvar.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
/*
* NOTE! On the Alpha, we have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* Inline function to copy a 16-bit aligned 32-bit quantity.
*/
static __inline void fxp_lwcopy __P((volatile u_int32_t *,
volatile u_int32_t *));
static __inline void
fxp_lwcopy(src, dst)
volatile u_int32_t *src, *dst;
{
volatile u_int16_t *a = (u_int16_t *)src;
volatile u_int16_t *b = (u_int16_t *)dst;
b[0] = a[0];
b[1] = a[1];
}
/*
* Template for default configuration parameters.
* See struct fxp_cb_config for the bit definitions.
*/
static u_int8_t fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x80, 0x2, /* cb_command */
0xff, 0xff, 0xff, 0xff, /* link_addr */
0x16, /* 0 */
0x8, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x80, /* 5 */
0xb2, /* 6 */
0x3, /* 7 */
0x1, /* 8 */
0x0, /* 9 */
0x26, /* 10 */
0x0, /* 11 */
0x60, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf3, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5 /* 21 */
};
/* Supported media types. */
struct fxp_supported_media {
const int fsm_phy; /* PHY type */
const int *fsm_media; /* the media array */
const int fsm_nmedia; /* the number of supported media */
const int fsm_defmedia; /* default media for this PHY */
};
const int fxp_media_standard[] = {
IFM_ETHER|IFM_10_T,
IFM_ETHER|IFM_10_T|IFM_FDX,
IFM_ETHER|IFM_100_TX,
IFM_ETHER|IFM_100_TX|IFM_FDX,
IFM_ETHER|IFM_AUTO,
};
#define FXP_MEDIA_STANDARD_DEFMEDIA (IFM_ETHER|IFM_AUTO)
const int fxp_media_default[] = {
IFM_ETHER|IFM_MANUAL, /* XXX IFM_AUTO ? */
};
#define FXP_MEDIA_DEFAULT_DEFMEDIA (IFM_ETHER|IFM_MANUAL)
const struct fxp_supported_media fxp_media[] = {
{ FXP_PHY_DP83840, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_DP83840A, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82553A, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82553C, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82555, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_80C24, fxp_media_default,
sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
FXP_MEDIA_DEFAULT_DEFMEDIA },
};
#define NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
static int fxp_mediachange __P((struct ifnet *));
static void fxp_mediastatus __P((struct ifnet *, struct ifmediareq *));
void fxp_set_media __P((struct fxp_softc *, int));
static inline void fxp_scb_wait __P((struct fxp_softc *));
static int fxp_intr __P((void *));
static void fxp_start __P((struct ifnet *));
static int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
static void fxp_init __P((void *));
static void fxp_stop __P((struct fxp_softc *));
static void fxp_watchdog __P((struct ifnet *));
static int fxp_add_rfabuf __P((struct fxp_softc *, struct fxp_rxdesc *));
static int fxp_mdi_read __P((struct fxp_softc *, int, int));
static void fxp_mdi_write __P((struct fxp_softc *, int, int, int));
static void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *,
int, int));
static void fxp_init_media __P((struct fxp_softc *, u_int8_t *));
void fxp_stats_update __P((void *));
static void fxp_mc_setup __P((struct fxp_softc *));
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static inline void
fxp_scb_wait(sc)
struct fxp_softc *sc;
{
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i);
}
static int fxp_match __P((struct device *, struct cfdata *, void *));
static void fxp_attach __P((struct device *, struct device *, void *));
static void fxp_shutdown __P((void *));
struct cfattach fxp_ca = {
sizeof(struct fxp_softc), fxp_match, fxp_attach
};
/*
* Check if a device is an 82557.
*/
static int
fxp_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return (0);
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_INTEL_82557:
return (1);
}
return (0);
}
static void
fxp_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct fxp_softc *sc = (struct fxp_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
u_int8_t enaddr[6];
struct ifnet *ifp;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_dma_segment_t seg;
int ioh_valid, memh_valid;
bus_addr_t addr;
bus_size_t size;
int flags, rseg, i, error, attach_stage;
/*
* Map control/status registers.
