xrdp/common/os_calls.c
jsorg71 c961563403 GFX: sort versions, flags to return the highest version we support in… (#2911)
* GFX: sort versions, flags to return the highest version we support in caps advertise

* GFX: simpify swtich in caps_advertise

* GFX: log skipped capability versions in caps_advertise
2024-01-31 19:08:29 -05:00

4210 lines
96 KiB
C

/**
* xrdp: A Remote Desktop Protocol server.
*
* Copyright (C) Jay Sorg 2004-2014
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* generic operating system calls
*
* put all the os / arch define in here you want
*/
/* To test for Windows (64 bit or 32 bit) use _WIN32 and _WIN64 in addition
for 64 bit windows. _WIN32 is defined for both.
To test for Linux use __linux__.
To test for BSD use BSD */
#if defined(HAVE_CONFIG_H)
#include "config_ac.h"
#endif
#if defined(_WIN32)
#include <windows.h>
#include <winsock.h>
#else
/* fix for solaris 10 with gcc 3.3.2 problem */
#if defined(sun) || defined(__sun)
#define ctid_t id_t
#endif
#include <unistd.h>
#include <errno.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <sys/socket.h>
#if defined(XRDP_ENABLE_VSOCK)
#if defined(__linux__)
#include <linux/vm_sockets.h>
#elif defined(__FreeBSD__)
// sockaddr_hvs is not available outside the kernel for whatever reason
struct sockaddr_hvs
{
unsigned char sa_len;
sa_family_t sa_family;
unsigned int hvs_port;
unsigned char hvs_zero[sizeof(struct sockaddr) - sizeof(sa_family_t) - sizeof(unsigned char) - sizeof(unsigned int)];
};
#endif
#endif
#include <poll.h>
#include <sys/un.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#if defined(HAVE_SYS_PRCTL_H)
#include <sys/prctl.h>
#endif
#include <sys/mman.h>
#include <dlfcn.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <signal.h>
#include <fcntl.h>
#include <pwd.h>
#include <time.h>
#include <grp.h>
#endif
#ifdef HAVE_SETUSERCONTEXT
#include <login_cap.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <locale.h>
/* this is so we can use #ifdef BSD later */
/* This is the recommended way of detecting BSD in the
FreeBSD Porter's Handbook. */
#if (defined(__unix__) || defined(unix)) && !defined(USG)
#include <sys/param.h>
#endif
#include "os_calls.h"
#include "limits.h"
#include "string_calls.h"
#include "log.h"
#include "xrdp_constants.h"
#if defined(__linux__)
#include <linux/unistd.h>
#endif
/* sys/ucred.h needs to be included to use struct xucred
* in FreeBSD and OS X. No need for other BSDs except GNU/kFreeBSD */
#if defined(__FreeBSD__) || defined(__APPLE__) || defined(__FreeBSD_kernel__)
#include <sys/ucred.h>
#endif
/* for solaris */
#if !defined(PF_LOCAL)
#define PF_LOCAL AF_UNIX
#endif
#if !defined(INADDR_NONE)
#define INADDR_NONE ((unsigned long)-1)
#endif
/**
* Type big enough to hold socket address information for any connecting type
*/
union sock_info
{
struct sockaddr sa;
struct sockaddr_in sa_in;
#if defined(XRDP_ENABLE_IPV6)
struct sockaddr_in6 sa_in6;
#endif
struct sockaddr_un sa_un;
#if defined(XRDP_ENABLE_VSOCK)
#if defined(__linux__)
struct sockaddr_vm sa_vm;
#elif defined(__FreeBSD__)
struct sockaddr_hvs sa_hvs;
#endif
#endif
};
/*****************************************************************************/
int
g_rm_temp_dir(void)
{
return 0;
}
/*****************************************************************************/
void
g_init(const char *app_name)
{
#if defined(_WIN32)
WSADATA wsadata;
WSAStartup(2, &wsadata);
#endif
}
/*****************************************************************************/
void
g_deinit(void)
{
#if defined(_WIN32)
WSACleanup();
#endif
fflush(stdout);
fflush(stderr);
g_rm_temp_dir();
}
/*****************************************************************************/
/* output text to stdout, try to use g_write / g_writeln instead to avoid
linux / windows EOL problems */
void
g_printf(const char *format, ...)
{
va_list ap;
va_start(ap, format);
vfprintf(stdout, format, ap);
va_end(ap);
}
/*****************************************************************************/
void
g_sprintf(char *dest, const char *format, ...)
{
va_list ap;
va_start(ap, format);
vsprintf(dest, format, ap);
va_end(ap);
}
/*****************************************************************************/
int
g_snprintf(char *dest, int len, const char *format, ...)
{
int err;
va_list ap;
va_start(ap, format);
err = vsnprintf(dest, len, format, ap);
va_end(ap);
return err;
}
/*****************************************************************************/
void
g_writeln(const char *format, ...)
{
va_list ap;
va_start(ap, format);
vfprintf(stdout, format, ap);
va_end(ap);
#if defined(_WIN32)
g_printf("\r\n");
#else
g_printf("\n");
#endif
}
/*****************************************************************************/
void
g_write(const char *format, ...)
{
va_list ap;
va_start(ap, format);
vfprintf(stdout, format, ap);
va_end(ap);
}
/*****************************************************************************/
/* print a hex dump to stdout*/
void
g_hexdump(const char *p, int len)
{
unsigned char *line;
int i;
int thisline;
int offset;
line = (unsigned char *)p;
offset = 0;
while (offset < len)
{
g_printf("%04x ", offset);
thisline = len - offset;
if (thisline > 16)
{
thisline = 16;
}
for (i = 0; i < thisline; i++)
{
g_printf("%02x ", line[i]);
}
for (; i < 16; i++)
{
g_printf(" ");
}
for (i = 0; i < thisline; i++)
{
g_printf("%c", (line[i] >= 0x20 && line[i] < 0x7f) ? line[i] : '.');
}
g_writeln("%s", "");
offset += thisline;
line += thisline;
}
}
/*****************************************************************************/
int
g_getchar(void)
{
return getchar();
}
/*****************************************************************************/
/*Returns 0 on success*/
int
g_tcp_set_no_delay(int sck)
{
int ret = 1; /* error */
int option_value;
socklen_t option_len;
option_len = sizeof(option_value);
/* SOL_TCP IPPROTO_TCP */
if (getsockopt(sck, IPPROTO_TCP, TCP_NODELAY, (char *)&option_value,
&option_len) == 0)
{
if (option_value == 0)
{
option_value = 1;
option_len = sizeof(option_value);
if (setsockopt(sck, IPPROTO_TCP, TCP_NODELAY, (char *)&option_value,
option_len) == 0)
{
ret = 0; /* success */
}
else
{
LOG(LOG_LEVEL_ERROR, "Error setting tcp_nodelay");
}
}
}
else
{
LOG(LOG_LEVEL_ERROR, "Error getting tcp_nodelay");
}
return ret;
}
/*****************************************************************************/
/*Returns 0 on success*/
int
g_tcp_set_keepalive(int sck)
{
int ret = 1; /* error */
int option_value;
socklen_t option_len;
option_len = sizeof(option_value);
/* SOL_TCP IPPROTO_TCP */
if (getsockopt(sck, SOL_SOCKET, SO_KEEPALIVE, (char *)&option_value,
&option_len) == 0)
{
if (option_value == 0)
{
option_value = 1;
option_len = sizeof(option_value);
if (setsockopt(sck, SOL_SOCKET, SO_KEEPALIVE, (char *)&option_value,
option_len) == 0)
{
ret = 0; /* success */
}
else
{
LOG(LOG_LEVEL_ERROR, "Error setting tcp_keepalive");
}
}
}
else
{
LOG(LOG_LEVEL_ERROR, "Error getting tcp_keepalive");
}
return ret;
}
/*****************************************************************************/
/* returns a newly created socket or -1 on error */
/* in win32 a socket is an unsigned int, in linux, it's an int */
int
g_tcp_socket(void)
{
int rv;
int option_value;
socklen_t option_len;
#if defined(XRDP_ENABLE_IPV6)
rv = (int)socket(AF_INET6, SOCK_STREAM, 0);
if (rv < 0)
{
switch (errno)
{
case EAFNOSUPPORT: /* if IPv6 not supported, retry IPv4 */
LOG(LOG_LEVEL_INFO, "IPv6 not supported, falling back to IPv4");
rv = (int)socket(AF_INET, SOCK_STREAM, 0);
break;
default:
LOG(LOG_LEVEL_ERROR, "g_tcp_socket: %s", g_get_strerror());
return -1;
}
}
#else
rv = (int)socket(AF_INET, SOCK_STREAM, 0);
#endif
if (rv < 0)
{
LOG(LOG_LEVEL_ERROR, "g_tcp_socket: %s", g_get_strerror());
return -1;
}
#if defined(XRDP_ENABLE_IPV6)
option_len = sizeof(option_value);
if (getsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&option_value,
&option_len) == 0)
{
if (option_value != 0)
{
#if defined(XRDP_ENABLE_IPV6ONLY)
option_value = 1;
#else
option_value = 0;
#endif
option_len = sizeof(option_value);
if (setsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&option_value,
option_len) < 0)
{
LOG(LOG_LEVEL_ERROR, "g_tcp_socket: setsockopt() failed");
}
}
}
#endif
option_len = sizeof(option_value);
if (getsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *)&option_value,
&option_len) == 0)
{
if (option_value == 0)
{
option_value = 1;
option_len = sizeof(option_value);
if (setsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *)&option_value,
option_len) < 0)
{
LOG(LOG_LEVEL_ERROR, "g_tcp_socket: setsockopt() failed");
}
}
}
option_len = sizeof(option_value);
if (getsockopt(rv, SOL_SOCKET, SO_SNDBUF, (char *)&option_value,
&option_len) == 0)
{
if (option_value < (1024 * 32))
{
option_value = 1024 * 32;
option_len = sizeof(option_value);
if (setsockopt(rv, SOL_SOCKET, SO_SNDBUF, (char *)&option_value,
option_len) < 0)
{
LOG(LOG_LEVEL_ERROR, "g_tcp_socket: setsockopt() failed");
}
}
}
return rv;
}
/*****************************************************************************/
/* returns error */
int
g_sck_set_send_buffer_bytes(int sck, int bytes)
{
int option_value;
socklen_t option_len;
option_value = bytes;
option_len = sizeof(option_value);
if (setsockopt(sck, SOL_SOCKET, SO_SNDBUF, (char *)&option_value,
option_len) != 0)
{
return 1;
}
return 0;
}
/*****************************************************************************/
/* returns error */
int
g_sck_get_send_buffer_bytes(int sck, int *bytes)
{
int option_value;
socklen_t option_len;
option_value = 0;
option_len = sizeof(option_value);
if (getsockopt(sck, SOL_SOCKET, SO_SNDBUF, (char *)&option_value,
&option_len) != 0)
{
return 1;
}
