NetBSD/sys/dev/ic/dm9000.c

1128 lines
30 KiB
C
Raw Normal View History

/* $NetBSD: dm9000.c,v 1.29 2020/06/27 13:34:20 jmcneill Exp $ */
/*
* Copyright (c) 2009 Paul Fleischer
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* based on sys/dev/ic/cs89x0.c */
/*
* Copyright (c) 2004 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/device.h>
#include <sys/mbuf.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/cprng.h>
#include <sys/rndsource.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <net/bpf.h>
#include <dev/ic/dm9000var.h>
#include <dev/ic/dm9000reg.h>
#if 1
#undef DM9000_DEBUG
#undef DM9000_TX_DEBUG
#undef DM9000_TX_DATA_DEBUG
#undef DM9000_RX_DEBUG
#undef DM9000_RX_DATA_DEBUG
#else
#define DM9000_DEBUG
#define DM9000_TX_DEBUG
#define DM9000_TX_DATA_DEBUG
#define DM9000_RX_DEBUG
#define DM9000_RX_DATA_DEBUG
#endif
#ifdef DM9000_DEBUG
#define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_TX_DEBUG
#define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_RX_DEBUG
#define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_RX_DATA_DEBUG
#define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_TX_DATA_DEBUG
#define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
static void dme_reset(struct dme_softc *);
static int dme_init(struct ifnet *);
static void dme_stop(struct ifnet *, int);
static void dme_start(struct ifnet *);
static int dme_ioctl(struct ifnet *, u_long, void *);
static void dme_set_rcvfilt(struct dme_softc *);
static void mii_statchg(struct ifnet *);
static void lnkchg(struct dme_softc *);
static void phy_tick(void *);
static int mii_readreg(device_t, int, int, uint16_t *);
static int mii_writereg(device_t, int, int, uint16_t);
static void dme_prepare(struct ifnet *);
static void dme_transmit(struct ifnet *);
static void dme_receive(struct ifnet *);
static int pkt_read_2(struct dme_softc *, struct mbuf **);
static int pkt_write_2(struct dme_softc *, struct mbuf *);
static int pkt_read_1(struct dme_softc *, struct mbuf **);
static int pkt_write_1(struct dme_softc *, struct mbuf *);
#define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
#define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
#define ETHER_IS_ONE(x) \
(((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
#define ETHER_IS_ZERO(x) \
(((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
int
dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
struct ifmedia *ifm = &mii->mii_media;
uint8_t b[2];
uint16_t io_mode;
uint8_t enaddr[ETHER_ADDR_LEN];
prop_dictionary_t dict;
prop_data_t ea;
dme_read_c(sc, DM9000_VID0, b, 2);
sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
dme_read_c(sc, DM9000_PID0, b, 2);
sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
/* TODO: Check the vendor ID as well */
if (sc->sc_product_id != 0x9000) {
panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
sc->sc_product_id);
}
#if 1 || DM9000_DEBUG
{
dme_read_c(sc, DM9000_PAB0, enaddr, 6);
aprint_normal_dev(sc->sc_dev,
"DM9000 was configured with MAC address: %s\n",
ether_sprintf(enaddr));
}
#endif
dict = device_properties(sc->sc_dev);
ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
if (ea != NULL) {
/*
* If the MAC address is overriden by a device property,
* use that.
*/
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
2020-04-02 16:38:50 +03:00
aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
} else {
/*
* If we did not get an externaly configure address,
* try to read one from the current setup, before
* resetting the chip.