*/
ioh_valid = (pci_mapreg_map(pa, FXP_PCI_IOBA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
/*
* Version 2.1 of the PCI spec, page 196, "Address Maps":
*
* Prefetchable
*
* Set to one if there are no side effects on reads, the
* device returns all bytes regardless of the byte enables,
* and host bridges can merge processor writes into this
* range without causing errors. Bit must be set to zero
* otherwise.
*
* The 82557 incorrectly sets the "prefetchable" bit, resulting
* in errors on systems which will do merged reads and writes.
* These errors manifest themselves as all-bits-set when reading
* from the EEPROM or other < 4 byte registers.
*
* We must work around this problem by always forcing the mapping
* for memory space to be uncacheable. On systems which cannot
* create an uncacheable mapping (because the firmware mapped it
* into only cacheable/prefetchable space due to the "prefetchable"
* bit), we can fall back onto i/o mapped access.
*/
memh_valid = 0;
memt = pa->pa_memt;
if (((pa->pa_flags & PCI_FLAGS_MEM_ENABLED) != 0) &&
pci_mapreg_info(pa->pa_pc, pa->pa_tag, FXP_PCI_MMBA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT,
&addr, &size, &flags) == 0) {
flags &= ~BUS_SPACE_MAP_CACHEABLE;
if (bus_space_map(memt, addr, size, flags, &memh) == 0)
memh_valid = 1;
}
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
printf(": unable to map device registers\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
printf(": Intel EtherExpress Pro 10+/100B Ethernet\n");
/*
* Allocate our interrupt.
*/
if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
pa->pa_intrline, &ih)) {
printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, fxp_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
attach_stage = 0;
/*
* Allocate the control data, and create and load the DMA
* map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct fxp_control_data), NBPG, 0, &seg, 1, &rseg,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 1;
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct fxp_control_data), (caddr_t *)&sc->control_data,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: can't map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
bzero(sc->control_data, sizeof(struct fxp_control_data));
attach_stage = 2;
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct fxp_control_data), 1,
sizeof(struct fxp_control_data), 0, BUS_DMA_NOWAIT,
&sc->sc_dmamap)) != 0) {
printf("%s: can't create control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 3;
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
sc->control_data, sizeof(struct fxp_control_data), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 4;
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < FXP_NTXCB; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
FXP_NTXSEG, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_tx_dmamaps[i])) != 0) {
printf("%s: can't create tx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
goto fail;
}
}
attach_stage = 5;
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < FXP_NRFABUFS; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_rx_dmamaps[i])) != 0) {
printf("%s: can't create rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
goto fail;
}
}
attach_stage = 6;
/*
* Pre-allocate the receive buffer descriptors and the buffers
* themselves.
*/
sc->sc_rxdescs = malloc(sizeof(struct fxp_rxdesc) * FXP_NRFABUFS,
M_DEVBUF, M_NOWAIT);
if (sc->sc_rxdescs == NULL) {
printf("%s: can't allocate rx buffer descriptors\n",
sc->sc_dev.dv_xname);
goto fail;
}
bzero(sc->sc_rxdescs, sizeof(struct fxp_rxdesc) * FXP_NRFABUFS);
attach_stage = 7;
for (i = 0; i < FXP_NRFABUFS; i++) {
sc->sc_rxdescs[i].fr_dmamap = sc->sc_rx_dmamaps[i];
if (fxp_add_rfabuf(sc, &sc->sc_rxdescs[i]) != 0) {
printf("%s: can't allocate or map rx buffers\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
attach_stage = 8;
/* Initialize MAC address and media structures. */
fxp_init_media(sc, enaddr);
printf("%s: Ethernet address %s%s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr), sc->phy_10Mbps_only ? ", 10Mbps" : "");
ifp = &sc->sc_ethercom.ec_if;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
/*
* Attach the interface.