*bytes = option_value;
return 0;
}
/*****************************************************************************/
/* returns error */
int
g_sck_set_recv_buffer_bytes(int sck, int bytes)
{
int option_value;
socklen_t option_len;
option_value = bytes;
option_len = sizeof(option_value);
if (setsockopt(sck, SOL_SOCKET, SO_RCVBUF, (char *)&option_value,
option_len) != 0)
{
return 1;
}
return 0;
}
/*****************************************************************************/
/* returns error */
int
g_sck_get_recv_buffer_bytes(int sck, int *bytes)
{
int option_value;
socklen_t option_len;
option_value = 0;
option_len = sizeof(option_value);
if (getsockopt(sck, SOL_SOCKET, SO_RCVBUF, (char *)&option_value,
&option_len) != 0)
{
return 1;
}
*bytes = option_value;
return 0;
}
/*****************************************************************************/
int
g_sck_local_socket(void)
{
#if defined(_WIN32)
return -1;
#else
return socket(PF_LOCAL, SOCK_STREAM, 0);
#endif
}
/*****************************************************************************/
int
g_sck_local_socketpair(int sck[2])
{
#if defined(_WIN32)
return -1;
#else
return socketpair(PF_LOCAL, SOCK_STREAM, 0, sck);
#endif
}
/*****************************************************************************/
int
g_sck_vsock_socket(void)
{
#if defined(XRDP_ENABLE_VSOCK)
#if defined(__linux__)
LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: returning Linux vsock socket");
return socket(PF_VSOCK, SOCK_STREAM, 0);
#elif defined(__FreeBSD__)
LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: returning FreeBSD Hyper-V socket");
return socket(AF_HYPERV, SOCK_STREAM, 0); // docs say to use AF_HYPERV here - PF_HYPERV does not exist
#else
LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: vsock enabled at compile time, but platform is unsupported");
return -1;
#endif
#else
LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: vsock disabled at compile time");
return -1;
#endif
}
/*****************************************************************************/
/* returns error */
int
g_sck_get_peer_cred(int sck, int *pid, int *uid, int *gid)
{
#if defined(SO_PEERCRED)
socklen_t ucred_length;
struct myucred
{
pid_t pid;
uid_t uid;
gid_t gid;
} credentials;
ucred_length = sizeof(credentials);
if (getsockopt(sck, SOL_SOCKET, SO_PEERCRED, &credentials, &ucred_length))
{
return 1;
}
if (pid != 0)
{
*pid = credentials.pid;
}
if (uid != 0)
{
*uid = credentials.uid;
}
if (gid != 0)
{
*gid = credentials.gid;
}
return 0;
#elif defined(LOCAL_PEERCRED)
/* FreeBSD, OS X reach here*/
struct xucred xucred;
unsigned int xucred_length;
xucred_length = sizeof(xucred);
if (getsockopt(sck, SOL_LOCAL, LOCAL_PEERCRED, &xucred, &xucred_length))
{
return 1;
}
if (pid != 0)
{
*pid = 0; /* can't get pid in FreeBSD, OS X */
}
if (uid != 0)
{
*uid = xucred.cr_uid;
}
if (gid != 0)
{
*gid = xucred.cr_gid;
}
return 0;
#else
return 1;
#endif
}
/*****************************************************************************/
static const char *
get_peer_description(const union sock_info *sock_info,
char *desc, unsigned int bytes)
{
if (bytes > 0)
{
int family = sock_info->sa.sa_family;
switch (family)
{
case AF_INET:
{
char ip[INET_ADDRSTRLEN];
const struct sockaddr_in *sa_in = &sock_info->sa_in;
if (inet_ntop(family, &sa_in->sin_addr,
ip, sizeof(ip)) != NULL)
{
g_snprintf(desc, bytes, "%s:%d", ip,
ntohs(sa_in->sin_port));
}
else
{
g_snprintf(desc, bytes, "<unknown AF_INET>:%d",
ntohs(sa_in->sin_port));
}
break;
}
#if defined(XRDP_ENABLE_IPV6)
case AF_INET6:
{
char ip[INET6_ADDRSTRLEN];
const struct sockaddr_in6 *sa_in6 = &sock_info->sa_in6;
if (inet_ntop(family, &sa_in6->sin6_addr,
ip, sizeof(ip)) != NULL)
{
g_snprintf(desc, bytes, "[%s]:%d", ip,
ntohs(sa_in6->sin6_port));
}
else
{
g_snprintf(desc, bytes, "[<unknown AF_INET6>]:%d",
ntohs(sa_in6->sin6_port));
}
break;
}
#endif
case AF_UNIX:
{
g_snprintf(desc, bytes, "AF_UNIX");
break;
}
#if defined(XRDP_ENABLE_VSOCK)
#if defined(__linux__)
case AF_VSOCK:
{
const struct sockaddr_vm *sa_vm = &sock_info->sa_vm;
g_snprintf(desc, bytes, "AF_VSOCK:cid=%u/port=%u",
sa_vm->svm_cid, sa_vm->svm_port);
break;
}
#elif defined(__FreeBSD__)
case AF_HYPERV:
{
const struct sockaddr_hvs *sa_hvs = &sock_info->sa_hvs;
g_snprintf(desc, bytes, "AF_HYPERV:port=%u", sa_hvs->hvs_port);
break;
}
#endif
#endif
default:
g_snprintf(desc, bytes, "Unknown address family %d", family);
break;
}
}
return desc;
}
/*****************************************************************************/
void
g_sck_close(int sck)
{
#if defined(_WIN32)
closesocket(sck);
#else
char sockname[MAX_PEER_DESCSTRLEN];
union sock_info sock_info;
socklen_t sock_len = sizeof(sock_info);
memset(&sock_info, 0, sizeof(sock_info));
if (getsockname(sck, &sock_info.sa, &sock_len) == 0)
{
get_peer_description(&sock_info, sockname, sizeof(sockname));
}
else
{
LOG(LOG_LEVEL_WARNING, "getsockname() failed on socket %d: %s",
sck, g_get_strerror());
if (errno == EBADF || errno == ENOTSOCK)
{
return;
}
g_snprintf(sockname, sizeof(sockname), "unknown");
}
if (close(sck) == 0)
{
LOG(LOG_LEVEL_DEBUG, "Closed socket %d (%s)", sck, sockname);
}
else
{
LOG(LOG_LEVEL_WARNING, "Cannot close socket %d (%s): %s", sck,
sockname, g_get_strerror());
}
#endif
}
#if defined(XRDP_ENABLE_IPV6)
/*****************************************************************************/
/* Helper function for g_tcp_connect. */
static int
connect_loopback(int sck, const char *port)
{
struct sockaddr_in6 sa;
struct sockaddr_in s;
int res;
// First IPv6
g_memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
sa.sin6_addr = in6addr_loopback; // IPv6 ::1
sa.sin6_port = htons((tui16)atoi(port));
res = connect(sck, (struct sockaddr *)&sa, sizeof(sa));
if (res == -1 && errno == EINPROGRESS)
{
return -1;
}
if (res == 0 || (res == -1 && errno == EISCONN))
{
return 0;
}
// else IPv4
g_memset(&s, 0, sizeof(s));
s.sin_family = AF_INET;
s.sin_addr.s_addr = htonl(INADDR_LOOPBACK); // IPv4 127.0.0.1
s.sin_port = htons((tui16)atoi(port));
res = connect(sck, (struct sockaddr *)&s, sizeof(s));
if (res == -1 && errno == EINPROGRESS)
{
return -1;
}
if (res == 0 || (res == -1 && errno == EISCONN))
{
return 0;
}
// else IPv6 with IPv4 address
g_memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
inet_pton(AF_INET6, "::FFFF:127.0.0.1", &sa.sin6_addr);
sa.sin6_port = htons((tui16)atoi(port));
res = connect(sck, (struct sockaddr *)&sa, sizeof(sa));
if (res == -1 && errno == EINPROGRESS)
{
return -1;
}
if (res == 0 || (res == -1 && errno == EISCONN))
{
return 0;
}
return -1;
}
#endif
/*****************************************************************************/
/* returns error, zero is good */
/* The connection might get to be in progress, if so -1 is returned. */
/* The caller needs to call again to check if succeed. */
#if defined(XRDP_ENABLE_IPV6)
int
g_tcp_connect(int sck, const char *address, const char *port)
{
int res = 0;
struct addrinfo p;
struct addrinfo *h = (struct addrinfo *)NULL;
struct addrinfo *rp = (struct addrinfo *)NULL;
g_memset(&p, 0, sizeof(struct addrinfo));
p.ai_socktype = SOCK_STREAM;
p.ai_protocol = IPPROTO_TCP;
p.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED;
p.ai_family = AF_INET6;
if (g_strcmp(address, "127.0.0.1") == 0)
{
return connect_loopback(sck, port);
}
else
{
res = getaddrinfo(address, port, &p, &h);
}
if (res != 0)
{
LOG(LOG_LEVEL_ERROR, "g_tcp_connect(%d, %s, %s): getaddrinfo() failed: %s",
sck, address, port, gai_strerror(res));
}
if (res > -1)
{
if (h != NULL)
{
for (rp = h; rp != NULL; rp = rp->ai_next)
{
res = connect(sck, (struct sockaddr *)(rp->ai_addr),
rp->ai_addrlen);
if (res == -1 && errno == EINPROGRESS)
{
break; /* Return -1 */
}
if (res == 0 || (res == -1 && errno == EISCONN))
{
res = 0;
break; /* Success */
}
}
freeaddrinfo(h);
}
}
return res;
}
#else
int
g_tcp_connect(int sck, const char *address, const char *port)
{
struct sockaddr_in s;
struct hostent *h;
int res;
g_memset(&s, 0, sizeof(struct sockaddr_in));
s.sin_family = AF_INET;
s.sin_port = htons((tui16)atoi(port));
s.sin_addr.s_addr = inet_addr(address);
if (s.sin_addr.s_addr == INADDR_NONE)
{
h = gethostbyname(address);
if (h != 0)
{
if (h->h_name != 0)
{
if (h->h_addr_list != 0)
{
if ((*(h->h_addr_list)) != 0)
{
s.sin_addr.s_addr = *((int *)(*(h->h_addr_list)));
}
}
}
}
}
res = connect(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_in));
/* Mac OSX connect() returns -1 for already established connections */
if (res == -1 && errno == EISCONN)
{
res = 0;
}
return res;
}
#endif
/*****************************************************************************/
/* returns error, zero is good */
int
g_sck_local_connect(int sck, const char *port)
{
#if defined(_WIN32)
return -1;
#else
struct sockaddr_un s;
memset(&s, 0, sizeof(struct sockaddr_un));
s.sun_family = AF_UNIX;
strncpy(s.sun_path, port, sizeof(s.sun_path));
s.sun_path[sizeof(s.sun_path) - 1] = 0;
return connect(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_un));
#endif
}
/*****************************************************************************/
int
g_sck_set_non_blocking(int sck)
{
unsigned long i;
#if defined(_WIN32)
i = 1;
ioctlsocket(sck, FIONBIO, &i);
#else
i = fcntl(sck, F_GETFL);
i = i | O_NONBLOCK;
if (fcntl(sck, F_SETFL, i) < 0)
{
LOG(LOG_LEVEL_ERROR, "g_sck_set_non_blocking: fcntl() failed");
}
#endif
return 0;
}
#if defined(XRDP_ENABLE_IPV6)
/*****************************************************************************/
/* returns error, zero is good */
int
g_tcp_bind(int sck, const char *port)
{
struct sockaddr_in6 sa;
struct sockaddr_in s;
int errno6;
// First IPv6
g_memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
