4438 lines
129 KiB
C
4438 lines
129 KiB
C
/* rsa.c
|
|
*
|
|
* Copyright (C) 2006-2020 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
/*
|
|
|
|
DESCRIPTION
|
|
This library provides the interface to the RSA.
|
|
RSA keys can be used to encrypt, decrypt, sign and verify data.
|
|
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/settings.h>
|
|
#include <wolfssl/wolfcrypt/error-crypt.h>
|
|
|
|
#ifndef NO_RSA
|
|
|
|
#if defined(HAVE_FIPS) && \
|
|
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
|
|
|
|
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
|
|
#define FIPS_NO_WRAPPERS
|
|
|
|
#ifdef USE_WINDOWS_API
|
|
#pragma code_seg(".fipsA$e")
|
|
#pragma const_seg(".fipsB$e")
|
|
#endif
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/rsa.h>
|
|
|
|
#ifdef WOLFSSL_AFALG_XILINX_RSA
|
|
#include <wolfssl/wolfcrypt/port/af_alg/wc_afalg.h>
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_HAVE_SP_RSA
|
|
#include <wolfssl/wolfcrypt/sp.h>
|
|
#endif
|
|
|
|
/*
|
|
Possible RSA enable options:
|
|
* NO_RSA: Overall control of RSA default: on (not defined)
|
|
* WC_RSA_BLINDING: Uses Blinding w/ Private Ops default: off
|
|
Note: slower by ~20%
|
|
* WOLFSSL_KEY_GEN: Allows Private Key Generation default: off
|
|
* RSA_LOW_MEM: NON CRT Private Operations, less memory default: off
|
|
* WC_NO_RSA_OAEP: Disables RSA OAEP padding default: on (not defined)
|
|
* WC_RSA_NONBLOCK: Enables support for RSA non-blocking default: off
|
|
* WC_RSA_NONBLOCK_TIME:Enables support for time based blocking default: off
|
|
* time calculation.
|
|
*/
|
|
|
|
/*
|
|
RSA Key Size Configuration:
|
|
* FP_MAX_BITS: With USE_FAST_MATH only default: 4096
|
|
If USE_FAST_MATH then use this to override default.
|
|
Value is key size * 2. Example: RSA 3072 = 6144
|
|
*/
|
|
|
|
|
|
/* If building for old FIPS. */
|
|
#if defined(HAVE_FIPS) && \
|
|
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2))
|
|
|
|
int wc_InitRsaKey(RsaKey* key, void* ptr)
|
|
{
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
return InitRsaKey_fips(key, ptr);
|
|
}
|
|
|
|
|
|
int wc_InitRsaKey_ex(RsaKey* key, void* ptr, int devId)
|
|
{
|
|
(void)devId;
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return InitRsaKey_fips(key, ptr);
|
|
}
|
|
|
|
|
|
int wc_FreeRsaKey(RsaKey* key)
|
|
{
|
|
return FreeRsaKey_fips(key);
|
|
}
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
int wc_RsaPublicEncrypt(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
if (in == NULL || out == NULL || key == NULL || rng == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaPublicEncrypt_fips(in, inLen, out, outLen, key, rng);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
int wc_RsaPrivateDecryptInline(byte* in, word32 inLen, byte** out,
|
|
RsaKey* key)
|
|
{
|
|
if (in == NULL || out == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaPrivateDecryptInline_fips(in, inLen, out, key);
|
|
}
|
|
|
|
|
|
int wc_RsaPrivateDecrypt(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key)
|
|
{
|
|
if (in == NULL || out == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaPrivateDecrypt_fips(in, inLen, out, outLen, key);
|
|
}
|
|
|
|
|
|
int wc_RsaSSL_Sign(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
if (in == NULL || out == NULL || key == NULL || inLen == 0) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaSSL_Sign_fips(in, inLen, out, outLen, key, rng);
|
|
}
|
|
#endif
|
|
|
|
|
|
int wc_RsaSSL_VerifyInline(byte* in, word32 inLen, byte** out, RsaKey* key)
|
|
{
|
|