*/
if_attach(ifp);
/*
* Let the system queue as many packets as we have TX descriptors.
*/
ifp->if_snd.ifq_maxlen = FXP_NTXCB;
ether_ifattach(ifp, enaddr);
#if NBPFILTER > 0
bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
sizeof(struct ether_header));
#endif
/*
* Add shutdown hook so that DMA is disabled prior to reboot. Not
* doing do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
shutdownhook_establish(fxp_shutdown, sc);
return;
fail:
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall though.
*/
switch (attach_stage) {
case 8:
{
struct fxp_rxdesc *rxd;
for (i = 0; i < FXP_NRFABUFS; i++) {
rxd = &sc->sc_rxdescs[i];
if (rxd->fr_mbhead != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->fr_dmamap);
m_freem(rxd->fr_mbhead);
}
}
}
/* FALLTHROUGH */
case 7:
free(sc->sc_rxdescs, M_DEVBUF);
/* FALLTHROUGH */
case 6:
for (i = 0; i < FXP_NRFABUFS; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
/* FALLTHROUGH */
case 5:
for (i = 0; i < FXP_NTXCB; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
/* FALLTHROUGH */
case 4:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
/* FALLTHROUGH */
case 3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
/* FALLTHROUGH */
case 2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->control_data,
sizeof(struct fxp_control_data));
/* FALLTHROUGH */
case 1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
break;
}
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static void
fxp_shutdown(sc)
void *sc;
{
fxp_stop((struct fxp_softc *) sc);
}
/*
* Initialize the interface media.
*/
static void
fxp_init_media(sc, enaddr)
struct fxp_softc *sc;
u_int8_t *enaddr;
{
1997-11-11 09:35:46 +03:00
u_int16_t data, myea[3];
int i, nmedia, defmedia;
const int *media;
/*
* Reset to a stable state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/*
* Get info about the primary PHY
*/
1997-11-11 09:35:46 +03:00
fxp_read_eeprom(sc, &data, 6, 1);
sc->phy_primary_addr = data & 0xff;
sc->phy_primary_device = (data >> 8) & 0x3f;
sc->phy_10Mbps_only = data >> 15;
/*
* Read MAC address.
*/
1997-11-11 09:35:46 +03:00
fxp_read_eeprom(sc, myea, 0, 3);
bcopy(myea, enaddr, ETHER_ADDR_LEN);
/*
* Initialize the media structures.
*/
media = fxp_media_default;
nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
for (i = 0; i < NFXPMEDIA; i++) {
if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
media = fxp_media[i].fsm_media;
nmedia = fxp_media[i].fsm_nmedia;
defmedia = fxp_media[i].fsm_defmedia;
}
}
ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
for (i = 0; i < nmedia; i++) {
if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
continue;
ifmedia_add(&sc->sc_media, media[i], 0, NULL);
}
ifmedia_set(&sc->sc_media, defmedia);
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static void
fxp_read_eeprom(sc, data, offset, words)
struct fxp_softc *sc;
1997-11-11 09:35:46 +03:00
u_int16_t *data;
int offset;
int words;
{
u_int16_t reg;
int i, x;
for (i = 0; i < words; i++) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
/*
* Shift in address.
*/
for (x = 6; x > 0; x--) {
if ((i + offset) & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
reg = FXP_EEPROM_EECS;
data[i] = 0;
/*
* Shift out data.
*/
for (x = 16; x > 0; x--) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
}
/*
* Start packet transmission on the interface.
*/
static void
fxp_start(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
struct fxp_cb_tx *txp;
bus_dmamap_t dmamap;
/*
* See if we need to suspend xmit until the multicast filter
* has been reprogrammed (which can only be done at the head
* of the command chain).
*/
if (sc->need_mcsetup)
return;
txp = NULL;
/*
* We're finished if there is nothing more to add to the list or if
* we're all filled up with buffers to transmit.
