/** * xrdp: A Remote Desktop Protocol server. * * Copyright (C) Jay Sorg 2004-2014 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * generic operating system calls * * put all the os / arch define in here you want */ /* To test for Windows (64 bit or 32 bit) use _WIN32 and _WIN64 in addition for 64 bit windows. _WIN32 is defined for both. To test for Linux use __linux__. To test for BSD use BSD */ #if defined(HAVE_CONFIG_H) #include "config_ac.h" #endif #if defined(_WIN32) #include #include #else /* fix for solaris 10 with gcc 3.3.2 problem */ #if defined(sun) || defined(__sun) #define ctid_t id_t #endif #include #include #include #include #include #if defined(XRDP_ENABLE_VSOCK) #if defined(__linux__) #include #elif defined(__FreeBSD__) // sockaddr_hvs is not available outside the kernel for whatever reason struct sockaddr_hvs { unsigned char sa_len; sa_family_t sa_family; unsigned int hvs_port; unsigned char hvs_zero[sizeof(struct sockaddr) - sizeof(sa_family_t) - sizeof(unsigned char) - sizeof(unsigned int)]; }; #endif #endif #include #include #include #include #include #include #include #include #include #if defined(HAVE_SYS_PRCTL_H) #include #endif #include #include #include #include #include #include #include #include #include #endif #ifdef HAVE_SETUSERCONTEXT #include #endif #include #include #include #include #include /* this is so we can use #ifdef BSD later */ /* This is the recommended way of detecting BSD in the FreeBSD Porter's Handbook. */ #if (defined(__unix__) || defined(unix)) && !defined(USG) #include #endif #include "os_calls.h" #include "limits.h" #include "string_calls.h" #include "log.h" #include "xrdp_constants.h" #if defined(__linux__) #include #endif /* sys/ucred.h needs to be included to use struct xucred * in FreeBSD and OS X. No need for other BSDs except GNU/kFreeBSD */ #if defined(__FreeBSD__) || defined(__APPLE__) || defined(__FreeBSD_kernel__) #include #endif /* for solaris */ #if !defined(PF_LOCAL) #define PF_LOCAL AF_UNIX #endif #if !defined(INADDR_NONE) #define INADDR_NONE ((unsigned long)-1) #endif /** * Type big enough to hold socket address information for any connecting type */ union sock_info { struct sockaddr sa; struct sockaddr_in sa_in; #if defined(XRDP_ENABLE_IPV6) struct sockaddr_in6 sa_in6; #endif struct sockaddr_un sa_un; #if defined(XRDP_ENABLE_VSOCK) #if defined(__linux__) struct sockaddr_vm sa_vm; #elif defined(__FreeBSD__) struct sockaddr_hvs sa_hvs; #endif #endif }; /*****************************************************************************/ int g_rm_temp_dir(void) { return 0; } /*****************************************************************************/ void g_init(const char *app_name) { #if defined(_WIN32) WSADATA wsadata; WSAStartup(2, &wsadata); #endif } /*****************************************************************************/ void g_deinit(void) { #if defined(_WIN32) WSACleanup(); #endif fflush(stdout); fflush(stderr); g_rm_temp_dir(); } /*****************************************************************************/ /* output text to stdout, try to use g_write / g_writeln instead to avoid linux / windows EOL problems */ void g_printf(const char *format, ...) { va_list ap; va_start(ap, format); vfprintf(stdout, format, ap); va_end(ap); } /*****************************************************************************/ void g_sprintf(char *dest, const char *format, ...) { va_list ap; va_start(ap, format); vsprintf(dest, format, ap); va_end(ap); } /*****************************************************************************/ int g_snprintf(char *dest, int len, const char *format, ...) { int err; va_list ap; va_start(ap, format); err = vsnprintf(dest, len, format, ap); va_end(ap); return err; } /*****************************************************************************/ void g_writeln(const char *format, ...) { va_list ap; va_start(ap, format); vfprintf(stdout, format, ap); va_end(ap); #if defined(_WIN32) g_printf("\r\n"); #else g_printf("\n"); #endif } /*****************************************************************************/ void g_write(const char *format, ...) { va_list ap; va_start(ap, format); vfprintf(stdout, format, ap); va_end(ap); } /*****************************************************************************/ /* print a hex dump to stdout*/ void g_hexdump(const char *p, int len) { unsigned char *line; int i; int thisline; int offset; line = (unsigned char *)p; offset = 0; while (offset < len) { g_printf("%04x ", offset); thisline = len - offset; if (thisline > 16) { thisline = 16; } for (i = 0; i < thisline; i++) { g_printf("%02x ", line[i]); } for (; i < 16; i++) { g_printf(" "); } for (i = 0; i < thisline; i++) { g_printf("%c", (line[i] >= 0x20 && line[i] < 0x7f) ? line[i] : '.'); } g_writeln("%s", ""); offset += thisline; line += thisline; } } /*****************************************************************************/ int g_getchar(void) { return getchar(); } /*****************************************************************************/ /*Returns 0 on success*/ int g_tcp_set_no_delay(int sck) { int ret = 1; /* error */ int option_value; socklen_t option_len; option_len = sizeof(option_value); /* SOL_TCP IPPROTO_TCP */ if (getsockopt(sck, IPPROTO_TCP, TCP_NODELAY, (char *)&option_value, &option_len) == 0) { if (option_value == 0) { option_value = 1; option_len = sizeof(option_value); if (setsockopt(sck, IPPROTO_TCP, TCP_NODELAY, (char *)&option_value, option_len) == 0) { ret = 0; /* success */ } else { LOG(LOG_LEVEL_ERROR, "Error setting tcp_nodelay"); } } } else { LOG(LOG_LEVEL_ERROR, "Error getting tcp_nodelay"); } return ret; } /*****************************************************************************/ /*Returns 0 on success*/ int g_tcp_set_keepalive(int sck) { int ret = 1; /* error */ int option_value; socklen_t option_len; option_len = sizeof(option_value); /* SOL_TCP IPPROTO_TCP */ if (getsockopt(sck, SOL_SOCKET, SO_KEEPALIVE, (char *)&option_value, &option_len) == 0) { if (option_value == 0) { option_value = 1; option_len = sizeof(option_value); if (setsockopt(sck, SOL_SOCKET, SO_KEEPALIVE, (char *)&option_value, option_len) == 0) { ret = 0; /* success */ } else { LOG(LOG_LEVEL_ERROR, "Error setting tcp_keepalive"); } } } else { LOG(LOG_LEVEL_ERROR, "Error getting tcp_keepalive"); } return ret; } /*****************************************************************************/ /* returns a newly created socket or -1 on error */ /* in win32 a socket is an unsigned int, in linux, it's an int */ int g_tcp_socket(void) { int rv; int option_value; socklen_t option_len; #if defined(XRDP_ENABLE_IPV6) rv = (int)socket(AF_INET6, SOCK_STREAM, 0); if (rv < 0) { switch (errno) { case EPROTONOSUPPORT: /* if IPv6 is supported, but don't have an IPv6 address */ case EAFNOSUPPORT: /* if IPv6 not supported, retry IPv4 */ LOG(LOG_LEVEL_INFO, "IPv6 not supported, falling back to IPv4"); rv = (int)socket(AF_INET, SOCK_STREAM, 0); break; default: LOG(LOG_LEVEL_ERROR, "g_tcp_socket: %s", g_get_strerror()); return -1; } } #else rv = (int)socket(AF_INET, SOCK_STREAM, 0); #endif if (rv < 0) { LOG(LOG_LEVEL_ERROR, "g_tcp_socket: %s", g_get_strerror()); return -1; } #if defined(XRDP_ENABLE_IPV6) option_len = sizeof(option_value); if (getsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&option_value, &option_len) == 0) { if (option_value != 0) { #if defined(XRDP_ENABLE_IPV6ONLY) option_value = 1; #else option_value = 0; #endif option_len = sizeof(option_value); if (setsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&option_value, option_len) < 0) { LOG(LOG_LEVEL_ERROR, "g_tcp_socket: setsockopt() failed"); } } } #endif option_len = sizeof(option_value); if (getsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *)&option_value, &option_len) == 0) { if (option_value == 0) { option_value = 1; option_len = sizeof(option_value); if (setsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *)&option_value, option_len) < 0) { LOG(LOG_LEVEL_ERROR, "g_tcp_socket: setsockopt() failed"); } } } return rv; } /*****************************************************************************/ /* returns error */ int g_sck_set_send_buffer_bytes(int sck, int bytes) { int option_value; socklen_t option_len; option_value = bytes; option_len = sizeof(option_value); if (setsockopt(sck, SOL_SOCKET, SO_SNDBUF, (char *)&option_value, option_len) != 0) { return 1; } return 0; } /*****************************************************************************/ /* returns error */ int g_sck_get_send_buffer_bytes(int sck, int *bytes) { int option_value; socklen_t option_len; option_value = 0; option_len = sizeof(option_value); if (getsockopt(sck, SOL_SOCKET, SO_SNDBUF, (char *)&option_value, &option_len) != 0) { return 1; } *bytes = option_value; return 0; } /*****************************************************************************/ /* returns error */ int g_sck_set_recv_buffer_bytes(int sck, int bytes) { int option_value; socklen_t option_len; option_value = bytes; option_len = sizeof(option_value); if (setsockopt(sck, SOL_SOCKET, SO_RCVBUF, (char *)&option_value, option_len) != 0) { return 1; } return 0; } /*****************************************************************************/ /* returns error */ int g_sck_get_recv_buffer_bytes(int sck, int *bytes) { int option_value; socklen_t option_len; option_value = 0; option_len = sizeof(option_value); if (getsockopt(sck, SOL_SOCKET, SO_RCVBUF, (char *)&option_value, &option_len) != 0) { return 1; } *bytes = option_value; return 