if (in == NULL || out == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaSSL_VerifyInline_fips(in, inLen, out, key);
|
|
}
|
|
|
|
|
|
int wc_RsaSSL_Verify(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key)
|
|
{
|
|
if (in == NULL || out == NULL || key == NULL || inLen == 0) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaSSL_Verify_fips(in, inLen, out, outLen, key);
|
|
}
|
|
|
|
|
|
int wc_RsaEncryptSize(RsaKey* key)
|
|
{
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return RsaEncryptSize_fips(key);
|
|
}
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
int wc_RsaFlattenPublicKey(RsaKey* key, byte* a, word32* aSz, byte* b,
|
|
word32* bSz)
|
|
{
|
|
|
|
/* not specified as fips so not needing _fips */
|
|
return RsaFlattenPublicKey(key, a, aSz, b, bSz);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef WOLFSSL_KEY_GEN
|
|
int wc_MakeRsaKey(RsaKey* key, int size, long e, WC_RNG* rng)
|
|
{
|
|
return MakeRsaKey(key, size, e, rng);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* these are functions in asn and are routed to wolfssl/wolfcrypt/asn.c
|
|
* wc_RsaPrivateKeyDecode
|
|
* wc_RsaPublicKeyDecode
|
|
*/
|
|
|
|
#else /* else build without fips, or for new fips */
|
|
|
|
#include <wolfssl/wolfcrypt/random.h>
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
#ifdef WOLF_CRYPTO_CB
|
|
#include <wolfssl/wolfcrypt/cryptocb.h>
|
|
#endif
|
|
#ifdef NO_INLINE
|
|
#include <wolfssl/wolfcrypt/misc.h>
|
|
#else
|
|
#define WOLFSSL_MISC_INCLUDED
|
|
#include <wolfcrypt/src/misc.c>
|
|
#endif
|
|
|
|
|
|
enum {
|
|
RSA_STATE_NONE = 0,
|
|
|
|
RSA_STATE_ENCRYPT_PAD,
|
|
RSA_STATE_ENCRYPT_EXPTMOD,
|
|
RSA_STATE_ENCRYPT_RES,
|
|
|
|
RSA_STATE_DECRYPT_EXPTMOD,
|
|
RSA_STATE_DECRYPT_UNPAD,
|
|
RSA_STATE_DECRYPT_RES,
|
|
};
|
|
|
|
|
|
static void wc_RsaCleanup(RsaKey* key)
|
|
{
|
|
#ifndef WOLFSSL_RSA_VERIFY_INLINE
|
|
if (key && key->data) {
|
|
/* make sure any allocated memory is free'd */
|
|
if (key->dataIsAlloc) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
if (key->type == RSA_PRIVATE_DECRYPT ||
|
|
key->type == RSA_PRIVATE_ENCRYPT) {
|
|
ForceZero(key->data, key->dataLen);
|
|
}
|
|
#endif
|
|
XFREE(key->data, key->heap, DYNAMIC_TYPE_WOLF_BIGINT);
|
|
key->dataIsAlloc = 0;
|
|
}
|
|
key->data = NULL;
|
|
key->dataLen = 0;
|
|
}
|
|
#else
|
|
(void)key;
|
|
#endif
|
|
}
|
|
|
|
int wc_InitRsaKey_ex(RsaKey* key, void* heap, int devId)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
XMEMSET(key, 0, sizeof(RsaKey));
|
|
|
|
key->type = RSA_TYPE_UNKNOWN;
|
|
key->state = RSA_STATE_NONE;
|
|
key->heap = heap;
|
|
#ifndef WOLFSSL_RSA_VERIFY_INLINE
|
|
key->dataIsAlloc = 0;
|
|
key->data = NULL;
|
|
#endif
|
|
key->dataLen = 0;
|
|
#ifdef WC_RSA_BLINDING
|
|
key->rng = NULL;
|
|
#endif
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
key->devId = devId;
|
|
#else
|
|
(void)devId;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_ASYNC_CRYPT
|
|
#ifdef WOLFSSL_CERT_GEN
|
|
XMEMSET(&key->certSignCtx, 0, sizeof(CertSignCtx));
|
|
#endif
|
|
|
|
#ifdef WC_ASYNC_ENABLE_RSA
|
|
/* handle as async */
|
|
ret = wolfAsync_DevCtxInit(&key->asyncDev, WOLFSSL_ASYNC_MARKER_RSA,
|
|
key->heap, devId);
|
|
if (ret != 0)
|
|
return ret;
|
|
#endif /* WC_ASYNC_ENABLE_RSA */
|
|
#endif /* WOLFSSL_ASYNC_CRYPT */
|
|
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
ret = mp_init_multi(&key->n, &key->e, NULL, NULL, NULL, NULL);
|
|
if (ret != MP_OKAY)
|
|
return ret;
|
|
|
|
#if !defined(WOLFSSL_KEY_GEN) && !defined(OPENSSL_EXTRA) && defined(RSA_LOW_MEM)
|
|
ret = mp_init_multi(&key->d, &key->p, &key->q, NULL, NULL, NULL);
|
|
#else
|
|