*/
while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB) {
struct mbuf *mb_head;
int segment, error;
/*
* Grab a packet to transmit.
*/
IF_DEQUEUE(&ifp->if_snd, mb_head);
/*
* Get pointer to next available tx desc.
*/
txp = sc->cbl_last->cb_soft.next;
dmamap = txp->cb_soft.dmamap;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit buffer descriptors with the physical address
* and size of the mbuf.
*/
tbdinit:
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
mb_head, BUS_DMA_NOWAIT);
switch (error) {
case 0:
/* Success. */
break;
case EFBIG:
{
struct mbuf *mn;
/*
* We ran out of segments. We have to recopy this
* mbuf chain first. Bail out if we can't get the
* new buffers.
*/
printf("%s: too many segments, ", sc->sc_dev.dv_xname);
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(mb_head);
printf("aborting\n");
goto out;
}
if (mb_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(mb_head);
printf("aborting\n");
goto out;
}
}
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
m_freem(mb_head);
mb_head = mn;
printf("retrying\n");
goto tbdinit;
}
default:
/*
* Some other problem; report it.
*/
printf("%s: can't load mbuf chain, error = %d\n",
sc->sc_dev.dv_xname, error);
m_freem(mb_head);
goto out;
}
for (segment = 0; segment < dmamap->dm_nsegs; segment++) {
txp->tbd[segment].tb_addr =
dmamap->dm_segs[segment].ds_addr;
txp->tbd[segment].tb_size =
dmamap->dm_segs[segment].ds_len;
}
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
txp->tbd_number = dmamap->dm_nsegs;
txp->cb_soft.mb_head = mb_head;
txp->cb_status = 0;
txp->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
txp->tx_threshold = tx_threshold;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
FXP_TXDESCOFF(sc, txp), FXP_TXDESCSIZE,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Advance the end of list forward.
*/
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
FXP_TXDESCOFF(sc, sc->cbl_last), FXP_TXDESCSIZE,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
sc->cbl_last = txp;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
FXP_TXDESCOFF(sc, sc->cbl_last), FXP_TXDESCSIZE,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Advance the beginning of the list forward if there are
* no other packets queued (when nothing is queued, cbl_first
* sits on the last TxCB that was sent out).
*/
if (sc->tx_queued == 0)
sc->cbl_first = txp;
sc->tx_queued++;
#if NBPFILTER > 0
/*
* Pass packet to bpf if there is a listener.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, mb_head);
#endif
}
out:
/*
* We're finished. If we added to the list, issue a RESUME to get DMA
* going again if suspended.
*/
if (txp != NULL) {
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
/*
* Set a 5 second timer just in case we don't hear from the
* card again.
*/
ifp->if_timer = 5;
}
}
/*
* Process interface interrupts.
*/
static int
fxp_intr(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
u_int8_t statack;
int claimed = 0;
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
claimed = 1;
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*/
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
struct fxp_rxdesc *rxd;
struct mbuf *m;
struct fxp_rfa *rfa;
bus_dmamap_t rxmap;
rcvloop:
rxd = sc->rfa_head;
rxmap = rxd->fr_dmamap;
m = rxd->fr_mbhead;
rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
rxmap->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (rfa->rfa_status & FXP_RFA_STATUS_C) {
/*
* Remove first packet from the chain.
*/
sc->rfa_head = rxd->fr_next;
rxd->fr_next = NULL;
/*
* Add a new buffer to the receive chain.
* If this fails, the old buffer is recycled
* instead.
*/
if (fxp_add_rfabuf(sc, rxd) == 0) {
struct ether_header *eh;
u_int16_t total_len;
total_len = rfa->actual_size &
(MCLBYTES - 1);
if (total_len <
sizeof(struct ether_header)) {
m_freem(m);
goto rcvloop;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
total_len -
sizeof(struct ether_header);
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
if (ifp->if_bpf) {
bpf_tap(ifp->if_bpf,
mtod(m, caddr_t),
total_len);
/*
* Only pass this packet up
* if it is for us.