sa.sin6_addr = in6addr_any; // IPv6 ::
sa.sin6_port = htons((tui16)atoi(port));
if (bind(sck, (struct sockaddr *)&sa, sizeof(sa)) == 0)
{
return 0;
}
errno6 = errno;
// else IPv4
g_memset(&s, 0, sizeof(s));
s.sin_family = AF_INET;
s.sin_addr.s_addr = htonl(INADDR_ANY); // IPv4 0.0.0.0
s.sin_port = htons((tui16)atoi(port));
if (bind(sck, (struct sockaddr *)&s, sizeof(s)) == 0)
{
return 0;
}
LOG(LOG_LEVEL_ERROR, "g_tcp_bind(%d, %s) failed "
"bind IPv6 (errno=%d) and IPv4 (errno=%d).",
sck, port, errno6, errno);
return -1;
}
#else
int
g_tcp_bind(int sck, const char *port)
{
struct sockaddr_in s;
memset(&s, 0, sizeof(struct sockaddr_in));
s.sin_family = AF_INET;
s.sin_port = htons((tui16)atoi(port));
s.sin_addr.s_addr = INADDR_ANY;
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_in));
}
#endif
/*****************************************************************************/
int
g_sck_local_bind(int sck, const char *port)
{
#if defined(_WIN32)
return -1;
#else
struct sockaddr_un s;
memset(&s, 0, sizeof(struct sockaddr_un));
s.sun_family = AF_UNIX;
strncpy(s.sun_path, port, sizeof(s.sun_path));
s.sun_path[sizeof(s.sun_path) - 1] = 0;
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_un));
#endif
}
/*****************************************************************************/
int
g_sck_vsock_bind(int sck, const char *port)
{
#if defined(XRDP_ENABLE_VSOCK)
#if defined(__linux__)
struct sockaddr_vm s;
g_memset(&s, 0, sizeof(struct sockaddr_vm));
s.svm_family = AF_VSOCK;
s.svm_port = atoi(port);
s.svm_cid = VMADDR_CID_ANY;
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_vm));
#elif defined(__FreeBSD__)
struct sockaddr_hvs s;
g_memset(&s, 0, sizeof(struct sockaddr_hvs));
s.sa_family = AF_HYPERV;
s.hvs_port = atoi(port);
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_hvs));
#else
return -1;
#endif
#else
return -1;
#endif
}
/*****************************************************************************/
int
g_sck_vsock_bind_address(int sck, const char *port, const char *address)
{
#if defined(XRDP_ENABLE_VSOCK)
#if defined(__linux__)
struct sockaddr_vm s;
g_memset(&s, 0, sizeof(struct sockaddr_vm));
s.svm_family = AF_VSOCK;
s.svm_port = atoi(port);
s.svm_cid = atoi(address);
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_vm));
#elif defined(__FreeBSD__)
struct sockaddr_hvs s;
g_memset(&s, 0, sizeof(struct sockaddr_hvs));
s.sa_family = AF_HYPERV;
s.hvs_port = atoi(port);
// channel/address currently unsupported in FreeBSD 13.
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_hvs));
#else
return -1;
#endif
#else
return -1;
#endif
}
#if defined(XRDP_ENABLE_IPV6)
/*****************************************************************************/
/* Helper function for g_tcp_bind_address. */
static int
bind_loopback(int sck, const char *port)
{
struct sockaddr_in6 sa;
struct sockaddr_in s;
int errno6;
int errno4;
// First IPv6
g_memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
sa.sin6_addr = in6addr_loopback; // IPv6 ::1
sa.sin6_port = htons((tui16)atoi(port));
if (bind(sck, (struct sockaddr *)&sa, sizeof(sa)) == 0)
{
return 0;
}
errno6 = errno;
// else IPv4
g_memset(&s, 0, sizeof(s));
s.sin_family = AF_INET;
s.sin_addr.s_addr = htonl(INADDR_LOOPBACK); // IPv4 127.0.0.1
s.sin_port = htons((tui16)atoi(port));
if (bind(sck, (struct sockaddr *)&s, sizeof(s)) == 0)
{
return 0;
}
errno4 = errno;
// else IPv6 with IPv4 address
g_memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
inet_pton(AF_INET6, "::FFFF:127.0.0.1", &sa.sin6_addr);
sa.sin6_port = htons((tui16)atoi(port));
if (bind(sck, (struct sockaddr *)&sa, sizeof(sa)) == 0)
{
return 0;
}
LOG(LOG_LEVEL_ERROR, "bind_loopback(%d, %s) failed; "
"IPv6 ::1 (errno=%d), IPv4 127.0.0.1 (errno=%d) and IPv6 ::FFFF:127.0.0.1 (errno=%d).",
sck, port, errno6, errno4, errno);
return -1;
}
/*****************************************************************************/
/* Helper function for g_tcp_bind_address. */
/* Returns error, zero is good. */
static int
getaddrinfo_bind(int sck, const char *port, const char *address)
{
int res;
int error;
struct addrinfo hints;
struct addrinfo *list;
struct addrinfo *i;
res = -1;
g_memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_flags = 0;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
error = getaddrinfo(address, port, &hints, &list);
if (error == 0)
{
i = list;
while ((i != 0) && (res < 0))
{
res = bind(sck, i->ai_addr, i->ai_addrlen);
i = i->ai_next;
}
freeaddrinfo(list);
}
else
{
LOG(LOG_LEVEL_ERROR, "getaddrinfo error: %s", gai_strerror(error));
return -1;
}
return res;
}
/*****************************************************************************/
/* Binds a socket to a port. If no specified address the port will be bind */
/* to 'any', i.e. available on all network. */
/* For bind to local host, see valid address strings below. */
/* Returns error, zero is good. */
int
g_tcp_bind_address(int sck, const char *port, const char *address)
{
int res;
if ((address == 0) ||
(address[0] == 0) ||
(g_strcmp(address, "0.0.0.0") == 0) ||
(g_strcmp(address, "::") == 0))
{
return g_tcp_bind(sck, port);
}
if ((g_strcmp(address, "127.0.0.1") == 0) ||
(g_strcmp(address, "::1") == 0) ||
(g_strcmp(address, "localhost") == 0))
{
return bind_loopback(sck, port);
}
// Let getaddrinfo translate the address string...
// IPv4: ddd.ddd.ddd.ddd
// IPv6: x:x:x:x:x:x:x:x%<interface>, or x::x:x:x:x%<interface>
res = getaddrinfo_bind(sck, port, address);
if (res != 0)
{
// If fail and it is an IPv4 address, try with the mapped address
struct in_addr a;
if ((inet_aton(address, &a) == 1) && (strlen(address) <= 15))
{
char sz[7 + 15 + 1];
sprintf(sz, "::FFFF:%s", address);
res = getaddrinfo_bind(sck, port, sz);
if (res == 0)
{
return 0;
}
}
LOG(LOG_LEVEL_ERROR, "g_tcp_bind_address(%d, %s, %s) Failed!",
sck, port, address);
return -1;
}
return 0;
}
#else
int
g_tcp_bind_address(int sck, const char *port, const char *address)
{
struct sockaddr_in s;
memset(&s, 0, sizeof(struct sockaddr_in));
s.sin_family = AF_INET;
s.sin_port = htons((tui16)atoi(port));
s.sin_addr.s_addr = INADDR_ANY;
if (inet_aton(address, &s.sin_addr) < 0)
{
return -1; /* bad address */
}
return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_in));
}
#endif
/*****************************************************************************/
/* returns error, zero is good */
int
g_sck_listen(int sck)
{
return listen(sck, 2);
}
/*****************************************************************************/
int
g_sck_accept(int sck)
{
int ret;
union sock_info sock_info;
socklen_t sock_len = sizeof(sock_info);
memset(&sock_info, 0, sock_len);
ret = accept(sck, (struct sockaddr *)&sock_info, &sock_len);
if (ret > 0)
{
char description[MAX_PEER_DESCSTRLEN];
get_peer_description(&sock_info, description, sizeof(description));
LOG(LOG_LEVEL_INFO, "Socket %d: connection accepted from %s",
ret, description);
}
return ret;
}
/*****************************************************************************/
const char *
g_sck_get_peer_ip_address(int sck,
char *ip, unsigned int bytes,
unsigned short *port)
{
if (bytes > 0)
{
int ok = 0;
union sock_info sock_info;
socklen_t sock_len = sizeof(sock_info);
memset(&sock_info, 0, sock_len);
if (getpeername(sck, (struct sockaddr *)&sock_info, &sock_len) == 0)
{
int family = sock_info.sa.sa_family;
switch (family)
{
case AF_INET:
{
struct sockaddr_in *sa_in = &sock_info.sa_in;
if (inet_ntop(family, &sa_in->sin_addr, ip, bytes) != NULL)
{
ok = 1;
if (port != NULL)
{
*port = ntohs(sa_in->sin_port);
}
}
break;
}
#if defined(XRDP_ENABLE_IPV6)
case AF_INET6:
{
struct sockaddr_in6 *sa_in6 = &sock_info.sa_in6;
if (inet_ntop(family, &sa_in6->sin6_addr, ip, bytes) != NULL)
{
ok = 1;
if (port != NULL)
{
*port = ntohs(sa_in6->sin6_port);
}
}
break;
}
#endif
default:
break;
}
}
if (!ok)
{
ip[0] = '\0';
}
}
return ip;
}
/*****************************************************************************/
const char *
g_sck_get_peer_description(int sck,
char *desc, unsigned int bytes)
{
union sock_info sock_info;
socklen_t sock_len = sizeof(sock_info);
memset(&sock_info, 0, sock_len);
if (getpeername(sck, (struct sockaddr *)&sock_info, &sock_len) == 0)
{
get_peer_description(&sock_info, desc, bytes);
}
return desc;
}
/*****************************************************************************/
void
g_sleep(int msecs)
{
#if defined(_WIN32)
Sleep(msecs);
#else
usleep(msecs * 1000);
#endif
}
/*****************************************************************************/
int
g_pipe(int fd[2])
{
return pipe(fd);
}
/*****************************************************************************/
int
g_sck_last_error_would_block(int sck)
{
#if defined(_WIN32)
return WSAGetLastError() == WSAEWOULDBLOCK;
#else
return (errno == EWOULDBLOCK) || (errno == EAGAIN) || (errno == EINPROGRESS);
#endif
}
/*****************************************************************************/
int
g_sck_recv(int sck, void *ptr, unsigned int len, int flags)
{
#if defined(_WIN32)
return recv(sck, (char *)ptr, len, flags);
#else
return recv(sck, ptr, len, flags);
#endif
}
/*****************************************************************************/
int
g_sck_send(int sck, const void *ptr, unsigned int len, int flags)
{
#if defined(_WIN32)
return send(sck, (const char *)ptr, len, flags);
#else
return send(sck, ptr, len, flags);
#endif
}
/*****************************************************************************/
int
g_sck_recv_fd_set(int sck, void *ptr, unsigned int len,
int fds[], unsigned int maxfd,
unsigned int *fdcount)
{
int rv = -1;
#if !defined(_WIN32)
// The POSIX API gives us no way to see how much ancillary data is
// present for recvmsg() - just use a big buffer.