0; } /*****************************************************************************/ int g_sck_local_socket(void) { #if defined(_WIN32) return -1; #else return socket(PF_LOCAL, SOCK_STREAM, 0); #endif } /*****************************************************************************/ int g_sck_local_socketpair(int sck[2]) { #if defined(_WIN32) return -1; #else return socketpair(PF_LOCAL, SOCK_STREAM, 0, sck); #endif } /*****************************************************************************/ int g_sck_vsock_socket(void) { #if defined(XRDP_ENABLE_VSOCK) #if defined(__linux__) LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: returning Linux vsock socket"); return socket(PF_VSOCK, SOCK_STREAM, 0); #elif defined(__FreeBSD__) LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: returning FreeBSD Hyper-V socket"); return socket(AF_HYPERV, SOCK_STREAM, 0); // docs say to use AF_HYPERV here - PF_HYPERV does not exist #else LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: vsock enabled at compile time, but platform is unsupported"); return -1; #endif #else LOG(LOG_LEVEL_DEBUG, "g_sck_vsock_socket: vsock disabled at compile time"); return -1; #endif } /*****************************************************************************/ /* returns error */ int g_sck_get_peer_cred(int sck, int *pid, int *uid, int *gid) { #if defined(SO_PEERCRED) socklen_t ucred_length; struct myucred { pid_t pid; uid_t uid; gid_t gid; } credentials; ucred_length = sizeof(credentials); if (getsockopt(sck, SOL_SOCKET, SO_PEERCRED, &credentials, &ucred_length)) { return 1; } if (pid != 0) { *pid = credentials.pid; } if (uid != 0) { *uid = credentials.uid; } if (gid != 0) { *gid = credentials.gid; } return 0; #elif defined(LOCAL_PEERCRED) /* FreeBSD, OS X reach here*/ struct xucred xucred; unsigned int xucred_length; xucred_length = sizeof(xucred); if (getsockopt(sck, SOL_LOCAL, LOCAL_PEERCRED, &xucred, &xucred_length)) { return 1; } if (pid != 0) { *pid = 0; /* can't get pid in FreeBSD, OS X */ } if (uid != 0) { *uid = xucred.cr_uid; } if (gid != 0) { *gid = xucred.cr_gid; } return 0; #else return 1; #endif } /*****************************************************************************/ static const char * get_peer_description(const union sock_info *sock_info, char *desc, unsigned int bytes) { if (bytes > 0) { int family = sock_info->sa.sa_family; switch (family) { case AF_INET: { char ip[INET_ADDRSTRLEN]; const struct sockaddr_in *sa_in = &sock_info->sa_in; if (inet_ntop(family, &sa_in->sin_addr, ip, sizeof(ip)) != NULL) { g_snprintf(desc, bytes, "%s:%d", ip, ntohs(sa_in->sin_port)); } else { g_snprintf(desc, bytes, ":%d", ntohs(sa_in->sin_port)); } break; } #if defined(XRDP_ENABLE_IPV6) case AF_INET6: { char ip[INET6_ADDRSTRLEN]; const struct sockaddr_in6 *sa_in6 = &sock_info->sa_in6; if (inet_ntop(family, &sa_in6->sin6_addr, ip, sizeof(ip)) != NULL) { g_snprintf(desc, bytes, "[%s]:%d", ip, ntohs(sa_in6->sin6_port)); } else { g_snprintf(desc, bytes, "[]:%d", ntohs(sa_in6->sin6_port)); } break; } #endif case AF_UNIX: { g_snprintf(desc, bytes, "AF_UNIX"); break; } #if defined(XRDP_ENABLE_VSOCK) #if defined(__linux__) case AF_VSOCK: { const struct sockaddr_vm *sa_vm = &sock_info->sa_vm; g_snprintf(desc, bytes, "AF_VSOCK:cid=%u/port=%u", sa_vm->svm_cid, sa_vm->svm_port); break; } #elif defined(__FreeBSD__) case AF_HYPERV: { const struct sockaddr_hvs *sa_hvs = &sock_info->sa_hvs; g_snprintf(desc, bytes, "AF_HYPERV:port=%u", sa_hvs->hvs_port); break; } #endif #endif default: g_snprintf(desc, bytes, "Unknown address family %d", family); break; } } return desc; } /*****************************************************************************/ void g_sck_close(int sck) { #if defined(_WIN32) closesocket(sck); #else char sockname[MAX_PEER_DESCSTRLEN]; union sock_info sock_info; socklen_t sock_len = sizeof(sock_info); memset(&sock_info, 0, sizeof(sock_info)); if (getsockname(sck, &sock_info.sa, &sock_len) == 0) { get_peer_description(&sock_info, sockname, sizeof(sockname)); } else { LOG(LOG_LEVEL_WARNING, "getsockname() failed on socket %d: %s", sck, g_get_strerror()); if (errno == EBADF || errno == ENOTSOCK) { return; } g_snprintf(sockname, sizeof(sockname), "unknown"); } if (close(sck) == 0) { LOG(LOG_LEVEL_DEBUG, "Closed socket %d (%s)", sck, sockname); } else { LOG(LOG_LEVEL_WARNING, "Cannot close socket %d (%s): %s", sck, sockname, g_get_strerror()); } #endif } #if defined(XRDP_ENABLE_IPV6) /*****************************************************************************/ /* Helper function for g_tcp_connect. */ static int connect_loopback(int sck, const char *port) { struct sockaddr_in6 sa; struct sockaddr_in s; int res; // First IPv6 g_memset(&sa, 0, sizeof(sa)); sa.sin6_family = AF_INET6; sa.sin6_addr = in6addr_loopback; // IPv6 ::1 sa.sin6_port = htons((tui16)atoi(port)); res = connect(sck, (struct sockaddr *)&sa, sizeof(sa)); if (res == -1 && errno == EINPROGRESS) { return -1; } if (res == 0 || (res == -1 && errno == EISCONN)) { return 0; } // else IPv4 g_memset(&s, 0, sizeof(s)); s.sin_family = AF_INET; s.sin_addr.s_addr = htonl(INADDR_LOOPBACK); // IPv4 127.0.0.1 s.sin_port = htons((tui16)atoi(port)); res = connect(sck, (struct sockaddr *)&s, sizeof(s)); if (res == -1 && errno == EINPROGRESS) { return -1; } if (res == 0 || (res == -1 && errno == EISCONN)) { return 0; } // else IPv6 with IPv4 address g_memset(&sa, 0, sizeof(sa)); sa.sin6_family = AF_INET6; inet_pton(AF_INET6, "::FFFF:127.0.0.1", &sa.sin6_addr); sa.sin6_port = htons((tui16)atoi(port)); res = connect(sck, (struct sockaddr *)&sa, sizeof(sa)); if (res == -1 && errno == EINPROGRESS) { return -1; } if (res == 0 || (res == -1 && errno == EISCONN)) { return 0; } return -1; } #endif /*****************************************************************************/ /* returns error, zero is good */ /* The connection might get to be in progress, if so -1 is returned. */ /* The caller needs to call again to check if succeed. */ #if defined(XRDP_ENABLE_IPV6) int g_tcp_connect(int sck, const char *address, const char *port) { int res = 0; struct addrinfo p; struct addrinfo *h = (struct addrinfo *)NULL; struct addrinfo *rp = (struct addrinfo *)NULL; g_memset(&p, 0, sizeof(struct addrinfo)); p.ai_socktype = SOCK_STREAM; p.ai_protocol = IPPROTO_TCP; p.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED; p.ai_family = AF_INET6; if (g_strcmp(address, "127.0.0.1") == 0) { return connect_loopback(sck, port); } else { res = getaddrinfo(address, port, &p, &h); } if (res != 0) { LOG(LOG_LEVEL_ERROR, "g_tcp_connect(%d, %s, %s): getaddrinfo() failed: %s", sck, address, port, gai_strerror(res)); } if (res > -1) { if (h != NULL) { for (rp = h; rp != NULL; rp = rp->ai_next) { res = connect(sck, (struct sockaddr *)(rp->ai_addr), rp->ai_addrlen); if (res == -1 && errno == EINPROGRESS) { break; /* Return -1 */ } if (res == 0 || (res == -1 && errno == EISCONN)) { res = 0; break; /* Success */ } } freeaddrinfo(h); } } return res; } #else int g_tcp_connect(int sck, const char *address, const char *port) { struct sockaddr_in s; struct hostent *h; int res; g_memset(&s, 0, sizeof(struct sockaddr_in)); s.sin_family = AF_INET; s.sin_port = htons((tui16)atoi(port)); s.sin_addr.s_addr = inet_addr(address); if (s.sin_addr.s_addr == INADDR_NONE) { h = gethostbyname(address); if (h != 0) { if (h->h_name != 0) { if (h->h_addr_list != 0) { if ((*(h->h_addr_list)) != 0) { s.sin_addr.s_addr = *((int *)(*(h->h_addr_list))); } } } } } res = connect(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_in)); /* Mac OSX connect() returns -1 for already established connections */ if (res == -1 && errno == EISCONN) { res = 0; } return res; } #endif /*****************************************************************************/ /* returns error, zero is good */ int g_sck_local_connect(int sck, const char *port) { #if defined(_WIN32) return -1; #else struct sockaddr_un s; memset(&s, 0, sizeof(struct sockaddr_un)); s.sun_family = AF_UNIX; strncpy(s.sun_path, port, sizeof(s.sun_path)); s.sun_path[sizeof(s.sun_path) - 1] = 0; return connect(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_un)); #endif } /*****************************************************************************/ int g_sck_set_non_blocking(int sck) { unsigned long i; #if defined(_WIN32) i = 1; ioctlsocket(sck, FIONBIO, &i); #else i = fcntl(sck, F_GETFL); i = i | O_NONBLOCK; if (fcntl(sck, F_SETFL, i) < 0) { LOG(LOG_LEVEL_ERROR, "g_sck_set_non_blocking: fcntl() failed"); } #endif return 0; } #if defined(XRDP_ENABLE_IPV6) /*****************************************************************************/ /* returns error, zero is good */ int g_tcp_bind(int sck, const char *port) { struct sockaddr_in6 sa; struct sockaddr_in s; int errno6; // First IPv6 g_memset(&sa, 0, sizeof(sa)); sa.sin6_family = AF_INET6; sa.sin6_addr = in6addr_any; // IPv6 :: sa.sin6_port = htons((tui16)atoi(port)); if (bind(sck, (struct sockaddr *)&sa, sizeof(sa)) == 0) { return 0; } errno6 = errno; // else IPv4 g_memset(&s, 0, sizeof(s)); s.sin_family = AF_INET; s.sin_addr.s_addr = htonl(INADDR_ANY); // IPv4 0.0.0.0 s.sin_port = htons((tui16)atoi(port)); if (bind(sck, (struct sockaddr *)&s, sizeof(s)) == 0) { return 0; } LOG(LOG_LEVEL_ERROR, "g_tcp_bind(%d, %s) failed " "bind IPv6 (errno=%d) and IPv4 (errno=%d).", sck, port, errno6, errno); return -1; } #else int g_tcp_bind(int sck, const char *port) { struct sockaddr_in s; memset(&s, 0, sizeof(struct sockaddr_in)); s.sin_family = AF_INET; s.sin_port = htons((tui16)atoi(port)); s.sin_addr.s_addr = INADDR_ANY; return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_in)); } #endif /*****************************************************************************/ int g_sck_local_bind(int sck, const char *port) { #if defined(_WIN32) return -1; #else struct sockaddr_un s; memset(&s, 0, sizeof(struct sockaddr_un)); s.sun_family = AF_UNIX; strncpy(s.sun_path, port, sizeof(s.sun_path)); s.sun_path[sizeof(s.sun_path) - 1] = 0; return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_un)); #endif } /*****************************************************************************/ int g_sck_vsock_bind(int sck, const char *port) { #if defined(XRDP_ENABLE_VSOCK) #if defined(__linux__) struct sockaddr_vm s; g_memset(&s, 0, sizeof(struct sockaddr_vm)); s.svm_family = AF_VSOCK; s.svm_port = atoi(port); s.svm_cid = VMADDR_CID_ANY; return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_vm)); #elif defined(__FreeBSD__) struct sockaddr_hvs s; g_memset(&s, 0, sizeof(struct sockaddr_hvs)); s.sa_family = AF_HYPERV; s.hvs_port = atoi(port); return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_hvs)); #else return -1; #endif #else return -1; #endif } /*****************************************************************************/ int g_sck_vsock_bind_address(int sck, const char *port, const char *address) { #if defined(XRDP_ENABLE_VSOCK) #if defined(__linux__) struct sockaddr_vm s; g_memset(&s, 0, sizeof(struct sockaddr_vm)); s.svm_family = AF_VSOCK; s.svm_port = atoi(port); s.svm_cid = atoi(address); return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_vm)); #elif defined(__FreeBSD__) struct sockaddr_hvs s; g_memset(&s, 0, sizeof(struct sockaddr_hvs)); s.sa_family = AF_HYPERV; s.hvs_port = atoi(port); // channel/address currently unsupported in FreeBSD 13. return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_hvs)); #else return -1; #endif #else return -1; #endif } #if defined(XRDP_ENABLE_IPV6) /*****************************************************************************/ /* Helper function for g_tcp_bind_address. */ static int bind_loopback(int sck, const char *port) { struct sockaddr_in6 sa; struct sockaddr_in s; int errno6; int errno4; // First IPv6 g_memset(&sa, 0, sizeof(sa)); sa.sin6_family = AF_INET6; sa.sin6_addr = in6addr_loopback; // IPv6 ::1 sa.sin6_port = htons((tui16)atoi(port)); if (bind(sck, (struct sockaddr *)&sa, sizeof(sa)) == 0) { return 0; } errno6 = errno; // else IPv4 g_memset(&s, 0, sizeof(s)); s.sin_family = AF_INET; s.sin_addr.s_addr = htonl(INADDR_LOOPBACK); // IPv4 127.0.0.1 s.sin_port = htons((tui16)atoi(port)); if (bind(sck, (struct sockaddr *)&s, sizeof(s)) == 0) { return 0; } errno4 = errno; // else IPv6 with IPv4 address g_memset(&sa, 0, sizeof(sa)); sa.sin6_family = AF_INET6; inet_pton(AF_INET6, "::FFFF:127.0.0.1", &sa.sin6_addr); sa.sin6_port = htons((tui16)atoi(port)); if (bind(sck, (struct sockaddr *)&sa, sizeof(sa)) == 0) { return 0; } LOG(LOG_LEVEL_ERROR, "bind_loopback(%d, %s) failed; " "IPv6 ::1 (errno=%d), IPv4 127.0.0.1 (errno=%d) and IPv6 ::FFFF:127.0.0.1 (errno=%d).", sck, port, errno6, errno4, errno); return -1; } /*****************************************************************************/ /* Helper function for g_tcp_bind_address. */ /* Returns error, zero is good. */ static int getaddrinfo_bind(int sck, const char *port, const char *address) { int res; int error; struct addrinfo hints; struct addrinfo *list; struct addrinfo *i; res = -1; g_memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_flags = 0; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; error = getaddrinfo(address, port, &hints, &list); if (error == 0) { i = list; while ((i != 0) && (res < 0)) { res = bind(sck, i->ai_addr, i->ai_addrlen); i = i->ai_next; } freeaddrinfo(list); } else { LOG(LOG_LEVEL_ERROR, "getaddrinfo error: %s", gai_strerror(error)); return -1; } return res; } /*****************************************************************************/ /* Binds a socket to a port. If no specified address the port will be bind */ /* to 'any', i.e. available on all network. */ /* For bind to local host, see valid address strings below. */ /* Returns error, zero is good. */ int g_tcp_bind_address(int sck, const char *port, const char *address) { int res; if ((address == 0) || (address[0] == 0) || (g_strcmp(address, "0.0.0.0") == 0) || (g_strcmp(address, "::") == 0)) { return g_tcp_bind(sck, port); } if ((g_strcmp(address, "127.0.0.1") == 0) || (g_strcmp(address, "::1") == 0) || (g_strcmp(address, "localhost") == 0)) { return bind_loopback(sck, port); } // Let getaddrinfo translate the address string... // IPv4: ddd.ddd.ddd.ddd // IPv6: x:x:x:x:x:x:x:x%, or x::x:x:x:x% res = getaddrinfo_bind(sck, port, address); if (res != 0) { // If fail and it is an IPv4 address, try with the mapped address struct in_addr a; if ((inet_aton(address, &a) == 1) && (strlen(address) <= 15)) { char sz[7 + 15 + 1]; sprintf(sz, "::FFFF:%s", address); res = getaddrinfo_bind(sck, port, sz); if (res == 0) { return 0; } } LOG(LOG_LEVEL_ERROR, "g_tcp_bind_address(%d, %s, %s) Failed!", sck, port, address); return -1; } return 0; } #else int g_tcp_bind_address(int sck, const char *port, const char *address) { struct sockaddr_in s; memset(&s, 0, sizeof(struct sockaddr_in)); s.sin_family = AF_INET; s.sin_port = htons((tui16)atoi(port)); s.sin_addr.s_addr = INADDR_ANY; if (inet_aton(address, &s.sin_addr) < 0) { return -1; /* bad address */ } return bind(sck, (struct sockaddr *)&s, sizeof(struct sockaddr_in)); } #endif /*****************************************************************************/ /* returns error, zero is good */ int g_sck_listen(int sck) { return listen(sck, 2); } /*****************************************************************************/ int g_sck_accept(int sck) { int ret; union sock_info sock_info; socklen_t sock_len = sizeof(sock_info); memset(&sock_info, 0, sock_len); ret = accept(sck, (struct sockaddr *)&sock_info, &sock_len); if (ret > 0) { char description[MAX_PEER_DESCSTRLEN]; get_peer_description(&sock_info, description, sizeof(description)); LOG(LOG_LEVEL_INFO, "Socket %d: connection accepted from %s", ret, description); } return ret; } /*****************************************************************************/ const char * g_sck_get_peer_ip_address(int sck, char *ip, unsigned int bytes, unsigned short *port) { if (bytes > 0) { int ok = 0; union sock_info sock_info; socklen_t sock_len = sizeof(sock_info); memset(&sock_info, 0, sock_len); if (getpeername(sck, (struct sockaddr *)&sock_info, &sock_len) == 0) { int family = sock_info.sa.sa_family; switch (family) { case AF_INET: { struct sockaddr_in *sa_in = &sock_info.sa_in; if (inet_ntop(family, &sa_in->sin_addr, ip, bytes) != NULL) { ok = 1; if (port != NULL) { *port = ntohs(sa_in->sin_port); } } break; } #if defined(XRDP_ENABLE_IPV6) case AF_INET6: { struct sockaddr_in6 *sa_in6 = &sock_info.sa_in6; if (inet_ntop(family, &sa_in6->sin6_addr, ip, bytes) != NULL) { ok = 1; if (port != NULL) { *port = ntohs(sa_in6->sin6_port); } } break; } #endif default: break; } } if (!ok) { ip[0] = '\0'; } } return ip; } /*****************************************************************************/ const char * g_sck_get_peer_description(int sck, char *desc, unsigned int bytes) { union sock_info sock_info; socklen_t sock_len = sizeof(sock_info); memset(&sock_info, 0, sock_len); if (getpeername(sck, (struct sockaddr *)&sock_info, &sock_len) == 0) { get_peer_description(&sock_info, desc, bytes); } return desc; } /*****************************************************************************/ void g_sleep(int msecs) { #if defined(_WIN32) Sleep(msecs); #else usleep(msecs * 1000); #endif } /*****************************************************************************/ int g_pipe(int fd[2]) { return pipe(fd); } /*****************************************************************************/ int g_sck_last_error_would_block(int sck) { #if defined(_WIN32) return WSAGetLastError() == WSAEWOULDBLOCK; #else return (errno == EWOULDBLOCK) || (errno == EAGAIN) || (errno == EINPROGRESS); #endif } /*****************************************************************************/ int g_sck_recv(int sck, void *ptr, unsigned int len, int flags) { #if defined(_WIN32) return recv(sck, (char *)ptr, len, flags); #else return recv(sck, ptr, len, flags); #endif } /*****************************************************************************/ int g_sck_send(int sck, const void *ptr, unsigned int len, int flags) { #if defined(_WIN32) return send(sck, (const char *)ptr, len, flags); #else return send(sck, ptr, len, flags); #endif } /*****************************************************************************/ int g_sck_recv_fd_set(int sck, void *ptr, unsigned int len, int fds[], unsigned int maxfd, unsigned int *fdcount) { int rv = -1; #if !defined(_WIN32) // The POSIX API gives us no way to see how much ancillary data is // present for recvmsg() - just use a big buffer. // // Use a union, so control_un.control is properly aligned. union { struct cmsghdr cm; unsigned char control[8192]; } control_un; struct msghdr msg = {0}; *fdcount = 0; /* Set up descriptor for vanilla data */ struct iovec iov[1] = { {ptr, len} }; msg.msg_iov = &iov[0]; msg.msg_iovlen = 1; /* Add in the ancillary data buffer */ msg.msg_control = control_un.control; msg.msg_controllen = sizeof(control_un.control); if ((rv = recvmsg(sck, &msg, 0)) > 0) { struct cmsghdr *cmsg; if ((msg.msg_flags & MSG_CTRUNC) != 