*/
if ((ifp->if_flags &
IFF_PROMISC) &&
(rfa->rfa_status &
FXP_RFA_STATUS_IAMATCH) &&
(eh->ether_dhost[0] & 1)
== 0) {
m_freem(m);
goto rcvloop;
}
}
#endif /* NBPFILTER > 0 */
m->m_data +=
sizeof(struct ether_header);
ether_input(ifp, eh, m);
}
goto rcvloop;
}
if (statack & FXP_SCB_STATACK_RNR) {
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
rxmap->dm_segs[0].ds_addr +
RFA_ALIGNMENT_FUDGE);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
FXP_SCB_COMMAND_RU_START);
}
}
/*
* Free any finished transmit mbuf chains.
*/
if (statack & FXP_SCB_STATACK_CNA) {
struct fxp_cb_tx *txp;
bus_dmamap_t txmap;
for (txp = sc->cbl_first; sc->tx_queued;
txp = txp->cb_soft.next) {
bus_dmamap_sync(sc->sc_dmat,
sc->sc_dmamap, FXP_TXDESCOFF(sc, txp),
FXP_TXDESCSIZE,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if ((txp->cb_status & FXP_CB_STATUS_C) == 0)
break;
if (txp->cb_soft.mb_head != NULL) {
txmap = txp->cb_soft.dmamap;
bus_dmamap_sync(sc->sc_dmat, txmap,
0, txmap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txmap);
m_freem(txp->cb_soft.mb_head);
txp->cb_soft.mb_head = NULL;
}
sc->tx_queued--;
}
sc->cbl_first = txp;
if (sc->tx_queued == 0) {
ifp->if_timer = 0;
if (sc->need_mcsetup)
fxp_mc_setup(sc);
}
/*
* Try to start more packets transmitting.
*/
if (ifp->if_snd.ifq_head != NULL)
fxp_start(ifp);
}
}
return (claimed);
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
void
fxp_stats_update(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
struct fxp_stats *sp = &sc->control_data->fcd_stats;
int s;
ifp->if_opackets += sp->tx_good;
ifp->if_collisions += sp->tx_total_collisions;
if (sp->rx_good) {
ifp->if_ipackets += sp->rx_good;
sc->rx_idle_secs = 0;
} else {
sc->rx_idle_secs++;
}
ifp->if_ierrors +=
sp->rx_crc_errors +
sp->rx_alignment_errors +
sp->rx_rnr_errors +
sp->rx_overrun_errors;
/*
* If any transmit underruns occured, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += sp->tx_underruns;
if (tx_threshold < 192)
tx_threshold += 64;
}
s = splimp();
/*
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter. This is
* a work-around for a bug in the 82557 where the receiver locks
* up if it gets certain types of garbage in the syncronization
* bits prior to the packet header. This bug is supposed to only
* occur in 10Mbps mode, but has been seen to occur in 100Mbps
* mode as well (perhaps due to a 10/100 speed transition).
*/
if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
sc->rx_idle_secs = 0;
fxp_mc_setup(sc);
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
FXP_SCB_COMMAND_CU_DUMPRESET);
} else {
/*
* A previous command is still waiting to be accepted.
* Just zero our copy of the stats and wait for the
* next timer event to update them.
*/
sp->tx_good = 0;
sp->tx_underruns = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
sp->rx_crc_errors = 0;
sp->rx_alignment_errors = 0;
sp->rx_rnr_errors = 0;
sp->rx_overrun_errors = 0;
}
splx(s);
/*
* Schedule another timeout one second from now.
*/
timeout(fxp_stats_update, sc, hz);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(sc)
struct fxp_softc *sc;
{
struct ifnet *ifp = &sc->sc_if;
struct fxp_rxdesc *rxd;
struct fxp_cb_tx *txp;
int i;
/*
* Cancel stats updater.