ret = mp_init_multi(&key->d, &key->p, &key->q, &key->dP, &key->dQ, &key->u);
|
|
#endif
|
|
if (ret != MP_OKAY) {
|
|
mp_clear(&key->n);
|
|
mp_clear(&key->e);
|
|
return ret;
|
|
}
|
|
#else
|
|
ret = mp_init(&key->n);
|
|
if (ret != MP_OKAY)
|
|
return ret;
|
|
ret = mp_init(&key->e);
|
|
if (ret != MP_OKAY) {
|
|
mp_clear(&key->n);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_XILINX_CRYPT
|
|
key->pubExp = 0;
|
|
key->mod = NULL;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_AFALG_XILINX_RSA
|
|
key->alFd = WC_SOCK_NOTSET;
|
|
key->rdFd = WC_SOCK_NOTSET;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
int wc_InitRsaKey(RsaKey* key, void* heap)
|
|
{
|
|
return wc_InitRsaKey_ex(key, heap, INVALID_DEVID);
|
|
}
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
int wc_InitRsaKey_Id(RsaKey* key, unsigned char* id, int len, void* heap,
|
|
int devId)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (key == NULL)
|
|
ret = BAD_FUNC_ARG;
|
|
if (ret == 0 && (len < 0 || len > RSA_MAX_ID_LEN))
|
|
ret = BUFFER_E;
|
|
|
|
if (ret == 0)
|
|
ret = wc_InitRsaKey_ex(key, heap, devId);
|
|
if (ret == 0 && id != NULL && len != 0) {
|
|
XMEMCPY(key->id, id, len);
|
|
key->idLen = len;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int wc_InitRsaKey_Label(RsaKey* key, const char* label, void* heap, int devId)
|
|
{
|
|
int ret = 0;
|
|
int labelLen = 0;
|
|
|
|
if (key == NULL || label == NULL)
|
|
ret = BAD_FUNC_ARG;
|
|
if (ret == 0) {
|
|
labelLen = (int)XSTRLEN(label);
|
|
if (labelLen == 0 || labelLen > RSA_MAX_LABEL_LEN)
|
|
ret = BUFFER_E;
|
|
}
|
|
|
|
if (ret == 0)
|
|
ret = wc_InitRsaKey_ex(key, heap, devId);
|
|
if (ret == 0) {
|
|
XMEMCPY(key->label, label, labelLen);
|
|
key->labelLen = labelLen;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef WOLFSSL_XILINX_CRYPT
|
|
#define MAX_E_SIZE 4
|
|
/* Used to setup hardware state
|
|
*
|
|
* key the RSA key to setup
|
|
*
|
|
* returns 0 on success
|
|
*/
|
|
int wc_InitRsaHw(RsaKey* key)
|
|
{
|
|
unsigned char* m; /* RSA modulous */
|
|
word32 e = 0; /* RSA public exponent */
|
|
int mSz;
|
|
int eSz;
|
|
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
mSz = mp_unsigned_bin_size(&(key->n));
|
|
m = (unsigned char*)XMALLOC(mSz, key->heap, DYNAMIC_TYPE_KEY);
|
|
if (m == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
|
|
if (mp_to_unsigned_bin(&(key->n), m) != MP_OKAY) {
|
|
WOLFSSL_MSG("Unable to get RSA key modulus");
|
|
XFREE(m, key->heap, DYNAMIC_TYPE_KEY);
|
|
return MP_READ_E;
|
|
}
|
|
|
|
eSz = mp_unsigned_bin_size(&(key->e));
|
|
if (eSz > MAX_E_SIZE) {
|
|
WOLFSSL_MSG("Exponent of size 4 bytes expected");
|
|
XFREE(m, key->heap, DYNAMIC_TYPE_KEY);
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (mp_to_unsigned_bin(&(key->e), (byte*)&e + (MAX_E_SIZE - eSz))
|
|
!= MP_OKAY) {
|
|
XFREE(m, key->heap, DYNAMIC_TYPE_KEY);
|
|
WOLFSSL_MSG("Unable to get RSA key exponent");
|
|
return MP_READ_E;
|
|
}
|
|
|
|
/* check for existing mod buffer to avoid memory leak */
|
|
if (key->mod != NULL) {
|
|
XFREE(key->mod, key->heap, DYNAMIC_TYPE_KEY);
|
|
}
|
|
|
|
key->pubExp = e;
|
|
key->mod = m;
|
|
|
|
if (XSecure_RsaInitialize(&(key->xRsa), key->mod, NULL,
|
|
(byte*)&(key->pubExp)) != XST_SUCCESS) {
|
|
WOLFSSL_MSG("Unable to initialize RSA on hardware");
|
|
XFREE(m, key->heap, DYNAMIC_TYPE_KEY);
|
|
return BAD_STATE_E;
|
|
}
|
|
|
|
#ifdef WOLFSSL_XILINX_PATCH
|
|
/* currently a patch of xsecure_rsa.c for 2048 bit keys */
|
|
if (wc_RsaEncryptSize(key) == 256) {
|
|
if (XSecure_RsaSetSize(&(key->xRsa), 2048) != XST_SUCCESS) {
|
|