//
// Use a union, so control_un.control is properly aligned.
union
{
struct cmsghdr cm;
unsigned char control[8192];
} control_un;
struct msghdr msg = {0};
*fdcount = 0;
/* Set up descriptor for vanilla data */
struct iovec iov[1] = { {ptr, len} };
msg.msg_iov = &iov[0];
msg.msg_iovlen = 1;
/* Add in the ancillary data buffer */
msg.msg_control = control_un.control;
msg.msg_controllen = sizeof(control_un.control);
if ((rv = recvmsg(sck, &msg, 0)) > 0)
{
struct cmsghdr *cmsg;
if ((msg.msg_flags & MSG_CTRUNC) != 0)
{
LOG(LOG_LEVEL_WARNING, "Ancillary data on recvmsg() was truncated");
}
// Iterate over the cmsghdr structures in the ancillary data
for (cmsg = CMSG_FIRSTHDR(&msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg, cmsg))
{
if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_RIGHTS)
{
const unsigned char *data = CMSG_DATA(cmsg);
unsigned int data_len = cmsg->cmsg_len - CMSG_LEN(0);
// Check the data length doesn't point past the end of
// control_un.control (see below). This shouldn't happen,
// but is conceivable if the ancillary data is truncated
// and the OS doesn't handle that properly.
//
// <-- (sizeof(control_un.control) -->
// +------------------------------------+
// | |
// +------------------------------------+
// ^ ^
// | | <- data_len ->
// | |
// control_un.control data
unsigned int max_data_len =
sizeof(control_un.control) - (data - control_un.control);
if (len > max_data_len)
{
len = max_data_len;
}
// Process all the file descriptors in the structure
while (data_len >= sizeof(int))
{
int fd;
memcpy(&fd, data, sizeof(int));
data += sizeof(int);
data_len -= sizeof(int);
if (*fdcount < maxfd)
{
fds[(*fdcount)++] = fd;
}
else
{
// No room in the user's buffer for this fd
close(fd);
}
}
}
}
}
#endif /* !WIN32 */
return rv;
}
/*****************************************************************************/
int
g_sck_send_fd_set(int sck, const void *ptr, unsigned int len,
int fds[], unsigned int fdcount)
{
int rv = -1;
#if !defined(_WIN32)
struct msghdr msg = {0};
/* Set up descriptor for vanilla data */
struct iovec iov[1] = { {(void *)ptr, len} };
msg.msg_iov = &iov[0];
msg.msg_iovlen = 1;
if (fdcount > 0)
{
unsigned int fdsize = sizeof(fds[0]) * fdcount; /* Payload size */
/* Allocate ancillary data structure */
msg.msg_controllen = CMSG_SPACE(fdsize);
msg.msg_control = (struct cmsghdr *)g_malloc(msg.msg_controllen, 1);
if (msg.msg_control == NULL)
{
/* Memory allocation failure */
LOG(LOG_LEVEL_ERROR, "Error allocating buffer for %u fds",
fdcount);
return -1;
}
/* Fill in the ancillary data structure */
struct cmsghdr *cmptr = CMSG_FIRSTHDR(&msg);
cmptr->cmsg_len = CMSG_LEN(fdsize);
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM_RIGHTS;
memcpy(CMSG_DATA(cmptr), fds, fdsize);
}
rv = sendmsg(sck, &msg, 0);
g_free(msg.msg_control);
#endif /* !WIN32 */
return rv;
}
/*****************************************************************************/
/* returns boolean */
int
g_sck_socket_ok(int sck)
{
int opt;
socklen_t opt_len;
opt_len = sizeof(opt);
if (getsockopt(sck, SOL_SOCKET, SO_ERROR, (char *)(&opt), &opt_len) == 0)
{
if (opt == 0)
{
return 1;
}
}
return 0;
}
/*****************************************************************************/
/* wait 'millis' milliseconds for the socket to be able to write */
/* returns boolean */
int
g_sck_can_send(int sck, int millis)
{
int rv = 0;
if (sck > 0)
{
struct pollfd pollfd;
pollfd.fd = sck;
pollfd.events = POLLOUT;
pollfd.revents = 0;
if (poll(&pollfd, 1, millis) > 0)
{
if ((pollfd.revents & POLLOUT) != 0)
{
rv = 1;
}
}
}
return rv;
}
/*****************************************************************************/
/* wait 'millis' milliseconds for the socket to be able to receive */
/* returns boolean */
int
g_sck_can_recv(int sck, int millis)
{
int rv = 0;
if (sck > 0)
{
struct pollfd pollfd;
pollfd.fd = sck;
pollfd.events = POLLIN;
pollfd.revents = 0;
if (poll(&pollfd, 1, millis) > 0)
{
if ((pollfd.revents & (POLLIN | POLLHUP)) != 0)
{
rv = 1;
}
}
}
return rv;
}
/*****************************************************************************/
int
g_sck_select(int sck1, int sck2)
{
struct pollfd pollfd[2] = {0};
int rvmask[2] = {0}; /* Output masks corresponding to fds in pollfd */
unsigned int i = 0;
int rv = 0;
if (sck1 > 0)
{
pollfd[i].fd = sck1;
pollfd[i].events = POLLIN;
rvmask[i] = 1;
++i;
}
if (sck2 > 0)
{
pollfd[i].fd = sck2;
pollfd[i].events = POLLIN;
rvmask[i] = 2;
++i;
}
if (poll(pollfd, i, 0) > 0)
{
if ((pollfd[0].revents & (POLLIN | POLLHUP)) != 0)
{
rv |= rvmask[0];
}
if ((pollfd[1].revents & (POLLIN | POLLHUP)) != 0)
{
rv |= rvmask[1];
}
}
return rv;
}
/*****************************************************************************/
/* returns boolean */
static int
g_fd_can_read(int fd)
{
int rv = 0;
if (fd > 0)
{
struct pollfd pollfd;
pollfd.fd = fd;
pollfd.events = POLLIN;
pollfd.revents = 0;
if (poll(&pollfd, 1, 0) > 0)
{
if ((pollfd.revents & (POLLIN | POLLHUP)) != 0)
{
rv = 1;
}
}
}
return rv;
}
/*****************************************************************************/
/* returns error */
/* O_NONBLOCK = 0x00000800 */
static int
g_set_nonblock(int fd)
{
int error;
int flags;
error = fcntl(fd, F_GETFL);
if (error < 0)
{
return 1;
}
flags = error;
if ((flags & O_NONBLOCK) != O_NONBLOCK)
{
flags |= O_NONBLOCK;
error = fcntl(fd, F_SETFL, flags);
if (error < 0)
{
return 1;
}
}
return 0;
}
/*****************************************************************************/
/* returns 0 on error */
tintptr
g_create_wait_obj(const char *name)
{
#ifdef _WIN32
tintptr obj;
obj = (tintptr)CreateEvent(0, 1, 0, name);
return obj;
#else
int fds[2];
int error;
error = pipe(fds);
if (error != 0)
{
return 0;
}
if (g_set_nonblock(fds[0]) != 0)
{
close(fds[0]);
close(fds[1]);
return 0;
}
if (g_set_nonblock(fds[1]) != 0)
{
close(fds[0]);
close(fds[1]);
return 0;
}
g_file_set_cloexec(fds[0], 1);
g_file_set_cloexec(fds[1], 1);
return (fds[1] << 16) | fds[0];
#endif
}
/*****************************************************************************/
/* returns 0 on error */
tintptr
g_create_wait_obj_from_socket(tintptr socket, int write)
{
#ifdef _WIN32
/* Create and return corresponding event handle for WaitForMultipleObjects */
WSAEVENT event;
long lnetevent = 0;
g_memset(&event, 0, sizeof(WSAEVENT));
event = WSACreateEvent();
lnetevent = (write ? FD_WRITE : FD_READ) | FD_CLOSE;
if (WSAEventSelect(socket, event, lnetevent) == 0)
{
return (tbus)event;
}
else
{
return 0;
}
#else
return socket;
#endif
}
/*****************************************************************************/
void
g_delete_wait_obj_from_socket(tintptr wait_obj)
{
#ifdef _WIN32
if (wait_obj == 0)
{
return;
}
WSACloseEvent((HANDLE)wait_obj);
#else
#endif
}
/*****************************************************************************/
/* returns error */
int
g_set_wait_obj(tintptr obj)
{
#ifdef _WIN32
#error "Win32 is no longer supported."