*/
untimeout(fxp_stats_update, sc);
/*
* Issue software reset
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/*
* Release any xmit buffers.
*/
for (txp = sc->cbl_first; txp != NULL && txp->cb_soft.mb_head != NULL;
txp = txp->cb_soft.next) {
bus_dmamap_unload(sc->sc_dmat, txp->cb_soft.dmamap);
m_freem(txp->cb_soft.mb_head);
txp->cb_soft.mb_head = NULL;
}
sc->tx_queued = 0;
/*
* Free all the receive buffers then reallocate/reinitialize
*/
sc->rfa_head = NULL;
sc->rfa_tail = NULL;
for (i = 0; i < FXP_NRFABUFS; i++) {
rxd = &sc->sc_rxdescs[i];
if (rxd->fr_mbhead != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->fr_dmamap);
m_freem(rxd->fr_mbhead);
rxd->fr_mbhead = NULL;
}
if (fxp_add_rfabuf(sc, rxd) != 0) {
/*
* This "can't happen" - we're at splimp()
* and we just freed the buffer we need
* above.
*/
panic("fxp_stop: no buffers!");
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
fxp_init(sc);
}
static void
fxp_init(xsc)
void *xsc;
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_if;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *txp;
int i, s, prm;
s = splimp();
/*
* Cancel any pending I/O
*/
fxp_stop(sc);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
sc->promisc_mode = prm;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->sc_cddma + FXP_CDOFF(fcd_stats));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *) sc->control_data->fcd_txcbs;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template, (void *)&cbp->cb_status,
sizeof(fxp_cb_config_template));
cbp->cb_status = 0;
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
cbp->link_addr = -1; /* (no) next command */
cbp->byte_count = 22; /* (22) bytes to config */
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_bce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int = 0; /* (disable) tx not okay interrupt */
cbp->ci_int = 0; /* interrupt on CU not active */
cbp->save_bf = prm; /* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->crscdt = 0; /* (CRS only) */
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = sc->all_mcasts;/* accept all multicasts */
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->sc_cddma + FXP_CDOFF(fcd_txcbs[0].cb_status));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
while (!(cbp->cb_status & FXP_CB_STATUS_C));
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *) sc->control_data->fcd_txcbs;
cb_ias->cb_status = 0;
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
cb_ias->link_addr = -1;
bcopy(LLADDR(ifp->if_sadl), (void *)cb_ias->macaddr, 6);
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
while (!(cb_ias->cb_status & FXP_CB_STATUS_C));
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->control_data->fcd_txcbs;
bzero(txp, sizeof(sc->control_data->fcd_txcbs));
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
txp[i].cb_command = FXP_CB_COMMAND_NOP;
txp[i].link_addr = sc->sc_cddma +
FXP_CDOFF(fcd_txcbs[(i + 1) & FXP_TXCB_MASK].cb_status);
txp[i].tbd_array_addr = sc->sc_cddma +
FXP_CDOFF(fcd_txcbs[i].tbd[0]);
txp[i].cb_soft.dmamap = sc->sc_tx_dmamaps[i];
txp[i].cb_soft.next = &txp[(i + 1) & FXP_TXCB_MASK];
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
FXP_TXDESCOFF(sc, &txp[i]), FXP_TXDESCSIZE,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
/*
* Set the suspend flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
FXP_TXDESCOFF(sc, txp), FXP_TXDESCSIZE,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->cbl_first = sc->cbl_last = txp;
sc->tx_queued = 1;
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->rfa_head->fr_dmamap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
/*
* Set current media.
*/
fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
/*
* Start stats updater.