WOLFSSL_MSG("Unable to set RSA key size on hardware");
|
|
XFREE(m, key->heap, DYNAMIC_TYPE_KEY);
|
|
return BAD_STATE_E;
|
|
}
|
|
}
|
|
#endif
|
|
return 0;
|
|
} /* WOLFSSL_XILINX_CRYPT*/
|
|
|
|
#elif defined(WOLFSSL_CRYPTOCELL)
|
|
|
|
int wc_InitRsaHw(RsaKey* key)
|
|
{
|
|
CRYSError_t ret = 0;
|
|
byte e[3];
|
|
word32 eSz = sizeof(e);
|
|
byte n[256];
|
|
word32 nSz = sizeof(n);
|
|
byte d[256];
|
|
word32 dSz = sizeof(d);
|
|
byte p[128];
|
|
word32 pSz = sizeof(p);
|
|
byte q[128];
|
|
word32 qSz = sizeof(q);
|
|
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
ret = wc_RsaExportKey(key, e, &eSz, n, &nSz, d, &dSz, p, &pSz, q, &qSz);
|
|
if (ret != 0)
|
|
return MP_READ_E;
|
|
|
|
ret = CRYS_RSA_Build_PubKey(&key->ctx.pubKey, e, eSz, n, nSz);
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_Build_PubKey failed");
|
|
return ret;
|
|
}
|
|
|
|
ret = CRYS_RSA_Build_PrivKey(&key->ctx.privKey, d, dSz, e, eSz, n, nSz);
|
|
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_Build_PrivKey failed");
|
|
return ret;
|
|
}
|
|
key->type = RSA_PRIVATE;
|
|
return 0;
|
|
}
|
|
static int cc310_RSA_GenerateKeyPair(RsaKey* key, int size, long e)
|
|
{
|
|
CRYSError_t ret = 0;
|
|
CRYS_RSAKGData_t KeyGenData;
|
|
CRYS_RSAKGFipsContext_t FipsCtx;
|
|
byte ex[3];
|
|
uint16_t eSz = sizeof(ex);
|
|
byte n[256];
|
|
uint16_t nSz = sizeof(n);
|
|
|
|
ret = CRYS_RSA_KG_GenerateKeyPair(&wc_rndState,
|
|
wc_rndGenVectFunc,
|
|
(byte*)&e,
|
|
3*sizeof(uint8_t),
|
|
size,
|
|
&key->ctx.privKey,
|
|
&key->ctx.pubKey,
|
|
&KeyGenData,
|
|
&FipsCtx);
|
|
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_KG_GenerateKeyPair failed");
|
|
return ret;
|
|
}
|
|
|
|
ret = CRYS_RSA_Get_PubKey(&key->ctx.pubKey, ex, &eSz, n, &nSz);
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_Get_PubKey failed");
|
|
return ret;
|
|
}
|
|
ret = wc_RsaPublicKeyDecodeRaw(n, nSz, ex, eSz, key);
|
|
|
|
key->type = RSA_PRIVATE;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WOLFSSL_CRYPTOCELL */
|
|
|
|
int wc_FreeRsaKey(RsaKey* key)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
wc_RsaCleanup(key);
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
|
|
wolfAsync_DevCtxFree(&key->asyncDev, WOLFSSL_ASYNC_MARKER_RSA);
|
|
#endif
|
|
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
if (key->type == RSA_PRIVATE) {
|
|
#if defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA) || !defined(RSA_LOW_MEM)
|
|
mp_forcezero(&key->u);
|
|
mp_forcezero(&key->dQ);
|
|
mp_forcezero(&key->dP);
|
|
#endif
|
|
mp_forcezero(&key->q);
|
|
mp_forcezero(&key->p);
|
|
mp_forcezero(&key->d);
|
|
}
|
|
/* private part */
|
|
#if defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA) || !defined(RSA_LOW_MEM)
|
|
mp_clear(&key->u);
|
|
mp_clear(&key->dQ);
|
|
mp_clear(&key->dP);
|
|
#endif
|
|
mp_clear(&key->q);
|
|
mp_clear(&key->p);
|
|
mp_clear(&key->d);
|
|
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
|
|
|
|
/* public part */
|
|
mp_clear(&key->e);
|
|
mp_clear(&key->n);
|
|
|
|
#ifdef WOLFSSL_XILINX_CRYPT
|
|
XFREE(key->mod, key->heap, DYNAMIC_TYPE_KEY);
|
|
key->mod = NULL;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_AFALG_XILINX_RSA
|
|
/* make sure that sockets are closed on cleanup */
|
|
if (key->alFd > 0) {
|
|
close(key->alFd);
|
|
key->alFd = WC_SOCK_NOTSET;
|
|
}
|
|
if (key->rdFd > 0) {
|
|
close(key->rdFd);
|
|
key->rdFd = WC_SOCK_NOTSET;
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
#if defined(WOLFSSL_KEY_GEN) && !defined(WOLFSSL_NO_RSA_KEY_CHECK)
|
|
/* Check the pair-wise consistency of the RSA key.