*/
dme_read_c(sc, DM9000_PAB0, enaddr, 6);
if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
/* make a random MAC address */
uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
uint32_t machi = cprng_strong32();
enaddr[0] = maclo;
enaddr[1] = maclo >> 8;
enaddr[2] = maclo >> 16;
enaddr[3] = maclo >> 26;
enaddr[4] = machi;
enaddr[5] = machi >> 8;
}
}
/* TODO: perform explicit EEPROM read op if it's availble */
dme_reset(sc);
mii->mii_ifp = ifp;
mii->mii_readreg = mii_readreg;
mii->mii_writereg = mii_writereg;
mii->mii_statchg = mii_statchg;
2020-03-31 05:47:34 +03:00
/* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
sc->sc_ethercom.ec_mii = mii;
ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
2020-03-31 05:47:34 +03:00
mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&mii->mii_phys) == NULL) {
ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
} else
ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
ifm->ifm_media = ifm->ifm_cur->ifm_media;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_init = dme_init;
ifp->if_start = dme_start;
ifp->if_stop = dme_stop;
ifp->if_ioctl = dme_ioctl;
ifp->if_watchdog = NULL; /* no watchdog used */
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
ether_ifattach(ifp, enaddr);
if_deferred_start_init(ifp, NULL);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
/* might be unnecessary as link change interrupt works well */
callout_init(&sc->sc_link_callout, 0);
callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
io_mode = (dme_read(sc, DM9000_ISR) &
DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
2020-03-31 05:47:34 +03:00
/* frame body read/write ops in 2 byte quantity or byte-wise. */
DPRINTF(("DM9000 Operation Mode: "));
switch (io_mode) {
case DM9000_MODE_8BIT:
DPRINTF(("8-bit mode"));
sc->sc_data_width = 1;
sc->sc_pkt_write = pkt_write_1;
sc->sc_pkt_read = pkt_read_1;
break;
case DM9000_MODE_16BIT:
DPRINTF(("16-bit mode"));
sc->sc_data_width = 2;
sc->sc_pkt_write = pkt_write_2;
sc->sc_pkt_read = pkt_read_2;
break;
case DM9000_MODE_32BIT:
DPRINTF(("32-bit mode"));
sc->sc_data_width = 4;
2015-03-10 21:01:04 +03:00
panic("32bit mode is unsupported\n");
break;
default:
DPRINTF(("Invalid mode"));
break;
}
DPRINTF(("\n"));
return 0;
}
int
dme_detach(struct dme_softc *sc)
{
return 0;
}
/* Software Initialize/Reset of the DM9000 */
static void
dme_reset(struct dme_softc *sc)
{
uint8_t misc;
/* We only re-initialized the PHY in this function the first time it is
* called. */
if (!sc->sc_phy_initialized) {
/* PHY Reset */
mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
/* PHY Power Down */
misc = dme_read(sc, DM9000_GPR);
dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
}
/* Reset the DM9000 twice, as described in section 2 of the Programming
* Guide.
* The PHY is initialized and enabled between those two resets.
*/
/* Software Reset */
dme_write(sc, DM9000_NCR,
DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
delay(20);
dme_write(sc, DM9000_NCR, 0x0);
if (!sc->sc_phy_initialized) {
/* PHY Enable */
misc = dme_read(sc, DM9000_GPR);
dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
misc = dme_read(sc, DM9000_GPCR);
dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
dme_write(sc, DM9000_NCR,
DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
delay(20);
dme_write(sc, DM9000_NCR, 0x0);
}
/* Select internal PHY, no wakeup event, no collosion mode,
* normal loopback mode.
*/
dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
dme_read(sc, DM9000_NSR);
/* Enable wraparound of read/write pointer, frame received latch,
* and frame transmitted latch.