*/
timeout(fxp_stats_update, sc, hz);
}
void
fxp_set_media(sc, media)
struct fxp_softc *sc;
int media;
{
switch (sc->phy_primary_device) {
case FXP_PHY_DP83840:
case FXP_PHY_DP83840A:
fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
FXP_DP83840_PCR_LED4_MODE | /* LED4 always indicates duplex */
FXP_DP83840_PCR_F_CONNECT | /* force link disconnect bypass */
FXP_DP83840_PCR_BIT10); /* XXX I have no idea */
/* fall through */
case FXP_PHY_82553A:
case FXP_PHY_82553C: /* XXX untested */
case FXP_PHY_82555:
if (IFM_SUBTYPE(media) != IFM_AUTO) {
int flags;
flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
FXP_PHY_BMCR_SPEED_100M : 0;
flags |= (media & IFM_FDX) ?
FXP_PHY_BMCR_FULLDUPLEX : 0;
fxp_mdi_write(sc, sc->phy_primary_addr,
FXP_PHY_BMCR,
(fxp_mdi_read(sc, sc->phy_primary_addr,
FXP_PHY_BMCR) &
~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
FXP_PHY_BMCR_FULLDUPLEX)) | flags);
} else {
fxp_mdi_write(sc, sc->phy_primary_addr,
FXP_PHY_BMCR,
(fxp_mdi_read(sc, sc->phy_primary_addr,
FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
}
break;
/*
* The Seeq 80c24 doesn't have a PHY programming interface, so do
* nothing.
*/
case FXP_PHY_80C24:
break;
default:
printf("%s: warning: unsupported PHY, type = %d, addr = %d\n",
sc->sc_dev.dv_xname, sc->phy_primary_device,
sc->phy_primary_addr);
}
}
/*
* Change media according to request.
*/
int
fxp_mediachange(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
fxp_set_media(sc, ifm->ifm_media);
return (0);
}
/*
* Notify the world which media we're using.
*/
void
fxp_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct fxp_softc *sc = ifp->if_softc;
int flags;
switch (sc->phy_primary_device) {
case FXP_PHY_DP83840:
case FXP_PHY_DP83840A:
case FXP_PHY_82555:
flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
ifmr->ifm_active = IFM_ETHER;
if (flags & FXP_PHY_BMCR_AUTOEN)
ifmr->ifm_active |= IFM_AUTO;
else {
if (flags & FXP_PHY_BMCR_SPEED_100M)
ifmr->ifm_active |= IFM_100_TX;
else
ifmr->ifm_active |= IFM_10_T;
if (flags & FXP_PHY_BMCR_FULLDUPLEX)
ifmr->ifm_active |= IFM_FDX;
}
break;
case FXP_PHY_80C24:
default:
ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
}
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* adding the 'oldm' (if non-NULL) on to the end of the list -
* tossing out it's old contents and recycling it.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_add_rfabuf(sc, rxd)
struct fxp_softc *sc;
struct fxp_rxdesc *rxd;
{
struct mbuf *m, *oldm;
struct fxp_rfa *rfa, *p_rfa;
bus_dmamap_t rxmap;
u_int32_t v;
int error, rval = 0;
oldm = rxd->fr_mbhead;
rxmap = rxd->fr_dmamap;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
rval = 1;
}
} else {
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
rval = 1;
}
rxd->fr_mbhead = m;
/*
* Setup the DMA map for this receive buffer.
*/
if (m != oldm) {
if (oldm != NULL)
bus_dmamap_unload(sc->sc_dmat, rxmap);
error = bus_dmamap_load(sc->sc_dmat, rxmap,
m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx buffer, error = %d\n",
sc->sc_dev.dv_xname, error);
panic("fxp_add_rfabuf"); /* XXX */
}
}
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past the RFA descriptor.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sizeof(struct fxp_rfa);
rfa->size = MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE;
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. Instead,
* we use an optimized, inline copy.
*/
rfa->rfa_status = 0;
rfa->rfa_control = FXP_RFA_CONTROL_EL;
rfa->actual_size = 0;
v = -1;
fxp_lwcopy(&v, &rfa->link_addr);
fxp_lwcopy(&v, &rfa->rbd_addr);
/*
* If there are other buffers already on the list, attach this
* one to the end by fixing up the tail to point to this one.