#else
int error;
int fd;
int written;
int to_write;
char buf[4] = "sig";
if (obj == 0)
{
return 0;
}
fd = obj & USHRT_MAX;
if (g_fd_can_read(fd))
{
/* already signalled */
return 0;
}
fd = obj >> 16;
to_write = 4;
written = 0;
while (written < to_write)
{
error = write(fd, buf + written, to_write - written);
if (error == -1)
{
error = errno;
if ((error == EAGAIN) || (error == EWOULDBLOCK) ||
(error == EINPROGRESS) || (error == EINTR))
{
/* ok */
}
else
{
return 1;
}
}
else if (error > 0)
{
written += error;
}
else
{
return 1;
}
}
return 0;
#endif
}
/*****************************************************************************/
/* returns error */
int
g_reset_wait_obj(tintptr obj)
{
#ifdef _WIN32
if (obj == 0)
{
return 0;
}
ResetEvent((HANDLE)obj);
return 0;
#else
char buf[4];
int error;
int fd;
if (obj == 0)
{
return 0;
}
fd = obj & 0xffff;
while (g_fd_can_read(fd))
{
error = read(fd, buf, 4);
if (error == -1)
{
error = errno;
if ((error == EAGAIN) || (error == EWOULDBLOCK) ||
(error == EINPROGRESS) || (error == EINTR))
{
/* ok */
}
else
{
return 1;
}
}
else if (error == 0)
{
return 1;
}
}
return 0;
#endif
}
/*****************************************************************************/
/* returns boolean */
int
g_is_wait_obj_set(tintptr obj)
{
#ifdef _WIN32
if (obj == 0)
{
return 0;
}
if (WaitForSingleObject((HANDLE)obj, 0) == WAIT_OBJECT_0)
{
return 1;
}
return 0;
#else
if (obj == 0)
{
return 0;
}
return g_fd_can_read(obj & 0xffff);
#endif
}
/*****************************************************************************/
/* returns error */
int
g_delete_wait_obj(tintptr obj)
{
#ifdef _WIN32
if (obj == 0)
{
return 0;
}
/* Close event handle */
CloseHandle((HANDLE)obj);
return 0;
#else
if (obj == 0)
{
return 0;
}
close(obj & 0xffff);
close(obj >> 16);
return 0;
#endif
}
/*****************************************************************************/
/* returns error */
int
g_obj_wait(tintptr *read_objs, int rcount, tintptr *write_objs, int wcount,
int mstimeout)
{
#define MAX_HANDLES 256
#ifdef _WIN32
HANDLE handles[MAX_HANDLES];
DWORD count;
DWORD error;
int j;
int i;
j = 0;
count = rcount + wcount;
for (i = 0; i < rcount; i++)
{
handles[j++] = (HANDLE)(read_objs[i]);
}
for (i = 0; i < wcount; i++)
{
handles[j++] = (HANDLE)(write_objs[i]);
}
if (mstimeout < 0)
{
mstimeout = INFINITE;
}
error = WaitForMultipleObjects(count, handles, FALSE, mstimeout);
if (error == WAIT_FAILED)
{
return 1;
}
return 0;
#else
struct pollfd pollfd[MAX_HANDLES];
int sck;
int i = 0;
unsigned int j = 0;
int rv = 1;
if (read_objs == NULL && rcount != 0)
{
LOG(LOG_LEVEL_ERROR, "Programming error read_objs is null");
}
else if (write_objs == NULL && wcount != 0)
{
LOG(LOG_LEVEL_ERROR, "Programming error write_objs is null");
}
/* Check carefully for int overflow in passed-in counts */
else if ((unsigned int)rcount > MAX_HANDLES ||
(unsigned int)wcount > MAX_HANDLES ||
((unsigned int)rcount + (unsigned int)wcount) > MAX_HANDLES)
{
LOG(LOG_LEVEL_ERROR, "Programming error too many handles");
}
else
{
if (mstimeout < 0)
{
mstimeout = -1;
}
for (i = 0; i < rcount ; ++i)
{
sck = read_objs[i] & 0xffff;
if (sck > 0)
{
pollfd[j].fd = sck;
pollfd[j].events = POLLIN;
++j;
}
}
for (i = 0; i < wcount; ++i)
{
sck = write_objs[i];
if (sck > 0)
{
pollfd[j].fd = sck;
pollfd[j].events = POLLOUT;
++j;
}
}
rv = (poll(pollfd, j, mstimeout) < 0);
if (rv != 0)
{
/* these are not really errors */
if ((errno == EAGAIN) ||
(errno == EWOULDBLOCK) ||
(errno == EINPROGRESS) ||
(errno == EINTR)) /* signal occurred */
{
rv = 0;
}
}
}
return rv;
#endif
#undef MAX_HANDLES
}
/*****************************************************************************/
void
g_random(char *data, int len)
{
#if defined(_WIN32)
int index;
srand(g_time1());
for (index = 0; index < len; index++)
{
data[index] = (char)rand(); /* rand returns a number between 0 and
RAND_MAX */
}
#else
int fd;
memset(data, 0x44, len);
fd = open("/dev/urandom", O_RDONLY);
if (fd == -1)
{
fd = open("/dev/random", O_RDONLY);
}
if (fd != -1)
{
if (read(fd, data, len) != len)
{
}
close(fd);
}
#endif
}
/*****************************************************************************/
int
g_abs(int i)
{
return abs(i);
}
/*****************************************************************************/
int
g_memcmp(const void *s1, const void *s2, int len)
{
return memcmp(s1, s2, len);
}
/*****************************************************************************/
/* returns -1 on error, else return handle or file descriptor */
int
g_file_open_rw(const char *file_name)
{
#if defined(_WIN32)
return (int)CreateFileA(file_name, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
0, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
#else
return open(file_name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
#endif
}
/*****************************************************************************/
/* returns -1 on error, else return handle or file descriptor */
int
g_file_open_ex(const char *file_name, int aread, int awrite,
int acreate, int atrunc)
{
#if defined(_WIN32)
return -1;
#else
int rv;
int flags;
flags = 0;
if (aread && awrite)
{
flags |= O_RDWR;
}
else if (aread)
{
flags |= O_RDONLY;
}
else if (awrite)
{
flags |= O_WRONLY;
}
if (acreate)
{
flags |= O_CREAT;
}
if (atrunc)
{
flags |= O_TRUNC;
}
rv = open(file_name, flags, S_IRUSR | S_IWUSR);
return rv;
#endif
}
/*****************************************************************************/
/* returns -1 on error, else return handle or file descriptor */
int
g_file_open_ro(const char *file_name)
{
return g_file_open_ex(file_name, 1, 0, 0, 0);
}
/*****************************************************************************/
/* returns error, always 0 */
int
g_file_close(int fd)
{
#if defined(_WIN32)
CloseHandle((HANDLE)fd);
#else
close(fd);
#endif
return 0;
}
/*****************************************************************************/
int
g_file_is_open(int fd)
{
return (fcntl(fd, F_GETFD) >= 0);
}
/*****************************************************************************/
/* read from file, returns the number of bytes read or -1 on error */
int
g_file_read(int fd, char *ptr, int len)
{
#if defined(_WIN32)
if (ReadFile((HANDLE)fd, (LPVOID)ptr, (DWORD)len, (LPDWORD)&len, 0))
{
return len;
}
else
{
return -1;
}
#else
return read(fd, ptr, len);
#endif
}
/*****************************************************************************/
/* write to file, returns the number of bytes written or -1 on error */
int
g_file_write(int fd, const char *ptr, int len)
{
#if defined(_WIN32)
if (WriteFile((HANDLE)fd, (LPVOID)ptr, (DWORD)len, (LPDWORD)&len, 0))
{
return len;
}
else
{
return -1;
}
#else
return write(fd, ptr, len);
#endif
}
/*****************************************************************************/
/* move file pointer, returns offset on success, -1 on failure */
int
g_file_seek(int fd, int offset)
{
#if defined(_WIN32)
int rv;
rv = (int)SetFilePointer((HANDLE)fd, offset, 0, FILE_BEGIN);
if (rv == (int)INVALID_SET_FILE_POINTER)
{
return -1;
}
else
{
return rv;
}
#else
return (int)lseek(fd, offset, SEEK_SET);
#endif
}
/*****************************************************************************/
/* do a write lock on a file */
/* return boolean */
int
g_file_lock(int fd, int start, int len)
{
#if defined(_WIN32)
return LockFile((HANDLE)fd, start, 0, len, 0);
#else
struct flock lock;
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = start;
lock.l_len = len;
if (fcntl(fd, F_SETLK, &lock) == -1)
{
return 0;
}
return 1;
#endif
}
/*****************************************************************************/
/* Gets the close-on-exec flag for a file descriptor */
int
g_file_get_cloexec(int fd)
{
int rv = 0;
int flags = fcntl(fd, F_GETFD);
if (flags >= 0 && (flags & FD_CLOEXEC) != 0)
{
rv = 1;
}
return rv;
}
/*****************************************************************************/
/* Sets/clears the close-on-exec flag for a file descriptor */
/* return boolean */
int
g_file_set_cloexec(int fd, int status)
{
int rv = 0;
int current_flags = fcntl(fd, F_GETFD);
if (current_flags >= 0)
{
int new_flags;
if (status)
{
new_flags = current_flags | FD_CLOEXEC;
}
else
{
new_flags = current_flags & ~FD_CLOEXEC;
}
if (new_flags != current_flags)
{
rv = (fcntl(fd, F_SETFD, new_flags) >= 0);
}
}
return rv;
}
/*****************************************************************************/
struct list *
g_get_open_fds(int min, int max)
{
struct list *result = list_create();
if (result != NULL)
{
if (max < 0)
{
max = sysconf(_SC_OPEN_MAX);
}
if (max > min)
{
struct pollfd *fds = g_new0(struct pollfd, max - min);
int i;
if (fds == NULL)
{
goto nomem;
}
for (i = min ; i < max ; ++i)
{
fds[i - min].fd = i;
}
if (poll(fds, max - min, 0) >= 0)
{
for (i = min ; i < max ; ++i)
{
if (fds[i - min].revents != POLLNVAL)
{
// Descriptor is open
if (!list_add_item(result, i))
{
goto nomem;
}
}
}
}
g_free(fds);
}
}
return result;
nomem:
list_delete(result);
return NULL;
}
/*****************************************************************************/
int
g_file_map(int fd, int aread, int awrite, size_t length, void **addr)
{
int prot = 0;
void *laddr;
if (aread)
{
prot |= PROT_READ;
}
if (awrite)
{
prot |= PROT_WRITE;
}
laddr = mmap(NULL, length, prot, MAP_SHARED, fd, 0);
if (laddr == MAP_FAILED)
{
return 1;
}
*addr = laddr;
return 0;
}
/*****************************************************************************/
int
g_munmap(void *addr, size_t length)
{
return munmap(addr, length);
}
/*****************************************************************************/
/* Converts a hex mask to a mode_t value */
#if !defined(_WIN32)
static mode_t
hex_to_mode_t(int hex)
{
mode_t mode = 0;
mode |= (hex & 0x4000) ? S_ISUID : 0;
mode |= (hex & 0x2000) ? S_ISGID : 0;
mode |= (hex & 0x1000) ? S_ISVTX : 0;
mode |= (hex & 0x0400) ? S_IRUSR : 0;
mode |= (hex & 0x0200) ? S_IWUSR : 0;
mode |= (hex & 0x0100) ? S_IXUSR : 0;
mode |= (hex & 0x0040) ? S_IRGRP : 0;
mode |= (hex & 0x0020) ? S_IWGRP : 0;
mode |= (hex & 0x0010) ? S_IXGRP : 0;
mode |= (hex & 0x0004) ? S_IROTH : 0;
mode |= (hex & 0x0002) ? S_IWOTH : 0;
mode |= (hex & 0x0001) ? S_IXOTH : 0;
return mode;
}
#endif
/*****************************************************************************/
/* Converts a mode_t value to a hex mask */
#if !defined(_WIN32)
static int