0) { LOG(LOG_LEVEL_WARNING, "Ancillary data on recvmsg() was truncated"); } // Iterate over the cmsghdr structures in the ancillary data for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { const unsigned char *data = CMSG_DATA(cmsg); unsigned int data_len = cmsg->cmsg_len - CMSG_LEN(0); // Check the data length doesn't point past the end of // control_un.control (see below). This shouldn't happen, // but is conceivable if the ancillary data is truncated // and the OS doesn't handle that properly. // // <-- (sizeof(control_un.control) --> // +------------------------------------+ // | | // +------------------------------------+ // ^ ^ // | | <- data_len -> // | | // control_un.control data unsigned int max_data_len = sizeof(control_un.control) - (data - control_un.control); if (len > max_data_len) { len = max_data_len; } // Process all the file descriptors in the structure while (data_len >= sizeof(int)) { int fd; memcpy(&fd, data, sizeof(int)); data += sizeof(int); data_len -= sizeof(int); if (*fdcount < maxfd) { fds[(*fdcount)++] = fd; } else { // No room in the user's buffer for this fd close(fd); } } } } } #endif /* !WIN32 */ return rv; } /*****************************************************************************/ int g_sck_send_fd_set(int sck, const void *ptr, unsigned int len, int fds[], unsigned int fdcount) { int rv = -1; #if !defined(_WIN32) struct msghdr msg = {0}; /* Set up descriptor for vanilla data */ struct iovec iov[1] = { {(void *)ptr, len} }; msg.msg_iov = &iov[0]; msg.msg_iovlen = 1; if (fdcount > 0) { unsigned int fdsize = sizeof(fds[0]) * fdcount; /* Payload size */ /* Allocate ancillary data structure */ msg.msg_controllen = CMSG_SPACE(fdsize); msg.msg_control = (struct cmsghdr *)g_malloc(msg.msg_controllen, 1); if (msg.msg_control == NULL) { /* Memory allocation failure */ LOG(LOG_LEVEL_ERROR, "Error allocating buffer for %u fds", fdcount); return -1; } /* Fill in the ancillary data structure */ struct cmsghdr *cmptr = CMSG_FIRSTHDR(&msg); cmptr->cmsg_len = CMSG_LEN(fdsize); cmptr->cmsg_level = SOL_SOCKET; cmptr->cmsg_type = SCM_RIGHTS; memcpy(CMSG_DATA(cmptr), fds, fdsize); } rv = sendmsg(sck, &msg, 0); g_free(msg.msg_control); #endif /* !WIN32 */ return rv; } /*****************************************************************************/ /* returns boolean */ int g_sck_socket_ok(int sck) { int opt; socklen_t opt_len; opt_len = sizeof(opt); if (getsockopt(sck, SOL_SOCKET, SO_ERROR, (char *)(&opt), &opt_len) == 0) { if (opt == 0) { return 1; } } return 0; } /*****************************************************************************/ /* wait 'millis' milliseconds for the socket to be able to write */ /* returns boolean */ int g_sck_can_send(int sck, int millis) { int rv = 0; if (sck > 0) { struct pollfd pollfd; pollfd.fd = sck; pollfd.events = POLLOUT; pollfd.revents = 0; if (poll(&pollfd, 1, millis) > 0) { if ((pollfd.revents & POLLOUT) != 0) { rv = 1; } } } return rv; } /*****************************************************************************/ /* wait 'millis' milliseconds for the socket to be able to receive */ /* returns boolean */ int g_sck_can_recv(int sck, int millis) { int rv = 0; if (sck > 0) { struct pollfd pollfd; pollfd.fd = sck; pollfd.events = POLLIN; pollfd.revents = 0; if (poll(&pollfd, 1, millis) > 0) { if ((pollfd.revents & (POLLIN | POLLHUP)) != 0) { rv = 1; } } } return rv; } /*****************************************************************************/ int g_sck_select(int sck1, int sck2) { struct pollfd pollfd[2] = {0}; int rvmask[2] = {0}; /* Output masks corresponding to fds in pollfd */ unsigned int i = 0; int rv = 0; if (sck1 > 0) { pollfd[i].fd = sck1; pollfd[i].events = POLLIN; rvmask[i] = 1; ++i; } if (sck2 > 0) { pollfd[i].fd = sck2; pollfd[i].events = POLLIN; rvmask[i] = 2; ++i; } if (poll(pollfd, i, 0) > 0) { if ((pollfd[0].revents & (POLLIN | POLLHUP)) != 0) { rv |= rvmask[0]; } if ((pollfd[1].revents & (POLLIN | POLLHUP)) != 0) { rv |= rvmask[1]; } } return rv; } /*****************************************************************************/ /* returns boolean */ static int g_fd_can_read(int fd) { int rv = 0; if (fd > 0) { struct pollfd pollfd; pollfd.fd = fd; pollfd.events = POLLIN; pollfd.revents = 0; if (poll(&pollfd, 1, 0) > 0) { if ((pollfd.revents & (POLLIN | POLLHUP)) != 0) { rv = 1; } } } return rv; } /*****************************************************************************/ /* returns error */ /* O_NONBLOCK = 0x00000800 */ static int g_set_nonblock(int fd) { int error; int flags; error = fcntl(fd, F_GETFL); if (error < 0) { return 1; } flags = error; if ((flags & O_NONBLOCK) != O_NONBLOCK) { flags |= O_NONBLOCK; error = fcntl(fd, F_SETFL, flags); if (error < 0) { return 1; } } return 0; } /*****************************************************************************/ /* returns 0 on error */ tintptr g_create_wait_obj(const char *name) { #ifdef _WIN32 tintptr obj; obj = (tintptr)CreateEvent(0, 1, 0, name); return obj; #else int fds[2]; int error; error = pipe(fds); if (error != 0) { return 0; } if (g_set_nonblock(fds[0]) != 0) { close(fds[0]); close(fds[1]); return 0; } if (g_set_nonblock(fds[1]) != 0) { close(fds[0]); close(fds[1]); return 0; } g_file_set_cloexec(fds[0], 1); g_file_set_cloexec(fds[1], 1); return (fds[1] << 16) | fds[0]; #endif } /*****************************************************************************/ /* returns 0 on error */ tintptr g_create_wait_obj_from_socket(tintptr socket, int write) { #ifdef _WIN32 /* Create and return corresponding event handle for WaitForMultipleObjects */ WSAEVENT event; long lnetevent = 0; g_memset(&event, 0, sizeof(WSAEVENT)); event = WSACreateEvent(); lnetevent = (write ? FD_WRITE : FD_READ) | FD_CLOSE; if (WSAEventSelect(socket, event, lnetevent) == 0) { return (tbus)event; } else { return 0; } #else return socket; #endif } /*****************************************************************************/ void g_delete_wait_obj_from_socket(tintptr wait_obj) { #ifdef _WIN32 if (wait_obj == 0) { return; } WSACloseEvent((HANDLE)wait_obj); #else #endif } /*****************************************************************************/ /* returns error */ int g_set_wait_obj(tintptr obj) { #ifdef _WIN32 #error "Win32 is no longer supported." #else int error; int fd; int written; int to_write; char buf[4] = "sig"; if (obj == 0) { return 0; } fd = obj & USHRT_MAX; if (g_fd_can_read(fd)) { /* already signalled */ return 0; } fd = obj >> 16; to_write = 4; written = 0; while (written < to_write) { error = write(fd, buf + written, to_write - written); if (error == -1) { error = errno; if ((error == EAGAIN) || (error == EWOULDBLOCK) || (error == EINPROGRESS) || (error == EINTR)) { /* ok */ } else { return 1; } } else if (error > 0) { written += error; } else { return 1; } } return 0; #endif } /*****************************************************************************/ /* returns error */ int g_reset_wait_obj(tintptr obj) { #ifdef _WIN32 if (obj == 0) { return 0; } ResetEvent((HANDLE)obj); return 0; #else char buf[4]; int error; int fd; if (obj == 0) { return 0; } fd = obj & 0xffff; while (g_fd_can_read(fd)) { error = read(fd, buf, 4); if (error == -1) { error = errno; if ((error == EAGAIN) || (error == EWOULDBLOCK) || (error == EINPROGRESS) || (error == EINTR)) { /* ok */ } else { return 1; } } else if (error == 0) { return 1; } } return 0; #endif } /*****************************************************************************/ /* returns boolean */ int g_is_wait_obj_set(tintptr obj) { #ifdef _WIN32 if (obj == 0) { return 0; } if (WaitForSingleObject((HANDLE)obj, 0) == WAIT_OBJECT_0) { return 1; } return 0; #else if (obj == 0) { return 0; } return g_fd_can_read(obj & 0xffff); #endif } /*****************************************************************************/ /* returns error */ int g_delete_wait_obj(tintptr obj) { #ifdef _WIN32 if (obj == 0) { return 0; } /* Close event handle */ CloseHandle((HANDLE)obj); return 0; #else if (obj == 0) { return 0; } close(obj & 0xffff); close(obj >> 16); return 0; #endif } /*****************************************************************************/ /* returns error */ int g_obj_wait(tintptr *read_objs, int rcount, tintptr *write_objs, int wcount, int mstimeout) { #define MAX_HANDLES 256 #ifdef _WIN32 HANDLE handles[MAX_HANDLES]; DWORD count; DWORD error; int j; int i; j = 0; count = rcount + wcount; for (i = 0; i < rcount; i++) { handles[j++] = (HANDLE)(read_objs[i]); } for (i = 0; i < wcount; i++) { handles[j++] = (HANDLE)(write_objs[i]); } if (mstimeout < 0) { mstimeout = INFINITE; } error = WaitForMultipleObjects(count, handles, FALSE, mstimeout); if (error == WAIT_FAILED) { return 1; } return 0; #else struct pollfd pollfd[MAX_HANDLES]; int sck; int i = 0; unsigned int j = 0; int rv = 1; if (read_objs == NULL && rcount != 0) { LOG(LOG_LEVEL_ERROR, "Programming error read_objs is null"); } else if (write_objs == NULL && wcount != 0) { LOG(LOG_LEVEL_ERROR, "Programming error write_objs is null"); } /* Check carefully for int overflow in passed-in counts */ else if ((unsigned int)rcount > MAX_HANDLES || (unsigned int)wcount > MAX_HANDLES || ((unsigned int)rcount + (unsigned int)wcount) > MAX_HANDLES) { LOG(LOG_LEVEL_ERROR, "Programming error too many handles"); } else { if (mstimeout < 0) { mstimeout = -1; } for (i = 0; i < rcount ; ++i) { sck = read_objs[i] & 0xffff; if (sck > 0) { pollfd[j].fd = sck; pollfd[j].events = POLLIN; ++j; } } for (i = 0; i < wcount; ++i) { sck = write_objs[i]; if (sck > 0) { pollfd[j].fd = sck; pollfd[j].events = POLLOUT; ++j; } } rv = (poll(pollfd, j, mstimeout) < 0); if (rv != 0) { /* these are not really errors */ if ((errno == EAGAIN) || (errno == EWOULDBLOCK) || (errno == EINPROGRESS) || (errno == EINTR)) /* signal occurred */ { rv = 0; } } } return rv; #endif #undef MAX_HANDLES } /*****************************************************************************/ void g_random(char *data, int len) { #if defined(_WIN32) int index; srand(g_time1()); for (index = 0; index < len; index++) { data[index] = (char)rand(); /* rand returns a number between 0 and RAND_MAX */ } #else int fd; memset(data, 0x44, len); fd = open("/dev/urandom", O_RDONLY); if (fd == -1) { fd = open("/dev/random", O_RDONLY); } if (fd != -1) { if (read(fd, data, len) != len) { } close(fd); } #endif } /*****************************************************************************/ int g_abs(int i) { return abs(i); } /*****************************************************************************/ int g_memcmp(const void *s1, const void *s2, int len) { return memcmp(s1, s2, len); } /*****************************************************************************/ /* returns -1 on error, else return handle or file descriptor */ int g_file_open_rw(const char *file_name) { #if defined(_WIN32) return (int)CreateFileA(file_name, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, 0, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0); #else return open(file_name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR); #endif } /*****************************************************************************/ /* returns -1 on error, else return handle or file descriptor */ int g_file_open_ex(const char *file_name, int aread, int awrite, int acreate, int atrunc) { #if defined(_WIN32) return -1; #else int rv; int flags; flags = 0; if (aread && awrite) { flags |= O_RDWR; } else if (aread) { flags |= O_RDONLY; } else if (awrite) { flags |= O_WRONLY; } if (acreate) { flags |= O_CREAT; } if (atrunc) { flags |= O_TRUNC; } rv = open(file_name, flags, S_IRUSR | S_IWUSR); return rv; #endif } /*****************************************************************************/ /* returns -1 on error, else return handle or file descriptor */ int g_file_open_ro(const char *file_name) { return g_file_open_ex(file_name, 1, 0, 0, 0); } /*****************************************************************************/ /* returns error, always 0 */ int g_file_close(int fd) { #if defined(_WIN32) CloseHandle((HANDLE)fd); #else close(fd); #endif return 0; } /*****************************************************************************/ int g_file_is_open(int fd) { return (fcntl(fd, F_GETFD) >= 0); } /*****************************************************************************/ /* read from file, returns the number of bytes read or -1 on error */ int g_file_read(int fd, char *ptr, int len) { #if defined(_WIN32) if (ReadFile((HANDLE)fd, (LPVOID)ptr, (DWORD)len, (LPDWORD)&len, 0)) { return len; } else { return -1; } #else return read(fd, ptr, len); #endif } /*****************************************************************************/ /* write to file, returns the number of bytes written or -1 on error */ int g_file_write(int fd, const char *ptr, int len) { #if defined(_WIN32) if (WriteFile((HANDLE)fd, (LPVOID)ptr, (DWORD)len, (LPDWORD)&len, 0)) { return len; } else { return -1; } #else return write(fd, ptr, len); #endif } /*****************************************************************************/ /* move file pointer, returns offset on success, -1 on failure */ int g_file_seek(int fd, int offset) { #if defined(_WIN32) int rv; rv = (int)SetFilePointer((HANDLE)fd, offset, 0, FILE_BEGIN); if (rv == (int)INVALID_SET_FILE_POINTER) { return -1; } else { return rv; } #else return (int)lseek(fd, offset, SEEK_SET); #endif } /*****************************************************************************/ /* do a write lock on a file */ /* return boolean */ int g_file_lock(int fd, int start, int len) { #if defined(_WIN32) return LockFile((HANDLE)fd, start, 0, len, 0); #else struct flock lock; lock.l_type = F_WRLCK; lock.l_whence = SEEK_SET; lock.l_start = start; lock.l_len = len; if (fcntl(fd, F_SETLK, &lock) == -1) { return 0; } return 1; #endif } /*****************************************************************************/ /* Gets the close-on-exec flag for a file descriptor */ int g_file_get_cloexec(int fd) { int rv = 0; int flags = fcntl(fd, F_GETFD); if (flags >= 0 && (flags & FD_CLOEXEC) != 0) { rv = 1; } return rv; } /*****************************************************************************/ /* Sets/clears the close-on-exec flag for a file descriptor */ /* return boolean */ int g_file_set_cloexec(int fd, int status) { int rv = 0; int current_flags = fcntl(fd, F_GETFD); if (current_flags >= 0) { int new_flags; if (status) { new_flags = current_flags | FD_CLOEXEC; } else { new_flags = current_flags & ~FD_CLOEXEC; } if (new_flags != current_flags) { rv = (fcntl(fd, F_SETFD, new_flags) >= 0); } } return rv; } /*****************************************************************************/ struct list * g_get_open_fds(int min, int max) { struct list *result = list_create(); if (result != NULL) { if (max < 0) { max = sysconf(_SC_OPEN_MAX); } if (max > min) { struct pollfd *fds = g_new0(struct pollfd, max - min); int i; if (fds == NULL) { goto nomem; } for (i = min ; i < max ; ++i) { fds[i - min].fd = i; } if (poll(fds, max - min, 0) >= 0) { for (i = min ; i < max ; ++i) { if (fds[i - min].revents != POLLNVAL) { // Descriptor is open if (!list_add_item(result, i)) { goto nomem; } } } } g_free(fds); } } return result; nomem: list_delete(result); return NULL; } /*****************************************************************************/ int g_file_map(int fd, int aread, int awrite, size_t length, void **addr) { int prot = 0; void *laddr; if (aread) { prot |= PROT_READ; } if (awrite) { prot |= PROT_WRITE; } laddr = mmap(NULL, length, prot, MAP_SHARED, fd, 0); if (laddr == MAP_FAILED) { return 1; } *addr = laddr; return 0; } /*****************************************************************************/ int g_munmap(void *addr, size_t length) { return munmap(addr, length); } /*****************************************************************************/ /* Converts a hex mask to a mode_t value */ #if !defined(_WIN32) static mode_t hex_to_mode_t(int hex) { mode_t mode = 0; mode |= (hex & 0x4000) ? S_ISUID : 0; mode |= (hex & 0x2000) ? S_ISGID : 0; mode |= (hex & 0x1000) ? S_ISVTX : 0; mode |= (hex & 0x0400) ? S_IRUSR : 0; mode |= (hex & 0x0200) ? S_IWUSR : 0; mode |= (hex & 0x0100) ? S_IXUSR : 0; mode |= (hex & 0x0040) ? S_IRGRP : 0; mode |= (hex & 0x0020) ? S_IWGRP : 0; mode |= (hex & 0x0010) ? S_IXGRP : 0; mode |= (hex & 0x0004) ? S_IROTH : 0; mode |= (hex & 0x0002) ? S_IWOTH : 0; mode |= (hex & 0x0001) ? S_IXOTH : 0; return mode; } #endif /*****************************************************************************/ /* Converts a mode_t value to a hex mask */ #if !defined(_WIN32) static int mode_t_to_hex(mode_t mode) { int hex = 0; hex |= (mode & S_ISUID) ? 0x4000 : 0; hex |= (mode & S_ISGID) ? 0x2000 : 0; hex |= (mode & S_ISVTX) ? 0x1000 : 0; hex |= (mode & S_IRUSR) ? 0x0400 : 0; hex |= (mode & S_IWUSR) ? 0x0200 : 0; hex |= (mode & S_IXUSR) ? 0x0100 : 0; hex |= (mode & S_IRGRP) ? 0x0040 : 0; hex |= (mode & S_IWGRP) ? 0x0020 : 0; hex |= (mode & S_IXGRP) ? 0x0010 : 0; hex |= (mode & S_IROTH) ? 0x0004 : 0; hex |= (mode & S_IWOTH) ? 0x0002 : 0; hex |= (mode & S_IXOTH) ? 0x0001 : 0; return hex; } #endif /*****************************************************************************/ /* Duplicates a file descriptor onto another one using the semantics * of dup2() */ /* return boolean */ int g_file_duplicate_on(int fd, int target_fd) { int rv = (dup2(fd, target_fd) >= 0); if (rv < 0) { LOG(LOG_LEVEL_ERROR, "Can't clone file %d as file %d [%s]", fd, target_fd, g_get_strerror()); } return rv; } /*****************************************************************************/ /* returns error */ int g_chmod_hex(const char *filename, int flags) { #if defined(_WIN32) return 0; #else mode_t m = hex_to_mode_t(flags); return chmod(filename, m); #endif } /*****************************************************************************/ /* returns error */ int g_umask_hex(int flags) { #if defined(_WIN32) return flags; #else mode_t m = hex_to_mode_t(flags); m = umask(m); return mode_t_to_hex(m); #endif } /*****************************************************************************/ /* returns error, zero is ok */ int g_chown(const char *name, int uid, int gid) { return chown(name, uid, gid); } /*****************************************************************************/ /* returns error, always zero */ int g_mkdir(const char *dirname) { #if defined(_WIN32) return 0; #else return mkdir(dirname, S_IRWXU); #endif } /*****************************************************************************/ /* gets the current working directory and puts up to maxlen chars in dirname always returns 0 */ char * g_get_current_dir(char *dirname, int maxlen) { #if defined(_WIN32) GetCurrentDirectoryA(maxlen, dirname); return 0; #else if (getcwd(dirname, maxlen) == 0) { } return 0; #endif } /*****************************************************************************/ /* returns error, zero on success and -1 on failure */ int g_set_current_dir(const char *dirname) { #if defined(_WIN32) if (SetCurrentDirectoryA(dirname)) { return 0; } else { return -1; } #else return chdir(dirname); #endif } /*****************************************************************************/ /* returns boolean, non zero if the file exists */ int g_file_exist(const char *filename) { #if defined(_WIN32) return 0; // use FileAge(filename) <> -1 #else return access(filename, F_OK) == 0; #endif } /*****************************************************************************/ /* returns boolean, non zero if the file is readable */ int g_file_readable(const char *filename) { #if defined(_WIN32) return _waccess(filename, 04) == 0; #else return access(filename, R_OK) == 0; #endif } /*****************************************************************************/ /* returns boolean, non zero if the directory exists */ int g_directory_exist(const char *dirname) { #if defined(_WIN32) return 0; // use GetFileAttributes and check return value // is not -1 and FILE_ATTRIBUTE_DIRECTORY bit is set #else struct stat st; if (stat(dirname, &st) == 0) { return S_ISDIR(st.st_mode); } else { return 0; } #endif } /*****************************************************************************/ /* returns boolean, non zero if the file exists and is a readable executable */ int g_executable_exist(const char *exename) { return access(exename, R_OK | X_OK) == 0; } /*****************************************************************************/ /* returns boolean */ int g_create_dir(const char *dirname) { #if defined(_WIN32) return CreateDirectoryA(dirname, 0); // test this #else return mkdir(dirname, 0777) == 0; #endif } /*****************************************************************************/ /* will try to create directories up to last / in name example /tmp/a/b/c/readme.txt will try to create /tmp/a/b/c returns boolean */ int g_create_path(const char *path) { char *pp; char *sp; char *copypath; int status; status = 1; copypath = g_strdup(path); pp = copypath; sp = strchr(pp, '/'); while (sp != 0) { if (sp != pp) { *sp = 0; if (!g_directory_exist(copypath)) { if (!g_create_dir(copypath)) { status = 0; break; } } *sp = '/'; } pp = sp + 1; sp = strchr(pp, '/'); } g_free(copypath); return status; } /*****************************************************************************/ /* returns boolean */ int g_remove_dir(const char *dirname) { #if defined(_WIN32) return RemoveDirectoryA(dirname); // test this #else return rmdir(dirname) == 0; #endif } /*****************************************************************************/ /* returns non zero if the file was deleted */ int g_file_delete(const char *filename) { #if defined(_WIN32) return DeleteFileA(filename); #else return unlink(filename) != -1; #endif } /*****************************************************************************/ /* returns file size, -1 on error */ int g_file_get_size(const char *filename) { #if defined(_WIN32) return -1; #else struct stat st; if (stat(filename, &st) == 0) { return (int)(st.st_size); } else { return -1; } #endif } /*****************************************************************************/ /* returns device number, -1 on error */ int g_file_get_device_number(const char *filename) { #if defined(_WIN32) return -1; #else struct stat st; if (stat(filename, &st) == 0) { return (int)(st.st_dev); } else { return -1; } #endif } /*****************************************************************************/ /* returns inode number, -1 on error */ int g_file_get_inode_num(const char *filename) { #if defined(_WIN32) return -1; #else struct stat st; if (stat(filename, &st) == 0) { return (int)(st.st_ino); } else { return -1; } #endif } /*****************************************************************************/ long g_load_library(char *in) { #if defined(_WIN32) return (long)LoadLibraryA(in); #else return (long)dlopen(in, RTLD_LOCAL | RTLD_LAZY); #endif } /*****************************************************************************/ int g_free_library(long lib) { if (lib == 0) { return 0; } #if defined(_WIN32) return FreeLibrary((HMODULE)lib); #else return dlclose((void *)lib); #endif } /*****************************************************************************/ /* returns NULL if not found */ void * g_get_proc_address(long lib, const char *name) { if (lib == 0) { return 0; } #if defined(_WIN32) return GetProcAddress((HMODULE)lib, name); #else return dlsym((void *)lib, name); #endif } /*****************************************************************************/ /* does not work in win32 */ int g_system(const char *aexec) { #if defined(_WIN32) return 0; #else return system(aexec); #endif } /*****************************************************************************/ /* does not work in win32 */ char * g_get_strerror(void) { #if defined(_WIN32) return 0; #else return strerror(errno); #endif } /*****************************************************************************/ int g_get_errno(void) { #if defined(_WIN32) return GetLastError(); #else return errno; #endif } /*****************************************************************************/ /* does not work in win32 */ #define ARGS_STR_LEN 1024 int g_execvp(const char *p1, char *args[]) { #if defined(_WIN32) return 0; #else int rv; char args_str[ARGS_STR_LEN]; int args_len; args_len = 0; while (args[args_len] != NULL) { args_len++; } g_strnjoin(args_str, ARGS_STR_LEN, " ", (const char **) args, args_len); LOG(LOG_LEVEL_DEBUG, "Calling exec (excutable: %s, arguments: %s)", p1, args_str); rv = execvp(p1, args); /* should not get here */ int saved_errno = errno; LOG(LOG_LEVEL_ERROR, "Error calling exec (excutable: %s, arguments: %s) " "returned errno: %d, description: %s", p1, args_str, g_get_errno(), g_get_strerror()); errno = saved_errno; return rv; #endif } /*****************************************************************************/ int g_execvp_list(const char *file, struct list *argv) { int rv = -1; /* Push a terminating NULL onto the list for the system call */ if (!list_add_item(argv, (tintptr)NULL)) { LOG(LOG_LEVEL_ERROR, "No memory for exec to terminate list"); errno = ENOMEM; } else { /* Read the argv argument straight from the list */ rv = g_execvp(file, (char **)argv->items); /* should not get here */ list_remove_item(argv, argv->count - 1); // Lose terminating NULL } return rv; } /*****************************************************************************/ /* does not work in win32 */ int g_execlp3(const char *a1, const char *a2, const char *a3) { #if defined(_WIN32) return 0; #else int rv; const char *args[] = {a2, a3, NULL}; char args_str[ARGS_STR_LEN]; g_strnjoin(args_str, ARGS_STR_LEN, " ", args, 2); LOG(LOG_LEVEL_DEBUG, "Calling exec (executable: %s, arguments: %s)", a1, args_str); g_rm_temp_dir(); rv = execlp(a1, a2, a3, (void *)0); /* should not get here */ LOG(LOG_LEVEL_ERROR, "Error calling exec (executable: %s, arguments: %s) " "returned errno: %d, description: %s", a1, args_str, g_get_errno(), g_get_strerror()); return rv; #endif } /*****************************************************************************/ /* does not work in win32 */ unsigned int g_set_alarm(void (*func)(int), unsigned int secs) { #if defined(_WIN32) return 0; #else struct sigaction action; /* Cancel any previous alarm to prevent a race */ unsigned int rv = alarm(0); if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESTART; } sigemptyset (&action.sa_mask); sigaction(SIGALRM, &action, NULL); if (func != NULL && secs > 0) { (void)alarm(secs); } return rv; #endif } /*****************************************************************************/ /* does not work in win32 */ void g_signal_child_stop(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; // Don't need to know when children are stopped or started action.sa_flags = (SA_RESTART | SA_NOCLDSTOP); } sigemptyset (&action.sa_mask); sigaction(SIGCHLD, &action, NULL); #endif } /*****************************************************************************/ void g_signal_segfault(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESETHAND; // This is a one-shot } sigemptyset (&action.sa_mask); sigaction(SIGSEGV, &action, NULL); #endif } /*****************************************************************************/ /* does not work in win32 */ void g_signal_hang_up(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESTART; } sigemptyset (&action.sa_mask); sigaction(SIGHUP, &action, NULL); #endif } /*****************************************************************************/ /* does not work in win32 */ void g_signal_user_interrupt(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESTART; } sigemptyset (&action.sa_mask); sigaction(SIGINT, &action, NULL); #endif } /*****************************************************************************/ /* does not work in win32 */ void g_signal_terminate(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESTART; } sigemptyset (&action.sa_mask); sigaction(SIGTERM, &action, NULL); #endif } /*****************************************************************************/ /* does not work in win32 */ void g_signal_pipe(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESTART; } sigemptyset (&action.sa_mask); sigaction(SIGPIPE, &action, NULL); #endif } /*****************************************************************************/ /* does not work in win32 */ void g_signal_usr1(void (*func)(int)) { #if defined(_WIN32) #else struct sigaction action; if (func == NULL) { action.sa_handler = SIG_DFL; action.sa_flags = 0; } else { action.sa_handler = func; action.sa_flags = SA_RESTART; } sigemptyset (&action.sa_mask); sigaction(SIGUSR1, &action, NULL); #endif } /*****************************************************************************/ /* does not work in win32 */ int g_fork(void) { #if defined(_WIN32) return 0; #else int rv; rv = fork(); if (rv == -1) /* error */ { LOG(LOG_LEVEL_ERROR, "Process fork failed with errno: %d, description: %s", g_get_errno(), g_get_strerror()); } return rv; #endif } /*****************************************************************************/ /* does not work in win32 */ int g_setgid(int pid) { #if defined(_WIN32) return 0; #else return setgid(pid); #endif } /*****************************************************************************/ /* returns error, zero is success, non zero is error */ /* does not work in win32 */ int g_initgroups(const char *username) { #if defined(_WIN32) return 0; #else int gid; int error = g_getuser_info_by_name(username, NULL, &gid, NULL, NULL, NULL); if (error == 0) { error = initgroups(username, gid); } return error; #endif } /*****************************************************************************/ /* does not work in win32 */ /* returns user id */ int g_getuid(void) { #if defined(_WIN32) return 0; #else return getuid(); #endif } /*****************************************************************************/ /* does not work in win32 */ /* returns user id */ int g_getgid(void) { #if defined(_WIN32) return 0; #else return getgid(); #endif } /*****************************************************************************/ /* does not work in win32 */ /* On success, zero is returned. On error, -1 is returned */ int g_setuid(int pid) { #if defined(_WIN32) return 0; #else return setuid(pid); #endif } /*****************************************************************************/ int g_setsid(void) { #if defined(_WIN32) return -1; #else return setsid(); #endif } /*****************************************************************************/ int g_getlogin(char *name, unsigned int len) { #if defined(_WIN32) return -1; #else return getlogin_r(name, len); #endif } /*****************************************************************************/ int g_setlogin(const char *name) { #ifdef BSD return setlogin(name); #else return -1; #endif } /*****************************************************************************/ #ifdef HAVE_SETUSERCONTEXT int g_set_allusercontext(int uid) { int rv; struct passwd *pwd = getpwuid(uid); if (pwd == NULL) { LOG(LOG_LEVEL_ERROR, "No password entry for UID %d", uid); rv = 1; } else { rv = setusercontext(NULL, pwd, uid, LOGIN_SETALL); if (rv != 0) { LOG(LOG_LEVEL_ERROR, "setusercontext(%d) failed [%s]", uid, g_get_strerror()); } } return (rv != 0); /* Return 0 or 1 */ } #endif /*****************************************************************************/ /* does not work in win32 returns pid of process that exits or zero if signal occurred an exit_status struct can optionally be passed in to get the exit status of the child */ int g_waitchild(struct exit_status *e) { #if defined(_WIN32) return 0; #else int wstat; int rv; struct exit_status dummy; if (e == NULL) { e = &dummy; // Set this, then throw it away } e->reason = E_XR_UNEXPECTED; e->val = 0; rv = waitpid(-1, &wstat, WNOHANG); if (rv == -1) { if (errno == EINTR) { /* This shouldn't happen as signal handlers use SA_RESTART */ rv = 0; } } else if (WIFEXITED(wstat)) { e->reason = E_XR_STATUS_CODE; e->val = WEXITSTATUS(wstat); } else if (WIFSIGNALED(wstat)) { e->reason = E_XR_SIGNAL; e->val = WTERMSIG(wstat); } return rv; #endif } /*****************************************************************************/ /* does not work in win32 returns pid of process that exits or <= 0 if no process was found Note that signal handlers are established with BSD-style semantics, so this call is NOT interrupted by a signal */ int g_waitpid(int pid) { #if defined(_WIN32) return 0; #else int rv = 0; if (pid < 0) { rv = -1; } else { rv = waitpid(pid, 0, 0); } return rv; #endif } /*****************************************************************************/ /* does not work in win32 returns exit status code of child process with pid Note that signal handlers are established with BSD-style semantics, so this call is NOT interrupted by a signal */ struct exit_status g_waitpid_status(int pid) { struct exit_status exit_status = {.reason = E_XR_UNEXPECTED, .val = 0}; #if !defined(_WIN32) if (pid > 0) { int rv; int status; LOG(LOG_LEVEL_DEBUG, "waiting for pid %d to exit", pid); rv = waitpid(pid, &status, 0); if (rv != -1) { if (WIFEXITED(status)) { exit_status.reason = E_XR_STATUS_CODE; exit_status.val = WEXITSTATUS(status); } if (WIFSIGNALED(status)) { exit_status.reason = E_XR_SIGNAL; exit_status.val = WTERMSIG(status); } } else { LOG(LOG_LEVEL_WARNING, "wait for pid %d returned unknown result", pid); } } #endif return exit_status; } /*****************************************************************************/ int g_setpgid(int pid, int pgid) { int rv = setpgid(pid, pgid); if (rv < 0) { if (pid == 0) { pid = getpid(); } LOG(LOG_LEVEL_ERROR, "Can't set process group ID of %d to %d [%s]", pid, pgid, g_get_strerror()); } return rv; } /*****************************************************************************/ /* does not work in win32 */ void g_clearenv(void) { #if defined(HAVE_CLEARENV) clearenv(); #elif defined(_WIN32) #elif defined(BSD) extern char **environ; environ[0] = 0; #else extern char **environ; environ = 0; #endif } /*****************************************************************************/ /* does not work in win32 */ int g_setenv(const char *name, const char *value, int rewrite) { #if defined(_WIN32) return 0; #else return setenv(name, value, rewrite); #endif } /*****************************************************************************/ /* does not work in win32 */ char * g_getenv(const char *name) { #if defined(_WIN32) return 0; #else return getenv(name); #endif } /*****************************************************************************/ int g_exit(int exit_code) { exit(exit_code); return 0; } /*****************************************************************************/ int g_getpid(void) { #if defined(_WIN32) return (int)GetCurrentProcessId(); #else return (int)getpid(); #endif } /*****************************************************************************/ /* does not work in win32 */ int g_sigterm(int pid) { #if defined(_WIN32) return 0; #else return kill(pid, SIGTERM); #endif } /*****************************************************************************/ /* does not work in win32 */ int g_sighup(int pid) { #if defined(_WIN32) return 0; #else return kill(pid, SIGHUP); #endif } /*****************************************************************************/ /* returns 0 if ok */ /* the caller is responsible to free the buffs */ /* does not work in win32 */ int g_getuser_info_by_name(const char *username, int *uid, int *gid, char **shell, char **dir, char **gecos) { int rv = 1; #if !defined(_WIN32) if (username == NULL) { LOG(LOG_LEVEL_ERROR, "g_getuser_info_by_name() called for NULL user"); } else { struct passwd *pwd_1 = getpwnam(username); if (pwd_1 != 0) { rv = 0; if (uid != 0) { *uid = pwd_1->pw_uid; } if (gid != 0) { *gid = pwd_1->pw_gid; } if (shell != 0) { *shell = g_strdup(pwd_1->pw_shell); } if (dir != 0) { *dir = g_strdup(pwd_1->pw_dir); } if (gecos != 0) { *gecos = g_strdup(pwd_1->pw_gecos); } } } #endif return rv; } /*****************************************************************************/ /* returns 0 if ok */ /* the caller is responsible to free the buffs */ /* does not work in win32 */ int g_getuser_info_by_uid(int uid, char **username, int *gid, char **shell, char **dir, char **gecos) { #if defined(_WIN32) return 1; #else struct passwd *pwd_1; pwd_1 = getpwuid(uid); if (pwd_1 != 0) { if (username != NULL) { *username = g_strdup(pwd_1->pw_name); } if (gid != 0) { *gid = pwd_1->pw_gid; } if (shell != 0) { *shell = g_strdup(pwd_1->pw_shell); } if (dir != 0) { *dir = g_strdup(pwd_1->pw_dir); } if (gecos != 0) { *gecos = g_strdup(pwd_1->pw_gecos); } return 0; } return 1; #endif } /*****************************************************************************/ /* returns 0 if ok */ /* does not work in win32 */ int g_getgroup_info(const char *groupname, int *gid) { #if defined(_WIN32) return 1; #else struct group *g; g = getgrnam(groupname); if (g != 0) { if (gid != 0) { *gid = g->gr_gid; } return 0; } return 1; #endif } /*****************************************************************************/ #ifdef HAVE_GETGROUPLIST int g_check_user_in_group(const char *username, int gid, int *ok) { int rv = 1; struct passwd *pwd_1 = getpwnam(username); if (pwd_1 != NULL) { // Get number of groups for user // // Some implementations of getgrouplist() (i.e. muslc) don't // allow ngroups to be <1 on entry int ngroups = 1; GETGROUPS_T dummy; getgrouplist(username, pwd_1->pw_gid, &dummy, &ngroups); if (ngroups > 0) // Should always be true { GETGROUPS_T *grouplist; grouplist = (GETGROUPS_T *)malloc(ngroups * sizeof(grouplist[0])); if (grouplist != NULL) { // Now get the actual groups. The number of groups returned // by this call is not necessarily the same as the number // returned by the first call. int allocgroups = ngroups; getgrouplist(username, pwd_1->pw_gid, grouplist, &ngroups); ngroups = MIN(ngroups, allocgroups); rv = 0; *ok = 0; int i; for (i = 0 ; i < ngroups; ++i) { if (grouplist[i] == (GETGROUPS_T)gid) { *ok = 