*/
2019-04-24 11:21:25 +03:00
dme_write(sc, DM9000_IMR,
DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
dme_write(sc, DM9000_RCR,
DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
sc->sc_phy_initialized = 1;
}
static int
dme_init(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
dme_stop(ifp, 0);
dme_reset(sc);
dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
dme_set_rcvfilt(sc);
(void)ether_mediachange(ifp);
sc->txbusy = sc->txready = 0;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_schedule(&sc->sc_link_callout, hz);
return 0;
}
/* Configure multicast filter */
static void
dme_set_rcvfilt(struct dme_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
uint32_t h = 0;
int rcr;
rcr = dme_read(sc, DM9000_RCR);
rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
ETHER_LOCK(ec);
if (ifp->if_flags & IFF_PROMISC) {
ec->ec_flags |= ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
/* run promisc. mode */
rcr |= DM9000_RCR_PRMSC;
goto update;
}
ec->ec_flags &= ~ETHER_F_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ec->ec_flags |= ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
/* accept all mulicast frame */
rcr |= DM9000_RCR_ALL;
break;
}
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
/* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
mchash[h / 8] |= 1 << (h % 8);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
/* DM9000 receive filter is always on */
mchash[7] |= 0x80; /* to catch bcast frame */
update:
dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
return;
}
void
lnkchg(struct dme_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ifmediareq ifmr;
ether_mediastatus(ifp, &ifmr);
}
static void
mii_statchg(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
2020-04-02 10:26:45 +03:00
uint8_t fcr, ncr;
#if 0
2020-04-02 10:26:45 +03:00
const uint8_t Mbps[2] = { 10, 100 };
uint8_t nsr = dme_read(sc, DM9000_NSR);
int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
/* speed/duplexity available also in reg 0x11 of internal PHY */
if (nsr & DM9000_NSR_LINKST)
printf("link up,spd%d", spd);
else
printf("link down");
/* show resolved mii(4) parameters */
printf("MII spd%d",
(int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
if (mii->mii_media_active & IFM_FDX)
printf(",full-duplex");
printf("\n");
#endif
/* Adjust duplexity and PAUSE flow control. */
fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
if ((mii->mii_media_active & IFM_FDX)
&& (mii->mii_media_active & IFM_FLOW)) {
fcr |= DM9000_FCR_FLCE;
ncr |= DM9000_NCR_FDX;
}
dme_write(sc, DM9000_FCR, fcr);
dme_write(sc, DM9000_NCR, ncr);
}
static void
phy_tick(void *arg)
{
struct dme_softc *sc = arg;
struct mii_data *mii = &sc->sc_mii;
int s;
s = splnet();
mii_tick(mii);
splx(s);
callout_schedule(&sc->sc_link_callout, hz);
}
static int
mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
struct dme_softc *sc = device_private(self);
if (phy != 1)
return EINVAL;
/* Select Register to read*/
dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
(reg & DM9000_EPAR_EROA_MASK));
/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
/* Wait until access to PHY has completed */
while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
;
/* Reset ERPRR-bit */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
*val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
return 0;
}
static int
mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
struct dme_softc *sc = device_private(self);
if (phy != 1)
return EINVAL;
/* Select Register to write */
dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
(reg & DM9000_EPAR_EROA_MASK));
/* Write data to the two data registers */
dme_write(sc, DM9000_EPDRL, val & 0xFF);
dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
/* Wait until access to PHY has completed */
while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
;
/* Reset ERPRR-bit */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
return 0;
}
void
dme_stop(struct ifnet *ifp, int disable)
{
struct dme_softc *sc = ifp->if_softc;
/* Not quite sure what to do when called with disable == 0 */
if (disable) {
/* Disable RX */
dme_write(sc, DM9000_RCR, 0x0);
}
mii_down(&sc->sc_mii);
callout_stop(&sc->sc_link_callout);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
static void
dme_start(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
printf("No output\n");
return;
}
if (sc->txbusy && sc->txready)
panic("DM9000: Internal error, trying to send without"
" any empty queue\n");
dme_prepare(ifp);
if (sc->txbusy) {
/* We need to wait until the current frame has
* been transmitted.