|
|
* From NIST SP 800-56B, section 6.4.1.1.
|
|
* Verify that k = (k^e)^d, for some k: 1 < k < n-1. */
|
|
int wc_CheckRsaKey(RsaKey* key)
|
|
{
|
|
#if defined(WOLFSSL_CRYPTOCELL)
|
|
return 0;
|
|
#endif
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
mp_int *k = NULL, *tmp = NULL;
|
|
#else
|
|
mp_int k[1], tmp[1];
|
|
#endif
|
|
int ret = 0;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
k = (mp_int*)XMALLOC(sizeof(mp_int) * 2, NULL, DYNAMIC_TYPE_RSA);
|
|
if (k == NULL)
|
|
return MEMORY_E;
|
|
tmp = k + 1;
|
|
#endif
|
|
|
|
if (mp_init_multi(k, tmp, NULL, NULL, NULL, NULL) != MP_OKAY)
|
|
ret = MP_INIT_E;
|
|
|
|
if (ret == 0) {
|
|
if (key == NULL)
|
|
ret = BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (mp_set_int(k, 0x2342) != MP_OKAY)
|
|
ret = MP_READ_E;
|
|
}
|
|
#ifdef WOLFSSL_HAVE_SP_RSA
|
|
if (ret == 0) {
|
|
switch (mp_count_bits(&key->n)) {
|
|
#ifndef WOLFSSL_SP_NO_2048
|
|
case 2048:
|
|
ret = sp_ModExp_2048(k, &key->e, &key->n, tmp);
|
|
if (ret != 0)
|
|
ret = MP_EXPTMOD_E;
|
|
if (ret == 0) {
|
|
ret = sp_ModExp_2048(tmp, &key->d, &key->n, tmp);
|
|
if (ret != 0)
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
break;
|
|
#endif /* WOLFSSL_SP_NO_2048 */
|
|
#ifndef WOLFSSL_SP_NO_3072
|
|
case 3072:
|
|
ret = sp_ModExp_3072(k, &key->e, &key->n, tmp);
|
|
if (ret != 0)
|
|
ret = MP_EXPTMOD_E;
|
|
if (ret == 0) {
|
|
ret = sp_ModExp_3072(tmp, &key->d, &key->n, tmp);
|
|
if (ret != 0)
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
break;
|
|
#endif /* WOLFSSL_SP_NO_3072 */
|
|
#ifdef WOLFSSL_SP_4096
|
|
case 4096:
|
|
ret = sp_ModExp_4096(k, &key->e, &key->n, tmp);
|
|
if (ret != 0)
|
|
ret = MP_EXPTMOD_E;
|
|
if (ret == 0) {
|
|
ret = sp_ModExp_4096(tmp, &key->d, &key->n, tmp);
|
|
if (ret != 0)
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
break;
|
|
#endif /* WOLFSSL_SP_4096 */
|
|
default:
|
|
/* If using only single precsision math then issue key size
|
|
* error, otherwise fall-back to multi-precision math
|
|
* calculation */
|
|
#if defined(WOLFSSL_SP_MATH)
|
|
ret = WC_KEY_SIZE_E;
|
|
#else
|
|
if (mp_exptmod_nct(k, &key->e, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
if (ret == 0) {
|
|
if (mp_exptmod(tmp, &key->d, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
#else
|
|
if (ret == 0) {
|
|
if (mp_exptmod_nct(k, &key->e, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (mp_exptmod(tmp, &key->d, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
#endif /* WOLFSSL_HAVE_SP_RSA */
|
|
|
|
if (ret == 0) {
|
|
if (mp_cmp(k, tmp) != MP_EQ)
|
|
ret = RSA_KEY_PAIR_E;
|
|
}
|
|
|
|
/* Check d is less than n. */
|
|
if (ret == 0 ) {
|
|
if (mp_cmp(&key->d, &key->n) != MP_LT) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
/* Check p*q = n. */
|
|
if (ret == 0 ) {
|
|
if (mp_mul(&key->p, &key->q, tmp) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
if (ret == 0 ) {
|
|
if (mp_cmp(&key->n, tmp) != MP_EQ) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
|
|
/* Check dP, dQ and u if they exist */
|
|
if (ret == 0 && !mp_iszero(&key->dP)) {
|
|
if (mp_sub_d(&key->p, 1, tmp) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
/* Check dP <= p-1. */
|
|
if (ret == 0) {
|
|
if (mp_cmp(&key->dP, tmp) != MP_LT) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
/* Check e*dP mod p-1 = 1. (dP = 1/e mod p-1) */
|
|
if (ret == 0) {
|
|
if (mp_mulmod(&key->dP, &key->e, tmp, tmp) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
if (ret == 0 ) {
|
|