mode_t_to_hex(mode_t mode)
{
int hex = 0;
hex |= (mode & S_ISUID) ? 0x4000 : 0;
hex |= (mode & S_ISGID) ? 0x2000 : 0;
hex |= (mode & S_ISVTX) ? 0x1000 : 0;
hex |= (mode & S_IRUSR) ? 0x0400 : 0;
hex |= (mode & S_IWUSR) ? 0x0200 : 0;
hex |= (mode & S_IXUSR) ? 0x0100 : 0;
hex |= (mode & S_IRGRP) ? 0x0040 : 0;
hex |= (mode & S_IWGRP) ? 0x0020 : 0;
hex |= (mode & S_IXGRP) ? 0x0010 : 0;
hex |= (mode & S_IROTH) ? 0x0004 : 0;
hex |= (mode & S_IWOTH) ? 0x0002 : 0;
hex |= (mode & S_IXOTH) ? 0x0001 : 0;
return hex;
}
#endif
/*****************************************************************************/
/* Duplicates a file descriptor onto another one using the semantics
* of dup2() */
/* return boolean */
int
g_file_duplicate_on(int fd, int target_fd)
{
int rv = (dup2(fd, target_fd) >= 0);
if (rv < 0)
{
LOG(LOG_LEVEL_ERROR, "Can't clone file %d as file %d [%s]",
fd, target_fd, g_get_strerror());
}
return rv;
}
/*****************************************************************************/
/* returns error */
int
g_chmod_hex(const char *filename, int flags)
{
#if defined(_WIN32)
return 0;
#else
mode_t m = hex_to_mode_t(flags);
return chmod(filename, m);
#endif
}
/*****************************************************************************/
/* returns error */
int
g_umask_hex(int flags)
{
#if defined(_WIN32)
return flags;
#else
mode_t m = hex_to_mode_t(flags);
m = umask(m);
return mode_t_to_hex(m);
#endif
}
/*****************************************************************************/
/* returns error, zero is ok */
int
g_chown(const char *name, int uid, int gid)
{
return chown(name, uid, gid);
}
/*****************************************************************************/
/* returns error, always zero */
int
g_mkdir(const char *dirname)
{
#if defined(_WIN32)
return 0;
#else
return mkdir(dirname, S_IRWXU);
#endif
}
/*****************************************************************************/
/* gets the current working directory and puts up to maxlen chars in
dirname
always returns 0 */
char *
g_get_current_dir(char *dirname, int maxlen)
{
#if defined(_WIN32)
GetCurrentDirectoryA(maxlen, dirname);
return 0;
#else
if (getcwd(dirname, maxlen) == 0)
{
}
return 0;
#endif
}
/*****************************************************************************/
/* returns error, zero on success and -1 on failure */
int
g_set_current_dir(const char *dirname)
{
#if defined(_WIN32)
if (SetCurrentDirectoryA(dirname))
{
return 0;
}
else
{
return -1;
}
#else
return chdir(dirname);
#endif
}
/*****************************************************************************/
/* returns boolean, non zero if the file exists */
int
g_file_exist(const char *filename)
{
#if defined(_WIN32)
return 0; // use FileAge(filename) <> -1
#else
return access(filename, F_OK) == 0;
#endif
}
/*****************************************************************************/
/* returns boolean, non zero if the file is readable */
int
g_file_readable(const char *filename)
{
#if defined(_WIN32)
return _waccess(filename, 04) == 0;
#else
return access(filename, R_OK) == 0;
#endif
}
/*****************************************************************************/
/* returns boolean, non zero if the directory exists */
int
g_directory_exist(const char *dirname)
{
#if defined(_WIN32)
return 0; // use GetFileAttributes and check return value
// is not -1 and FILE_ATTRIBUTE_DIRECTORY bit is set
#else
struct stat st;
if (stat(dirname, &st) == 0)
{
return S_ISDIR(st.st_mode);
}
else
{
return 0;
}
#endif
}
/*****************************************************************************/
/* returns boolean, non zero if the file exists and is a readable executable */
int
g_executable_exist(const char *exename)
{
return access(exename, R_OK | X_OK) == 0;
}
/*****************************************************************************/
/* returns boolean */
int
g_create_dir(const char *dirname)
{
#if defined(_WIN32)
return CreateDirectoryA(dirname, 0); // test this
#else
return mkdir(dirname, 0777) == 0;
#endif
}
/*****************************************************************************/
/* will try to create directories up to last / in name
example /tmp/a/b/c/readme.txt will try to create /tmp/a/b/c
returns boolean */
int
g_create_path(const char *path)
{
char *pp;
char *sp;
char *copypath;
int status;
status = 1;
copypath = g_strdup(path);
pp = copypath;
sp = strchr(pp, '/');
while (sp != 0)
{
if (sp != pp)
{
*sp = 0;
if (!g_directory_exist(copypath))
{
if (!g_create_dir(copypath))
{
status = 0;
break;
}
}
*sp = '/';
}
pp = sp + 1;
sp = strchr(pp, '/');
}
g_free(copypath);
return status;
}
/*****************************************************************************/
/* returns boolean */
int
g_remove_dir(const char *dirname)
{
#if defined(_WIN32)
return RemoveDirectoryA(dirname); // test this
#else
return rmdir(dirname) == 0;
#endif
}
/*****************************************************************************/
/* returns non zero if the file was deleted */
int
g_file_delete(const char *filename)
{
#if defined(_WIN32)
return DeleteFileA(filename);
#else
return unlink(filename) != -1;
#endif
}
/*****************************************************************************/
/* returns file size, -1 on error */
int
g_file_get_size(const char *filename)
{
#if defined(_WIN32)
return -1;
#else
struct stat st;
if (stat(filename, &st) == 0)
{
return (int)(st.st_size);
}
else
{
return -1;
}
#endif
}
/*****************************************************************************/
/* returns device number, -1 on error */
int
g_file_get_device_number(const char *filename)
{
#if defined(_WIN32)
return -1;
#else
struct stat st;
if (stat(filename, &st) == 0)
{
return (int)(st.st_dev);
}
else
{
return -1;
}
#endif
}
/*****************************************************************************/
/* returns inode number, -1 on error */
int
g_file_get_inode_num(const char *filename)
{
#if defined(_WIN32)
return -1;
#else
struct stat st;
if (stat(filename, &st) == 0)
{
return (int)(st.st_ino);
}
else
{
return -1;
}
#endif
}
/*****************************************************************************/
long
g_load_library(char *in)
{
#if defined(_WIN32)
return (long)LoadLibraryA(in);
#else
return (long)dlopen(in, RTLD_LOCAL | RTLD_LAZY);
#endif
}
/*****************************************************************************/
int
g_free_library(long lib)
{
if (lib == 0)
{
return 0;
}
#if defined(_WIN32)
return FreeLibrary((HMODULE)lib);
#else
return dlclose((void *)lib);
#endif
}
/*****************************************************************************/
/* returns NULL if not found */
void *
g_get_proc_address(long lib, const char *name)
{
if (lib == 0)
{
return 0;
}
#if defined(_WIN32)
return GetProcAddress((HMODULE)lib, name);
#else
return dlsym((void *)lib, name);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
int
g_system(const char *aexec)
{
#if defined(_WIN32)
return 0;
#else
return system(aexec);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
char *
g_get_strerror(void)
{
#if defined(_WIN32)
return 0;
#else
return strerror(errno);
#endif
}
/*****************************************************************************/
int
g_get_errno(void)
{
#if defined(_WIN32)
return GetLastError();
#else
return errno;
#endif
}
/*****************************************************************************/
/* does not work in win32 */
#define ARGS_STR_LEN 1024
int
g_execvp(const char *p1, char *args[])
{
#if defined(_WIN32)
return 0;
#else
int rv;
char args_str[ARGS_STR_LEN];
int args_len;
args_len = 0;
while (args[args_len] != NULL)
{
args_len++;
}
g_strnjoin(args_str, ARGS_STR_LEN, " ", (const char **) args, args_len);
LOG(LOG_LEVEL_DEBUG,
"Calling exec (excutable: %s, arguments: %s)",
p1, args_str);
rv = execvp(p1, args);
/* should not get here */
int saved_errno = errno;
LOG(LOG_LEVEL_ERROR,
"Error calling exec (excutable: %s, arguments: %s) "
"returned errno: %d, description: %s",
p1, args_str, g_get_errno(), g_get_strerror());
errno = saved_errno;
return rv;
#endif
}
/*****************************************************************************/
int
g_execvp_list(const char *file, struct list *argv)
{
int rv = -1;
/* Push a terminating NULL onto the list for the system call */
if (!list_add_item(argv, (tintptr)NULL))
{
LOG(LOG_LEVEL_ERROR, "No memory for exec to terminate list");
errno = ENOMEM;
}
else
{
/* Read the argv argument straight from the list */
rv = g_execvp(file, (char **)argv->items);
/* should not get here */
list_remove_item(argv, argv->count - 1); // Lose terminating NULL
}
return rv;
}
/*****************************************************************************/
/* does not work in win32 */
int
g_execlp3(const char *a1, const char *a2, const char *a3)
{
#if defined(_WIN32)
return 0;
#else
int rv;
const char *args[] = {a2, a3, NULL};
char args_str[ARGS_STR_LEN];
g_strnjoin(args_str, ARGS_STR_LEN, " ", args, 2);
LOG(LOG_LEVEL_DEBUG,
"Calling exec (executable: %s, arguments: %s)",
a1, args_str);
g_rm_temp_dir();
rv = execlp(a1, a2, a3, (void *)0);
/* should not get here */
LOG(LOG_LEVEL_ERROR,
"Error calling exec (executable: %s, arguments: %s) "
"returned errno: %d, description: %s",
a1, args_str, g_get_errno(), g_get_strerror());
return rv;
#endif
}
/*****************************************************************************/
/* does not work in win32 */
unsigned int
g_set_alarm(void (*func)(int), unsigned int secs)
{
#if defined(_WIN32)
return 0;
#else
struct sigaction action;
/* Cancel any previous alarm to prevent a race */
unsigned int rv = alarm(0);
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESTART;
}
sigemptyset (&action.sa_mask);
sigaction(SIGALRM, &action, NULL);
if (func != NULL && secs > 0)
{
(void)alarm(secs);
}
return rv;
#endif
}
/*****************************************************************************/
/* does not work in win32 */
void
g_signal_child_stop(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
// Don't need to know when children are stopped or started
action.sa_flags = (SA_RESTART | SA_NOCLDSTOP);
}
sigemptyset (&action.sa_mask);
sigaction(SIGCHLD, &action, NULL);
#endif
}
/*****************************************************************************/
void
g_signal_segfault(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESETHAND; // This is a one-shot