*/
ifp->if_flags |= IFF_OACTIVE;
return;
}
/* We are ready to transmit right away */
dme_transmit(ifp);
dme_prepare(ifp); /* Prepare next one */
}
/* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
static void
dme_prepare(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
uint16_t length;
struct mbuf *m;
if (sc->txready)
panic("dme_prepare: Someone called us with txready set\n");
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
return; /* Nothing to transmit */
}
/* Element has now been removed from the queue, so we better send it */
bpf_mtap(ifp, m, BPF_D_OUT);
/* Setup the DM9000 to accept the writes, and then write each buf in
the chain. */
TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
length = PKT_WRITE(sc, m);
bpf_mtap(ifp, m, BPF_D_OUT);
TX_DATA_DPRINTF(("\n"));
if (length % sc->sc_data_width != 0)
panic("dme_prepare: length is not compatible with IO_MODE");
sc->txready_length = length;
sc->txready = 1;
m_freem(m);
}
/* Transmit prepared data */
static void
dme_transmit(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
sc->txready, sc->txbusy));
/* prime frame length first */
dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
/* read isr next */
dme_read(sc, DM9000_ISR);
/* finally issue a request to send */
dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
sc->txready = 0;
sc->txbusy = 1;
sc->txready_length = 0;
}
/* Receive data */
static void
dme_receive(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
struct mbuf *m;
uint8_t avail, rsr;
DPRINTF(("inside dme_receive\n"));
/* frame has just arrived, retrieve it */
/* called right after Rx frame available interrupt */
do {
/* "no increment" read to get the avail byte without
2015-03-14 16:45:43 +03:00
moving past it. */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
DM9000_MRCMDX);
/* Read twice */
avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
avail &= 03; /* 1:0 we only want these bits */
if (avail == 01) {
/* Read with address increment. */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
DM9000_MRCMD);
rsr = PKT_READ(sc, &m);
if (m == NULL) {
/* failed to allocate a receive buffer */
RX_DPRINTF(("dme_receive: "
"Error allocating buffer\n"));
if_statinc(ifp, if_ierrors);
continue;
}
if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
/* Error while receiving the frame,
* discard it and keep track of counters
*/
RX_DPRINTF(("dme_receive: "
"Error reciving frame\n"));
if_statinc(ifp, if_ierrors);
continue;
}
if (rsr & DM9000_RSR_LCS) {
2020-01-29 16:54:41 +03:00
if_statinc(ifp, if_collisions);
continue;
}
/* pick and forward this frame to ifq */
if_percpuq_enqueue(ifp->if_percpuq, m);
} else if (avail != 00) {
/* Should this be logged somehow? */
printf("%s: Resetting chip\n",
device_xname(sc->sc_dev));
dme_reset(sc);
break;
}
} while (avail == 01);
/* frame receieved successfully */
}
int
dme_intr(void *arg)
{
struct dme_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint8_t isr, nsr, tsr;
DPRINTF(("dme_intr: Begin\n"));
/* Disable interrupts */
dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
isr = dme_read(sc, DM9000_ISR);
dme_write(sc, DM9000_ISR, isr); /* write to clear */
if (isr & DM9000_ISR_PRS) {
KASSERT(ifp->if_flags & IFF_RUNNING);
dme_receive(ifp);
}
if (isr & DM9000_ISR_LNKCHNG)
lnkchg(sc);
if (isr & DM9000_ISR_PTS) {
tsr = 0x01; /* Initialize to an error value */
/* A frame has been transmitted */
sc->txbusy = 0;
nsr = dme_read(sc, DM9000_NSR);
if (nsr & DM9000_NSR_TX1END) {
tsr = dme_read(sc, DM9000_TSR1);
TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
} else if (nsr & DM9000_NSR_TX2END) {
tsr = dme_read(sc, DM9000_TSR2);
TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
}
if (tsr == 0x0) {
/* Frame successfully sent */