if (!mp_isone(tmp)) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (mp_sub_d(&key->q, 1, tmp) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
/* Check dQ <= q-1. */
|
|
if (ret == 0) {
|
|
if (mp_cmp(&key->dQ, tmp) != MP_LT) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
/* Check e*dP mod p-1 = 1. (dQ = 1/e mod q-1) */
|
|
if (ret == 0) {
|
|
if (mp_mulmod(&key->dQ, &key->e, tmp, tmp) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
if (ret == 0 ) {
|
|
if (!mp_isone(tmp)) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
|
|
/* Check u <= p. */
|
|
if (ret == 0) {
|
|
if (mp_cmp(&key->u, &key->p) != MP_LT) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
/* Check u*q mod p = 1. (u = 1/q mod p) */
|
|
if (ret == 0) {
|
|
if (mp_mulmod(&key->u, &key->q, &key->p, tmp) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
if (ret == 0 ) {
|
|
if (!mp_isone(tmp)) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_forcezero(tmp);
|
|
mp_clear(tmp);
|
|
mp_clear(k);
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(k, NULL, DYNAMIC_TYPE_RSA);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WOLFSSL_KEY_GEN && !WOLFSSL_NO_RSA_KEY_CHECK */
|
|
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
|
|
|
|
|
|
#if !defined(WC_NO_RSA_OAEP) || defined(WC_RSA_PSS)
|
|
/* Uses MGF1 standard as a mask generation function
|
|
hType: hash type used
|
|
seed: seed to use for generating mask
|
|
seedSz: size of seed buffer
|
|
out: mask output after generation
|
|
outSz: size of output buffer
|
|
*/
|
|
#if !defined(NO_SHA) || !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || defined(WOLFSSL_SHA512)
|
|
static int RsaMGF1(enum wc_HashType hType, byte* seed, word32 seedSz,
|
|
byte* out, word32 outSz, void* heap)
|
|
{
|
|
byte* tmp;
|
|
/* needs to be large enough for seed size plus counter(4) */
|
|
byte tmpA[WC_MAX_DIGEST_SIZE + 4];
|
|
byte tmpF; /* 1 if dynamic memory needs freed */
|
|
word32 tmpSz;
|
|
int hLen;
|
|
int ret;
|
|
word32 counter;
|
|
word32 idx;
|
|
hLen = wc_HashGetDigestSize(hType);
|
|
counter = 0;
|
|
idx = 0;
|
|
|
|
(void)heap;
|
|
|
|
/* check error return of wc_HashGetDigestSize */
|
|
if (hLen < 0) {
|
|
return hLen;
|
|
}
|
|
|
|
/* if tmp is not large enough than use some dynamic memory */
|
|
if ((seedSz + 4) > sizeof(tmpA) || (word32)hLen > sizeof(tmpA)) {
|
|
/* find largest amount of memory needed which will be the max of
|
|
* hLen and (seedSz + 4) since tmp is used to store the hash digest */
|
|
tmpSz = ((seedSz + 4) > (word32)hLen)? seedSz + 4: (word32)hLen;
|
|
tmp = (byte*)XMALLOC(tmpSz, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (tmp == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
tmpF = 1; /* make sure to free memory when done */
|
|
}
|
|
else {
|
|
/* use array on the stack */
|
|
tmpSz = sizeof(tmpA);
|
|
tmp = tmpA;
|
|
tmpF = 0; /* no need to free memory at end */
|
|
}
|
|
|
|
do {
|
|
int i = 0;
|
|
XMEMCPY(tmp, seed, seedSz);
|
|
|
|
/* counter to byte array appended to tmp */
|
|
tmp[seedSz] = (byte)((counter >> 24) & 0xFF);
|
|
tmp[seedSz + 1] = (byte)((counter >> 16) & 0xFF);
|
|
tmp[seedSz + 2] = (byte)((counter >> 8) & 0xFF);
|
|
tmp[seedSz + 3] = (byte)((counter) & 0xFF);
|
|
|
|
/* hash and append to existing output */
|
|
if ((ret = wc_Hash(hType, tmp, (seedSz + 4), tmp, tmpSz)) != 0) {
|
|
/* check for if dynamic memory was needed, then free */
|
|
if (tmpF) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < hLen && idx < outSz; i++) {
|
|
out[idx++] = tmp[i];
|
|
}
|
|
counter++;
|
|
} while (idx < outSz);
|
|
|
|
/* check for if dynamic memory was needed, then free */