}
sigemptyset (&action.sa_mask);
sigaction(SIGSEGV, &action, NULL);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
void
g_signal_hang_up(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESTART;
}
sigemptyset (&action.sa_mask);
sigaction(SIGHUP, &action, NULL);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
void
g_signal_user_interrupt(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESTART;
}
sigemptyset (&action.sa_mask);
sigaction(SIGINT, &action, NULL);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
void
g_signal_terminate(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESTART;
}
sigemptyset (&action.sa_mask);
sigaction(SIGTERM, &action, NULL);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
void
g_signal_pipe(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESTART;
}
sigemptyset (&action.sa_mask);
sigaction(SIGPIPE, &action, NULL);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
void
g_signal_usr1(void (*func)(int))
{
#if defined(_WIN32)
#else
struct sigaction action;
if (func == NULL)
{
action.sa_handler = SIG_DFL;
action.sa_flags = 0;
}
else
{
action.sa_handler = func;
action.sa_flags = SA_RESTART;
}
sigemptyset (&action.sa_mask);
sigaction(SIGUSR1, &action, NULL);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
int
g_fork(void)
{
#if defined(_WIN32)
return 0;
#else
int rv;
rv = fork();
if (rv == -1) /* error */
{
LOG(LOG_LEVEL_ERROR,
"Process fork failed with errno: %d, description: %s",
g_get_errno(), g_get_strerror());
}
return rv;
#endif
}
/*****************************************************************************/
/* does not work in win32 */
int
g_setgid(int pid)
{
#if defined(_WIN32)
return 0;
#else
return setgid(pid);
#endif
}
/*****************************************************************************/
/* returns error, zero is success, non zero is error */
/* does not work in win32 */
int
g_initgroups(const char *username)
{
#if defined(_WIN32)
return 0;
#else
int gid;
int error = g_getuser_info_by_name(username, NULL, &gid, NULL, NULL, NULL);
if (error == 0)
{
error = initgroups(username, gid);
}
return error;
#endif
}
/*****************************************************************************/
/* does not work in win32 */
/* returns user id */
int
g_getuid(void)
{
#if defined(_WIN32)
return 0;
#else
return getuid();
#endif
}
/*****************************************************************************/
/* does not work in win32 */
/* returns user id */
int
g_getgid(void)
{
#if defined(_WIN32)
return 0;
#else
return getgid();
#endif
}
/*****************************************************************************/
/* does not work in win32 */
/* On success, zero is returned. On error, -1 is returned */
int
g_setuid(int pid)
{
#if defined(_WIN32)
return 0;
#else
return setuid(pid);
#endif
}
/*****************************************************************************/
int
g_setsid(void)
{
#if defined(_WIN32)
return -1;
#else
return setsid();
#endif
}
/*****************************************************************************/
int
g_getlogin(char *name, unsigned int len)
{
#if defined(_WIN32)
return -1;
#else
return getlogin_r(name, len);
#endif
}
/*****************************************************************************/
int
g_setlogin(const char *name)
{
#ifdef BSD
return setlogin(name);
#else
return -1;
#endif
}
/*****************************************************************************/
#ifdef HAVE_SETUSERCONTEXT
int
g_set_allusercontext(int uid)
{
int rv;
struct passwd *pwd = getpwuid(uid);
if (pwd == NULL)
{
LOG(LOG_LEVEL_ERROR, "No password entry for UID %d", uid);
rv = 1;
}
else
{
rv = setusercontext(NULL, pwd, uid, LOGIN_SETALL);
if (rv != 0)
{
LOG(LOG_LEVEL_ERROR, "setusercontext(%d) failed [%s]",
uid, g_get_strerror());
}
}
return (rv != 0); /* Return 0 or 1 */
}
#endif
/*****************************************************************************/
/* does not work in win32
returns pid of process that exits or zero if signal occurred
an exit_status struct can optionally be passed in to get the
exit status of the child */
int
g_waitchild(struct exit_status *e)
{
#if defined(_WIN32)
return 0;
#else
int wstat;
int rv;
struct exit_status dummy;
if (e == NULL)
{
e = &dummy; // Set this, then throw it away
}
e->reason = E_XR_UNEXPECTED;
e->val = 0;
rv = waitpid(-1, &wstat, WNOHANG);
if (rv == -1)
{
if (errno == EINTR)
{
/* This shouldn't happen as signal handlers use SA_RESTART */
rv = 0;
}
}
else if (WIFEXITED(wstat))
{
e->reason = E_XR_STATUS_CODE;
e->val = WEXITSTATUS(wstat);
}
else if (WIFSIGNALED(wstat))
{
e->reason = E_XR_SIGNAL;
e->val = WTERMSIG(wstat);
}
return rv;
#endif
}
/*****************************************************************************/
/* does not work in win32
returns pid of process that exits or <= 0 if no process was found
Note that signal handlers are established with BSD-style semantics,
so this call is NOT interrupted by a signal */
int
g_waitpid(int pid)
{
#if defined(_WIN32)
return 0;
#else
int rv = 0;
if (pid < 0)
{
rv = -1;
}
else
{
rv = waitpid(pid, 0, 0);
}
return rv;
#endif
}
/*****************************************************************************/
/* does not work in win32
returns exit status code of child process with pid
Note that signal handlers are established with BSD-style semantics,
so this call is NOT interrupted by a signal */
struct exit_status
g_waitpid_status(int pid)
{
struct exit_status exit_status = {.reason = E_XR_UNEXPECTED, .val = 0};
#if !defined(_WIN32)
if (pid > 0)
{
int rv;
int status;
LOG(LOG_LEVEL_DEBUG, "waiting for pid %d to exit", pid);
rv = waitpid(pid, &status, 0);
if (rv != -1)
{
if (WIFEXITED(status))
{
exit_status.reason = E_XR_STATUS_CODE;
exit_status.val = WEXITSTATUS(status);
}
if (WIFSIGNALED(status))
{
exit_status.reason = E_XR_SIGNAL;
exit_status.val = WTERMSIG(status);
}
}
else
{
LOG(LOG_LEVEL_WARNING, "wait for pid %d returned unknown result", pid);
}
}
#endif
return exit_status;
}
/*****************************************************************************/
int
g_setpgid(int pid, int pgid)
{
int rv = setpgid(pid, pgid);
if (rv < 0)
{
if (pid == 0)
{
pid = getpid();
}
LOG(LOG_LEVEL_ERROR, "Can't set process group ID of %d to %d [%s]",
pid, pgid, g_get_strerror());
}
return rv;
}
/*****************************************************************************/
/* does not work in win32 */
void
g_clearenv(void)
{
#if defined(HAVE_CLEARENV)
clearenv();
#elif defined(_WIN32)
#elif defined(BSD)
extern char **environ;
environ[0] = 0;
#else
extern char **environ;
environ = 0;
#endif
}
/*****************************************************************************/
/* does not work in win32 */
int
g_setenv(const char *name, const char *value, int rewrite)
{
#if defined(_WIN32)
return 0;
#else
return setenv(name, value, rewrite);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
char *
g_getenv(const char *name)
{
#if defined(_WIN32)
return 0;
#else
return getenv(name);
#endif
}
/*****************************************************************************/
int
g_exit(int exit_code)
{
exit(exit_code);
return 0;
}
/*****************************************************************************/
int
g_getpid(void)
{
#if defined(_WIN32)
return (int)GetCurrentProcessId();
#else
return (int)getpid();
#endif
}
/*****************************************************************************/
/* does not work in win32 */
int
g_sigterm(int pid)
{
#if defined(_WIN32)
return 0;
#else
return kill(pid, SIGTERM);
#endif
}
/*****************************************************************************/
/* does not work in win32 */
int
g_sighup(int pid)
{
#if defined(_WIN32)
return 0;
#else
return kill(pid, SIGHUP);
#endif
}
/*****************************************************************************/
/* returns 0 if ok */
/* the caller is responsible to free the buffs */
/* does not work in win32 */
int
g_getuser_info_by_name(const char *username, int *uid, int *gid,
char **shell, char **dir, char **gecos)
{
int rv = 1;
#if !defined(_WIN32)
if (username == NULL)
{
LOG(LOG_LEVEL_ERROR, "g_getuser_info_by_name() called for NULL user");
}
else
{
struct passwd *pwd_1 = getpwnam(username);
if (pwd_1 != 0)
{
rv = 0;
if (uid != 0)
{
*uid = pwd_1->pw_uid;
}
if (gid != 0)
{
*gid = pwd_1->pw_gid;
}
if (shell != 0)
{
*shell = g_strdup(pwd_1->pw_shell);
}
if (dir != 0)
{
*dir = g_strdup(pwd_1->pw_dir);
}
if (gecos != 0)
{
*gecos = g_strdup(pwd_1->pw_gecos);
}
}
}
#endif
return rv;
}
/*****************************************************************************/
/* returns 0 if ok */
/* the caller is responsible to free the buffs */
/* does not work in win32 */
int
g_getuser_info_by_uid(int uid, char **username, int *gid,
char **shell, char **dir, char **gecos)
{
#if defined(_WIN32)
return 1;
#else
struct passwd *pwd_1;
pwd_1 = getpwuid(uid);
if (pwd_1 != 0)
{
if (username != NULL)
{
*username = g_strdup(pwd_1->pw_name);
}
if (gid != 0)
{
*gid = pwd_1->pw_gid;
}
if (shell != 0)
{
*shell = g_strdup(pwd_1->pw_shell);
}
if (dir != 0)
{
*dir = g_strdup(pwd_1->pw_dir);
}
if (gecos != 0)
{
*gecos = g_strdup(pwd_1->pw_gecos);
}
return 0;
}
return 1;
#endif
}
/*****************************************************************************/
/* returns 0 if ok */
/* does not work in win32 */
int
g_getgroup_info(const char *groupname, int *gid)
{
#if defined(_WIN32)
return 1;
#else
struct group *g;
g = getgrnam(groupname);
if (g != 0)
{
if (gid != 0)
{
*gid = g->gr_gid;
}
return 0;
}
return 1;
#endif
}
/*****************************************************************************/
#ifdef HAVE_GETGROUPLIST
int
g_check_user_in_group(const char *username, int gid, int *ok)
{
int rv = 1;
struct passwd *pwd_1 = getpwnam(username);
if (pwd_1 != NULL)
{
// Get number of groups for user
//
// Some implementations of getgrouplist() (i.e. muslc) don't
// allow ngroups to be <1 on entry
int ngroups = 1;
GETGROUPS_T dummy;
getgrouplist(username, pwd_1->pw_gid, &dummy, &ngroups);
if (ngroups > 0) // Should always be true
{
GETGROUPS_T *grouplist;
grouplist = (GETGROUPS_T *)malloc(ngroups * sizeof(grouplist[0]));
if (grouplist != NULL)
{
// Now get the actual groups. The number of groups returned
// by this call is not necessarily the same as the number
// returned by the first call.