*/
if (sc->rfa_head != NULL) {
p_rfa = (struct fxp_rfa *)
(sc->rfa_tail->fr_mbhead->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
sc->rfa_tail->fr_next = rxd;
v = rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE;
fxp_lwcopy(&v, &p_rfa->link_addr);
p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL;
} else {
sc->rfa_head = rxd;
}
sc->rfa_tail = rxd;
bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return (rval);
}
static volatile int
fxp_mdi_read(sc, phy, reg)
struct fxp_softc *sc;
int phy;
int reg;
{
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
&& count--)
DELAY(10);
if (count <= 0)
printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
return (value & 0xffff);
}
static void
fxp_mdi_write(sc, phy, reg, value)
struct fxp_softc *sc;
int phy;
int reg;
int value;
{
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
}
static int
fxp_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
fxp_init(sc);
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ifp->if_addrlen);
/* Set new address. */
fxp_init(sc);
break;
}
#endif
default:
fxp_init(sc);
break;
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
fxp_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
fxp_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
if (!sc->all_mcasts)
fxp_mc_setup(sc);
/*
* fxp_mc_setup() can turn on all_mcasts if we run
* out of space, so check it again rather than else {}.
*/
if (sc->all_mcasts)
fxp_init(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
break;
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}
/*
* Program the multicast filter.
*
* We have an artificial restriction that the multicast setup command
* must be the first command in the chain, so we take steps to ensure
* that. By requiring this, it allows us to keep the performance of
* the pre-initialized command ring (esp. link pointers) by not actually
* inserting the mcsetup command in the ring - i.e. it's link pointer
* points to the TxCB ring, but the mcsetup descriptor itself is not part
* of it. We then can do 'CU_START' on the mcsetup descriptor and have it
* lead into the regular TxCB ring when it completes.
*
* This function must be called at splimp.
*/
static void
fxp_mc_setup(sc)
struct fxp_softc *sc;
{
struct fxp_cb_mcs *mcsp = &sc->control_data->fcd_mcscb;
struct ifnet *ifp = &sc->sc_if;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
int nmcasts;
if (sc->tx_queued) {
sc->need_mcsetup = 1;
return;
}
sc->need_mcsetup = 0;
/*
* Initialize multicast setup descriptor.
*/
mcsp->cb_soft.next = sc->control_data->fcd_txcbs;
mcsp->cb_soft.mb_head = NULL;
mcsp->cb_soft.dmamap = NULL;
mcsp->cb_status = 0;
mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S;
mcsp->link_addr = sc->sc_cddma + FXP_CDOFF(fcd_txcbs[0].cb_status);
nmcasts = 0;
if (!sc->all_mcasts) {
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
/*
* Check for too many multicast addresses or if we're
* listening to a range. Either way, we simply have
* to accept all multicasts.
*/
if (nmcasts >= MAXMCADDR ||
bcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0) {
sc->all_mcasts = 1;
nmcasts = 0;
break;
}
bcopy(enm->enm_addrlo,
(void *)
&sc->control_data->fcd_mcscb.mc_addr[nmcasts][0],
ETHER_ADDR_LEN);
nmcasts++;
ETHER_NEXT_MULTI(step, enm);
}
}
mcsp->mc_cnt = nmcasts * 6;
sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
sc->tx_queued = 1;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
FXP_CDOFF(fcd_mcscb.cb_status), FXP_MCSDESCSIZE,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Wait until command unit is not active. This should never
* be the case when nothing is queued, but make sure anyway.
*/
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
FXP_SCB_CUS_ACTIVE) ;
/*
* Start the multicast setup command.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->sc_cddma + FXP_CDOFF(fcd_mcscb.cb_status));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
ifp->if_timer = 5;
return;
}