|
|
if (tmpF) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* SHA2 Hashes */
|
|
|
|
/* helper function to direct which mask generation function is used
|
|
switched on type input
|
|
*/
|
|
static int RsaMGF(int type, byte* seed, word32 seedSz, byte* out,
|
|
word32 outSz, void* heap)
|
|
{
|
|
int ret;
|
|
|
|
switch(type) {
|
|
#ifndef NO_SHA
|
|
case WC_MGF1SHA1:
|
|
ret = RsaMGF1(WC_HASH_TYPE_SHA, seed, seedSz, out, outSz, heap);
|
|
break;
|
|
#endif
|
|
#ifndef NO_SHA256
|
|
#ifdef WOLFSSL_SHA224
|
|
case WC_MGF1SHA224:
|
|
ret = RsaMGF1(WC_HASH_TYPE_SHA224, seed, seedSz, out, outSz, heap);
|
|
break;
|
|
#endif
|
|
case WC_MGF1SHA256:
|
|
ret = RsaMGF1(WC_HASH_TYPE_SHA256, seed, seedSz, out, outSz, heap);
|
|
break;
|
|
#endif
|
|
#ifdef WOLFSSL_SHA384
|
|
case WC_MGF1SHA384:
|
|
ret = RsaMGF1(WC_HASH_TYPE_SHA384, seed, seedSz, out, outSz, heap);
|
|
break;
|
|
#endif
|
|
#ifdef WOLFSSL_SHA512
|
|
case WC_MGF1SHA512:
|
|
ret = RsaMGF1(WC_HASH_TYPE_SHA512, seed, seedSz, out, outSz, heap);
|
|
break;
|
|
#endif
|
|
default:
|
|
WOLFSSL_MSG("Unknown MGF type: check build options");
|
|
ret = BAD_FUNC_ARG;
|
|
}
|
|
|
|
/* in case of default avoid unused warning */
|
|
(void)seed;
|
|
(void)seedSz;
|
|
(void)out;
|
|
(void)outSz;
|
|
(void)heap;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* !WC_NO_RSA_OAEP || WC_RSA_PSS */
|
|
|
|
|
|
/* Padding */
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
#ifndef WC_NO_RNG
|
|
#ifndef WC_NO_RSA_OAEP
|
|
static int RsaPad_OAEP(const byte* input, word32 inputLen, byte* pkcsBlock,
|
|
word32 pkcsBlockLen, byte padValue, WC_RNG* rng,
|
|
enum wc_HashType hType, int mgf, byte* optLabel, word32 labelLen,
|
|
void* heap)
|
|
{
|
|
int ret;
|
|
int hLen;
|
|
int psLen;
|
|
int i;
|
|
word32 idx;
|
|
|
|
byte* dbMask;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
byte* lHash = NULL;
|
|
byte* seed = NULL;
|
|
#else
|
|
/* must be large enough to contain largest hash */
|
|
byte lHash[WC_MAX_DIGEST_SIZE];
|
|
byte seed[ WC_MAX_DIGEST_SIZE];
|
|
#endif
|
|
|
|
/* no label is allowed, but catch if no label provided and length > 0 */
|
|
if (optLabel == NULL && labelLen > 0) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
/* limit of label is the same as limit of hash function which is massive */
|
|
hLen = wc_HashGetDigestSize(hType);
|
|
if (hLen < 0) {
|
|
return hLen;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
lHash = (byte*)XMALLOC(hLen, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (lHash == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
seed = (byte*)XMALLOC(hLen, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (seed == NULL) {
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
return MEMORY_E;
|
|
}
|
|
#else
|
|
/* hLen should never be larger than lHash since size is max digest size,
|
|
but check before blindly calling wc_Hash */
|
|
if ((word32)hLen > sizeof(lHash)) {
|
|
WOLFSSL_MSG("OAEP lHash to small for digest!!");
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
if ((ret = wc_Hash(hType, optLabel, labelLen, lHash, hLen)) != 0) {
|
|
WOLFSSL_MSG("OAEP hash type possibly not supported or lHash to small");
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/* handles check of location for idx as well as psLen, cast to int to check
|
|
for pkcsBlockLen(k) - 2 * hLen - 2 being negative
|
|
This check is similar to decryption where k > 2 * hLen + 2 as msg
|
|
size approaches 0. In decryption if k is less than or equal -- then there
|
|
is no possible room for msg.