int allocgroups = ngroups;
getgrouplist(username, pwd_1->pw_gid, grouplist, &ngroups);
ngroups = MIN(ngroups, allocgroups);
rv = 0;
*ok = 0;
int i;
for (i = 0 ; i < ngroups; ++i)
{
if (grouplist[i] == (GETGROUPS_T)gid)
{
*ok = 1;
break;
}
}
free(grouplist);
}
}
}
return rv;
}
/*****************************************************************************/
#else // HAVE_GETGROUPLIST
int
g_check_user_in_group(const char *username, int gid, int *ok)
{
#if defined(_WIN32)
return 1;
#else
int i;
struct passwd *pwd_1 = getpwnam(username);
struct group *groups = getgrgid(gid);
if (pwd_1 == NULL || groups == NULL)
{
return 1;
}
if (pwd_1->pw_gid == gid)
{
*ok = 1;
}
else
{
*ok = 0;
i = 0;
while (0 != groups->gr_mem[i])
{
if (0 == g_strcmp(groups->gr_mem[i], username))
{
*ok = 1;
break;
}
i++;
}
}
return 0;
#endif
}
#endif // HAVE_GETGROUPLIST
/*****************************************************************************/
/* returns the time since the Epoch (00:00:00 UTC, January 1, 1970),
measured in seconds.
for windows, returns the number of seconds since the machine was
started. */
int
g_time1(void)
{
#if defined(_WIN32)
return GetTickCount() / 1000;
#else
return time(0);
#endif
}
/*****************************************************************************/
/* returns the number of milliseconds since the machine was
started. */
int
g_time2(void)
{
#if defined(_WIN32)
return (int)GetTickCount();
#else
struct tms tm;
clock_t num_ticks = 0;
g_memset(&tm, 0, sizeof(struct tms));
num_ticks = times(&tm);
return (int)(num_ticks * 10);
#endif
}
/*****************************************************************************/
/* returns time in milliseconds, uses gettimeofday
does not work in win32 */
int
g_time3(void)
{
#if defined(_WIN32)
return 0;
#else
struct timeval tp;
gettimeofday(&tp, 0);
return (tp.tv_sec * 1000) + (tp.tv_usec / 1000);
#endif
}
/******************************************************************************/
/******************************************************************************/
struct bmp_magic
{
char magic[2];
};
struct bmp_hdr
{
unsigned int size; /* file size in bytes */
unsigned short reserved1;
unsigned short reserved2;
unsigned int offset; /* offset to image data, in bytes */
};
struct dib_hdr
{
unsigned int hdr_size;
int width;
int height;
unsigned short nplanes;
unsigned short bpp;
unsigned int compress_type;
unsigned int image_size;
int hres;
int vres;
unsigned int ncolors;
unsigned int nimpcolors;
};
/******************************************************************************/
int
g_save_to_bmp(const char *filename, char *data, int stride_bytes,
int width, int height, int depth, int bits_per_pixel)
{
struct bmp_magic bm;
struct bmp_hdr bh;
struct dib_hdr dh;
int bytes;
int fd;
int index;
int i1;
int pixel;
int extra;
int file_stride_bytes;
char *line;
char *line_ptr;
if ((depth == 24) && (bits_per_pixel == 32))
{
}
else if ((depth == 32) && (bits_per_pixel == 32))
{
}
else
{
LOG(LOG_LEVEL_ERROR,
"g_save_to_bpp: unimplemented for: depth %d, bits_per_pixel %d",
depth, bits_per_pixel);
return 1;
}
bm.magic[0] = 'B';
bm.magic[1] = 'M';
/* scan lines are 32 bit aligned, bottom 2 bits must be zero */
file_stride_bytes = width * ((depth + 7) / 8);
extra = file_stride_bytes;
extra = extra & 3;
extra = (4 - extra) & 3;
file_stride_bytes += extra;
bh.size = sizeof(bm) + sizeof(bh) + sizeof(dh) + height * file_stride_bytes;
bh.reserved1 = 0;
bh.reserved2 = 0;
bh.offset = sizeof(bm) + sizeof(bh) + sizeof(dh);
dh.hdr_size = sizeof(dh);
dh.width = width;
dh.height = height;
dh.nplanes = 1;
dh.bpp = depth;
dh.compress_type = 0;
dh.image_size = height * file_stride_bytes;
dh.hres = 0xb13;
dh.vres = 0xb13;
dh.ncolors = 0;
dh.nimpcolors = 0;
fd = open(filename, O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
if (fd == -1)
{
LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: open error");
return 1;
}
bytes = write(fd, &bm, sizeof(bm));
if (bytes != sizeof(bm))
{
LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error");
}
bytes = write(fd, &bh, sizeof(bh));
if (bytes != sizeof(bh))
{
LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error");
}
bytes = write(fd, &dh, sizeof(dh));
if (bytes != sizeof(dh))
{
LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error");
}
data += stride_bytes * height;
data -= stride_bytes;
if ((depth == 24) && (bits_per_pixel == 32))
{
line = (char *) malloc(file_stride_bytes);
memset(line, 0, file_stride_bytes);
for (index = 0; index < height; index++)
{
line_ptr = line;
for (i1 = 0; i1 < width; i1++)
{
pixel = ((int *)data)[i1];
*(line_ptr++) = (pixel >> 0) & 0xff;
*(line_ptr++) = (pixel >> 8) & 0xff;
*(line_ptr++) = (pixel >> 16) & 0xff;
}
bytes = write(fd, line, file_stride_bytes);
if (bytes != file_stride_bytes)
{
LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error");
}
data -= stride_bytes;
}
free(line);
}
else if (depth == bits_per_pixel)
{
for (index = 0; index < height; index++)
{
bytes = write(fd, data, width * (bits_per_pixel / 8));
if (bytes != width * (bits_per_pixel / 8))
{
LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error");
}
data -= stride_bytes;
}
}
else
{
LOG(LOG_LEVEL_ERROR,
"g_save_to_bpp: unimplemented for: depth %d, bits_per_pixel %d",
depth, bits_per_pixel);
}
close(fd);
return 0;
}
/*****************************************************************************/
/* returns pointer or nil on error */
void *
g_shmat(int shmid)
{
#if defined(_WIN32)
return 0;
#else
return shmat(shmid, 0, 0);
#endif
}
/*****************************************************************************/
/* returns -1 on error 0 on success */
int
g_shmdt(const void *shmaddr)
{
#if defined(_WIN32)
return -1;
#else
return shmdt(shmaddr);
#endif
}
/*****************************************************************************/
/* returns -1 on error 0 on success */
int
g_gethostname(char *name, int len)
{
return gethostname(name, len);
}
static unsigned char g_reverse_byte[0x100] =
{
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
};
/*****************************************************************************/
/* mirror each byte while copying */
int
g_mirror_memcpy(void *dst, const void *src, int len)
{
tui8 *dst8;
const tui8 *src8;
dst8 = (tui8 *) dst;
src8 = (const tui8 *) src;
while (len > 0)
{
*dst8 = g_reverse_byte[*src8];
dst8++;
src8++;
len--;
}
return 0;
}
/*****************************************************************************/
int
g_tcp4_socket(void)
{
#if defined(XRDP_ENABLE_IPV6ONLY)
return -1;
#else
int rv;
int option_value;
socklen_t option_len;
rv = socket(AF_INET, SOCK_STREAM, 0);
if (rv < 0)
{
return -1;
}
option_len = sizeof(option_value);
if (getsockopt(rv, SOL_SOCKET, SO_REUSEADDR,
(char *) &option_value, &option_len) == 0)
{
if (option_value == 0)
{
option_value = 1;
option_len = sizeof(option_value);
if (setsockopt(rv, SOL_SOCKET, SO_REUSEADDR,
(char *) &option_value, option_len) < 0)
{
}
}
}
return rv;
#endif
}
/*****************************************************************************/
int
g_tcp4_bind_address(int sck, const char *port, const char *address)
{
#if defined(XRDP_ENABLE_IPV6ONLY)
return -1;
#else
struct sockaddr_in s;
memset(&s, 0, sizeof(s));
s.sin_family = AF_INET;
s.sin_addr.s_addr = htonl(INADDR_ANY);
s.sin_port = htons((uint16_t) atoi(port));
if (inet_aton(address, &s.sin_addr) < 0)
{
return -1; /* bad address */
}
if (bind(sck, (struct sockaddr *) &s, sizeof(s)) < 0)
{
return -1;
}
return 0;
#endif
}
/*****************************************************************************/
int
g_tcp6_socket(void)
{
#if defined(XRDP_ENABLE_IPV6)
int rv;
int option_value;
socklen_t option_len;
rv = socket(AF_INET6, SOCK_STREAM, 0);
if (rv < 0)
{
return -1;
}
option_len = sizeof(option_value);
if (getsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY,
(char *) &option_value, &option_len) == 0)
{
#if defined(XRDP_ENABLE_IPV6ONLY)
if (option_value == 0)
{
option_value = 1;
#else
if (option_value != 0)
{
option_value = 0;
#endif
option_len = sizeof(option_value);
if (setsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY,
(char *) &option_value, option_len) < 0)
{
}
}
}
option_len = sizeof(option_value);
if (getsockopt(rv, SOL_SOCKET, SO_REUSEADDR,
(char *) &option_value, &option_len) == 0)
{
if (option_value == 0)
{
option_value = 1;
option_len = sizeof(option_value);
if (setsockopt(rv, SOL_SOCKET, SO_REUSEADDR,
(char *) &option_value, option_len) < 0)
{
}
}
}
return rv;
#else
return -1;
#endif
}
/*****************************************************************************/
int
g_tcp6_bind_address(int sck, const char *port, const char *address)
{
#if defined(XRDP_ENABLE_IPV6)
int rv;
int error;
struct addrinfo hints;
struct addrinfo *list;
struct addrinfo *i;
rv = -1;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_flags = 0;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
error = getaddrinfo(address, port, &hints, &list);
if (error == 0)
{
i = list;
while ((i != NULL) && (rv < 0))
{
rv = bind(sck, i->ai_addr, i->ai_addrlen);
i = i->ai_next;
}
freeaddrinfo(list);
}
else
{
return -1;
}
return rv;
#else
return -1;
#endif
}
/*****************************************************************************/
/* returns error, zero is success, non zero is error */
/* only works in linux */
int
g_no_new_privs(void)
{
#if defined(HAVE_SYS_PRCTL_H) && defined(PR_SET_NO_NEW_PRIVS)
/*
* PR_SET_NO_NEW_PRIVS requires Linux kernel 3.5 and newer.
*/
return prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
#else
return 0;
#endif
}
/*****************************************************************************/
void
g_qsort(void *base, size_t nitems, size_t size,
int (*compar)(const void *, const void *))
{
qsort(base, nitems, size, compar);
}