if_statinc(ifp, if_opackets);
} else {
if_statinc(ifp, if_oerrors);
}
/* If we have nothing ready to transmit, prepare something */
if (!sc->txready)
dme_prepare(ifp);
if (sc->txready)
dme_transmit(ifp);
/* Prepare the next frame */
dme_prepare(ifp);
if_schedule_deferred_start(ifp);
}
/* Enable interrupts again */
dme_write(sc, DM9000_IMR,
DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
DPRINTF(("dme_intr: End\n"));
return (isr != 0);
}
static int
dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct dme_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifmedia *ifm = &sc->sc_mii.mii_media;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0)
ifr->ifr_media &= ~IFM_ETH_FMASK;
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
}
error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
break;
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd == SIOCSIFCAP)
error = (*ifp->if_init)(ifp);
else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags && IFF_RUNNING) {
/* Address list has changed, reconfigure filter */
dme_set_rcvfilt(sc);
}
break;
}
splx(s);
return error;
}
static struct mbuf *
dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
{
struct dme_softc *sc = ifp->if_softc;
struct mbuf *m;
int pad, quantum;
quantum = sc->sc_data_width;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return NULL;
m_set_rcvif(m, ifp);
/* Ensure that we always allocate an even number of
* bytes in order to avoid writing beyond the buffer
*/
m->m_pkthdr.len = frame_length + (frame_length % quantum);
pad = ALIGN(sizeof(struct ether_header)) -
sizeof(struct ether_header);
/* All our frames have the CRC attached */
m->m_flags |= M_HASFCS;
if (m->m_pkthdr.len + pad > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return NULL;
}
}
m->m_data += pad;
m->m_len = frame_length + (frame_length % quantum);
return m;
}
static int
pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
{
int left_over_count = 0; /* Number of bytes from previous mbuf, which
need to be written with the next.*/
uint16_t left_over_buf = 0;
int length = 0;
struct mbuf *buf;
uint8_t *write_ptr;
/* We expect that the DM9000 has been setup to accept writes before
this function is called. */
for (buf = bufChain; buf != NULL; buf = buf->m_next) {
int to_write = buf->m_len;
length += to_write;
write_ptr = buf->m_data;
while (to_write > 0 ||
2019-04-24 11:21:25 +03:00
(buf->m_next == NULL && left_over_count > 0)) {
if (left_over_count > 0) {
uint8_t b = 0;
DPRINTF(("pkt_write_16: "
"Writing left over byte\n"));
if (to_write > 0) {
b = *write_ptr;
to_write--;
write_ptr++;
DPRINTF(("Took single byte\n"));
} else {
DPRINTF(("Leftover in last run\n"));
length++;
}
/* Does shift direction depend on endianess? */
left_over_buf = left_over_buf | (b << 8);
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
sc->dme_data, left_over_buf);
TX_DATA_DPRINTF(("%02X ", left_over_buf));
left_over_count = 0;
} else if ((long)write_ptr % 2 != 0) {
/* Misaligned data */
DPRINTF(("pkt_write_16: "
"Detected misaligned data\n"));
left_over_buf = *write_ptr;
left_over_count = 1;
write_ptr++;
to_write--;
} else {
int i;
2015-03-14 16:45:43 +03:00
uint16_t *dptr = (uint16_t *)write_ptr;
/* A block of aligned data. */
2019-04-24 11:21:25 +03:00
for (i = 0; i < to_write / 2; i++) {
/* buf will be half-word aligned
* all the time
*/
bus_space_write_2(sc->sc_iot,
2015-03-14 16:45:43 +03:00
sc->sc_ioh, sc->dme_data, *dptr);
TX_DATA_DPRINTF(("%02X %02X ",
2015-03-14 16:45:43 +03:00
*dptr & 0xFF, (*dptr >> 8) & 0xFF));
dptr++;
}
2015-03-14 16:45:43 +03:00
write_ptr += i * 2;
if (to_write % 2 != 0) {
DPRINTF(("pkt_write_16: "
"to_write %% 2: %d\n",
to_write % 2));
left_over_count = 1;
/* XXX: Does this depend on
* the endianess?