1; break; } } free(grouplist); } } } return rv; } /*****************************************************************************/ #else // HAVE_GETGROUPLIST int g_check_user_in_group(const char *username, int gid, int *ok) { #if defined(_WIN32) return 1; #else int i; struct passwd *pwd_1 = getpwnam(username); struct group *groups = getgrgid(gid); if (pwd_1 == NULL || groups == NULL) { return 1; } if (pwd_1->pw_gid == gid) { *ok = 1; } else { *ok = 0; i = 0; while (0 != groups->gr_mem[i]) { if (0 == g_strcmp(groups->gr_mem[i], username)) { *ok = 1; break; } i++; } } return 0; #endif } #endif // HAVE_GETGROUPLIST /*****************************************************************************/ /* returns the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in seconds. for windows, returns the number of seconds since the machine was started. */ int g_time1(void) { #if defined(_WIN32) return GetTickCount() / 1000; #else return time(0); #endif } /*****************************************************************************/ /* returns the number of milliseconds since the machine was started. */ int g_time2(void) { #if defined(_WIN32) return (int)GetTickCount(); #else struct tms tm; clock_t num_ticks = 0; g_memset(&tm, 0, sizeof(struct tms)); num_ticks = times(&tm); return (int)(num_ticks * 10); #endif } /*****************************************************************************/ /* returns time in milliseconds, uses gettimeofday does not work in win32 */ int g_time3(void) { #if defined(_WIN32) return 0; #else struct timeval tp; gettimeofday(&tp, 0); return (tp.tv_sec * 1000) + (tp.tv_usec / 1000); #endif } /******************************************************************************/ /******************************************************************************/ struct bmp_magic { char magic[2]; }; struct bmp_hdr { unsigned int size; /* file size in bytes */ unsigned short reserved1; unsigned short reserved2; unsigned int offset; /* offset to image data, in bytes */ }; struct dib_hdr { unsigned int hdr_size; int width; int height; unsigned short nplanes; unsigned short bpp; unsigned int compress_type; unsigned int image_size; int hres; int vres; unsigned int ncolors; unsigned int nimpcolors; }; /******************************************************************************/ int g_save_to_bmp(const char *filename, char *data, int stride_bytes, int width, int height, int depth, int bits_per_pixel) { struct bmp_magic bm; struct bmp_hdr bh; struct dib_hdr dh; int bytes; int fd; int index; int i1; int pixel; int extra; int file_stride_bytes; char *line; char *line_ptr; if ((depth == 24) && (bits_per_pixel == 32)) { } else if ((depth == 32) && (bits_per_pixel == 32)) { } else { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: unimplemented for: depth %d, bits_per_pixel %d", depth, bits_per_pixel); return 1; } bm.magic[0] = 'B'; bm.magic[1] = 'M'; /* scan lines are 32 bit aligned, bottom 2 bits must be zero */ file_stride_bytes = width * ((depth + 7) / 8); extra = file_stride_bytes; extra = extra & 3; extra = (4 - extra) & 3; file_stride_bytes += extra; bh.size = sizeof(bm) + sizeof(bh) + sizeof(dh) + height * file_stride_bytes; bh.reserved1 = 0; bh.reserved2 = 0; bh.offset = sizeof(bm) + sizeof(bh) + sizeof(dh); dh.hdr_size = sizeof(dh); dh.width = width; dh.height = height; dh.nplanes = 1; dh.bpp = depth; dh.compress_type = 0; dh.image_size = height * file_stride_bytes; dh.hres = 0xb13; dh.vres = 0xb13; dh.ncolors = 0; dh.nimpcolors = 0; fd = open(filename, O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR); if (fd == -1) { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: open error"); return 1; } bytes = write(fd, &bm, sizeof(bm)); if (bytes != sizeof(bm)) { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error"); } bytes = write(fd, &bh, sizeof(bh)); if (bytes != sizeof(bh)) { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error"); } bytes = write(fd, &dh, sizeof(dh)); if (bytes != sizeof(dh)) { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error"); } data += stride_bytes * height; data -= stride_bytes; if ((depth == 24) && (bits_per_pixel == 32)) { line = (char *) malloc(file_stride_bytes); memset(line, 0, file_stride_bytes); for (index = 0; index < height; index++) { line_ptr = line; for (i1 = 0; i1 < width; i1++) { pixel = ((int *)data)[i1]; *(line_ptr++) = (pixel >> 0) & 0xff; *(line_ptr++) = (pixel >> 8) & 0xff; *(line_ptr++) = (pixel >> 16) & 0xff; } bytes = write(fd, line, file_stride_bytes); if (bytes != file_stride_bytes) { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error"); } data -= stride_bytes; } free(line); } else if (depth == bits_per_pixel) { for (index = 0; index < height; index++) { bytes = write(fd, data, width * (bits_per_pixel / 8)); if (bytes != width * (bits_per_pixel / 8)) { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: write error"); } data -= stride_bytes; } } else { LOG(LOG_LEVEL_ERROR, "g_save_to_bpp: unimplemented for: depth %d, bits_per_pixel %d", depth, bits_per_pixel); } close(fd); return 0; } /*****************************************************************************/ /* returns pointer or nil on error */ void * g_shmat(int shmid) { #if defined(_WIN32) return 0; #else return shmat(shmid, 0, 0); #endif } /*****************************************************************************/ /* returns -1 on error 0 on success */ int g_shmdt(const void *shmaddr) { #if defined(_WIN32) return -1; #else return shmdt(shmaddr); #endif } /*****************************************************************************/ /* returns -1 on error 0 on success */ int g_gethostname(char *name, int len) { return gethostname(name, len); } static unsigned char g_reverse_byte[0x100] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff }; /*****************************************************************************/ /* mirror each byte while copying */ int g_mirror_memcpy(void *dst, const void *src, int len) { tui8 *dst8; const tui8 *src8; dst8 = (tui8 *) dst; src8 = (const tui8 *) src; while (len > 0) { *dst8 = g_reverse_byte[*src8]; dst8++; src8++; len--; } return 0; } /*****************************************************************************/ int g_tcp4_socket(void) { #if defined(XRDP_ENABLE_IPV6ONLY) return -1; #else int rv; int option_value; socklen_t option_len; rv = socket(AF_INET, SOCK_STREAM, 0); if (rv < 0) { return -1; } option_len = sizeof(option_value); if (getsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *) &option_value, &option_len) == 0) { if (option_value == 0) { option_value = 1; option_len = sizeof(option_value); if (setsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *) &option_value, option_len) < 0) { } } } return rv; #endif } /*****************************************************************************/ int g_tcp4_bind_address(int sck, const char *port, const char *address) { #if defined(XRDP_ENABLE_IPV6ONLY) return -1; #else struct sockaddr_in s; memset(&s, 0, sizeof(s)); s.sin_family = AF_INET; s.sin_addr.s_addr = htonl(INADDR_ANY); s.sin_port = htons((uint16_t) atoi(port)); if (inet_aton(address, &s.sin_addr) < 0) { return -1; /* bad address */ } if (bind(sck, (struct sockaddr *) &s, sizeof(s)) < 0) { return -1; } return 0; #endif } /*****************************************************************************/ int g_tcp6_socket(void) { #if defined(XRDP_ENABLE_IPV6) int rv; int option_value; socklen_t option_len; rv = socket(AF_INET6, SOCK_STREAM, 0); if (rv < 0) { return -1; } option_len = sizeof(option_value); if (getsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &option_value, &option_len) == 0) { #if defined(XRDP_ENABLE_IPV6ONLY) if (option_value == 0) { option_value = 1; #else if (option_value != 0) { option_value = 0; #endif option_len = sizeof(option_value); if (setsockopt(rv, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &option_value, option_len) < 0) { } } } option_len = sizeof(option_value); if (getsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *) &option_value, &option_len) == 0) { if (option_value == 0) { option_value = 1; option_len = sizeof(option_value); if (setsockopt(rv, SOL_SOCKET, SO_REUSEADDR, (char *) &option_value, option_len) < 0) { } } } return rv; #else return -1; #endif } /*****************************************************************************/ int g_tcp6_bind_address(int sck, const char *port, const char *address) { #if defined(XRDP_ENABLE_IPV6) int rv; int error; struct addrinfo hints; struct addrinfo *list; struct addrinfo *i; rv = -1; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_flags = 0; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; error = getaddrinfo(address, port, &hints, &list); if (error == 0) { i = list; while ((i != NULL) && (rv < 0)) { rv = bind(sck, i->ai_addr, i->ai_addrlen); i = i->ai_next; } freeaddrinfo(list); } else { return -1; } return rv; #else return -1; #endif } /*****************************************************************************/ /* returns error, zero is success, non zero is error */ /* only works in linux */ int g_no_new_privs(void) { #if defined(HAVE_SYS_PRCTL_H) && defined(PR_SET_NO_NEW_PRIVS) /* * PR_SET_NO_NEW_PRIVS requires Linux kernel 3.5 and newer. */ return prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); #else return 0; #endif } /*****************************************************************************/ void g_qsort(void *base, size_t nitems, size_t size, int (*compar)(const void *, const void *)) { qsort(base, nitems, size, compar); }