*/
left_over_buf = *write_ptr;
write_ptr++;
to_write--;
DPRINTF(("pkt_write_16: "
"to_write (after): %d\n",
to_write));
DPRINTF(("pkt_write_16: i * 2: %d\n",
i*2));
}
2015-03-14 16:45:43 +03:00
to_write -= i * 2;
}
} /* while (...) */
} /* for (...) */
return length;
}
static int
pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint8_t rx_status;
struct mbuf *m;
uint16_t data;
uint16_t frame_length;
uint16_t i;
uint16_t *buf;
2015-03-14 16:45:43 +03:00
data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
rx_status = data & 0xFF;
frame_length = bus_space_read_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data);
if (frame_length > ETHER_MAX_LEN) {
printf("Got frame of length: %d\n", frame_length);
printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
panic("Something is rotten");
}
2019-04-24 11:21:25 +03:00
RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
rx_status, frame_length));
m = dme_alloc_receive_buffer(ifp, frame_length);
if (m == NULL) {
/*
* didn't get a receive buffer, so we read the rest of the
* frame, throw it away and return an error
*/
for (i = 0; i < frame_length; i += 2) {
data = bus_space_read_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data);
}
*outBuf = NULL;
return 0;
}
buf = mtod(m, uint16_t*);
RX_DPRINTF(("dme_receive: "));
for (i = 0; i < frame_length; i += 2) {
data = bus_space_read_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data);
if ( (frame_length % 2 != 0) &&
2015-03-14 16:45:43 +03:00
(i == frame_length - 1) ) {
data = data & 0xff;
RX_DPRINTF((" L "));
}
*buf = data;
buf++;
RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
2015-03-14 16:45:43 +03:00
(data >> 8) & 0xff));
}
RX_DATA_DPRINTF(("\n"));
RX_DPRINTF(("Read %d bytes\n", i));
*outBuf = m;
return rx_status;
}
static int
pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
2015-03-10 21:01:04 +03:00
{
int length = 0, i;
struct mbuf *buf;
uint8_t *write_ptr;
2019-04-24 11:21:25 +03:00
/*
* We expect that the DM9000 has been setup to accept writes before
* this function is called.
*/
2015-03-10 21:01:04 +03:00
for (buf = bufChain; buf != NULL; buf = buf->m_next) {
int to_write = buf->m_len;
length += to_write;
write_ptr = buf->m_data;
2015-03-14 16:45:43 +03:00
for (i = 0; i < to_write; i++) {
2015-03-10 21:01:04 +03:00
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
sc->dme_data, *write_ptr);
write_ptr++;
}
} /* for (...) */
2015-03-10 21:01:04 +03:00
return length;
}
static int
pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
2015-03-10 21:01:04 +03:00
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2015-03-10 21:01:04 +03:00
uint8_t rx_status;
struct mbuf *m;
uint8_t *buf;
uint16_t frame_length;
uint16_t i, reg;
uint8_t data;
reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
rx_status = reg & 0xFF;
reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
frame_length = reg;
2015-03-14 16:45:43 +03:00
2015-03-10 21:01:04 +03:00
if (frame_length > ETHER_MAX_LEN) {
printf("Got frame of length: %d\n", frame_length);
printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
panic("Something is rotten");
}
RX_DPRINTF(("dme_receive: "
"rx_statux: 0x%x, frame_length: %d\n",
rx_status, frame_length));
m = dme_alloc_receive_buffer(ifp, frame_length);
if (m == NULL) {
/*
* didn't get a receive buffer, so we read the rest of the
* frame, throw it away and return an error
*/
for (i = 0; i < frame_length; i++ ) {
data = bus_space_read_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data);
}
*outBuf = NULL;
return 0;
}
2015-03-10 21:01:04 +03:00
2015-03-14 16:45:43 +03:00
buf = mtod(m, uint8_t *);
2015-03-10 21:01:04 +03:00
RX_DPRINTF(("dme_receive: "));
for (i = 0; i< frame_length; i += 1) {
2015-03-14 16:45:43 +03:00
data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
2015-03-10 21:01:04 +03:00
*buf = data;
buf++;
RX_DATA_DPRINTF(("%02X ", data));
}
RX_DATA_DPRINTF(("\n"));
RX_DPRINTF(("Read %d bytes\n", i));
*outBuf = m;
return rx_status;
}