|
|
k = RSA key size
|
|
hLen = hash digest size -- will always be >= 0 at this point
|
|
*/
|
|
if ((word32)(2 * hLen + 2) > pkcsBlockLen) {
|
|
WOLFSSL_MSG("OAEP pad error hash to big for RSA key size");
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (inputLen > (pkcsBlockLen - 2 * hLen - 2)) {
|
|
WOLFSSL_MSG("OAEP pad error message too long");
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
/* concatenate lHash || PS || 0x01 || msg */
|
|
idx = pkcsBlockLen - 1 - inputLen;
|
|
psLen = pkcsBlockLen - inputLen - 2 * hLen - 2;
|
|
if (pkcsBlockLen < inputLen) { /*make sure not writing over end of buffer */
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return BUFFER_E;
|
|
}
|
|
XMEMCPY(pkcsBlock + (pkcsBlockLen - inputLen), input, inputLen);
|
|
pkcsBlock[idx--] = 0x01; /* PS and M separator */
|
|
while (psLen > 0 && idx > 0) {
|
|
pkcsBlock[idx--] = 0x00;
|
|
psLen--;
|
|
}
|
|
|
|
idx = idx - hLen + 1;
|
|
XMEMCPY(pkcsBlock + idx, lHash, hLen);
|
|
|
|
/* generate random seed */
|
|
if ((ret = wc_RNG_GenerateBlock(rng, seed, hLen)) != 0) {
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/* create maskedDB from dbMask */
|
|
dbMask = (byte*)XMALLOC(pkcsBlockLen - hLen - 1, heap, DYNAMIC_TYPE_RSA);
|
|
if (dbMask == NULL) {
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return MEMORY_E;
|
|
}
|
|
XMEMSET(dbMask, 0, pkcsBlockLen - hLen - 1); /* help static analyzer */
|
|
|
|
ret = RsaMGF(mgf, seed, hLen, dbMask, pkcsBlockLen - hLen - 1, heap);
|
|
if (ret != 0) {
|
|
XFREE(dbMask, heap, DYNAMIC_TYPE_RSA);
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
i = 0;
|
|
idx = hLen + 1;
|
|
while (idx < pkcsBlockLen && (word32)i < (pkcsBlockLen - hLen -1)) {
|
|
pkcsBlock[idx] = dbMask[i++] ^ pkcsBlock[idx];
|
|
idx++;
|
|
}
|
|
XFREE(dbMask, heap, DYNAMIC_TYPE_RSA);
|
|
|
|
|
|
/* create maskedSeed from seedMask */
|
|
idx = 0;
|
|
pkcsBlock[idx++] = 0x00;
|
|
/* create seedMask inline */
|
|
if ((ret = RsaMGF(mgf, pkcsBlock + hLen + 1, pkcsBlockLen - hLen - 1,
|
|
pkcsBlock + 1, hLen, heap)) != 0) {
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/* xor created seedMask with seed to make maskedSeed */
|
|
i = 0;
|
|
while (idx < (word32)(hLen + 1) && i < hLen) {
|
|
pkcsBlock[idx] = pkcsBlock[idx] ^ seed[i++];
|
|
idx++;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(lHash, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
XFREE(seed, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
(void)padValue;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !WC_NO_RSA_OAEP */
|
|
|
|
#ifdef WC_RSA_PSS
|
|
|
|
/* 0x00 .. 0x00 0x01 | Salt | Gen Hash | 0xbc
|
|
* XOR MGF over all bytes down to end of Salt
|
|
* Gen Hash = HASH(8 * 0x00 | Message Hash | Salt)
|
|
*
|
|
* input Digest of the message.
|
|
* inputLen Length of digest.
|
|
* pkcsBlock Buffer to write to.
|
|
* pkcsBlockLen Length of buffer to write to.
|
|
* rng Random number generator (for salt).
|
|
* htype Hash function to use.
|
|
* mgf Mask generation function.
|
|
* saltLen Length of salt to put in padding.
|
|
* bits Length of key in bits.
|
|
* heap Used for dynamic memory allocation.
|
|
* returns 0 on success, PSS_SALTLEN_E when the salt length is invalid
|
|
* and other negative values on error.
|
|
*/
|
|
static int RsaPad_PSS(const byte* input, word32 inputLen, byte* pkcsBlock,
|
|
word32 pkcsBlockLen, WC_RNG* rng, enum wc_HashType hType, int mgf,
|
|
int saltLen, int bits, void* heap)
|
|
{
|
|
int ret = 0;
|
|
int hLen, i, o, maskLen, hiBits;
|
|
byte* m;
|
|
byte* s;
|
|
#if defined(WOLFSSL_NO_MALLOC) && !defined(WOLFSSL_STATIC_MEMORY)
|
|
byte msg[RSA_MAX_SIZE/8 + RSA_PSS_PAD_SZ];
|
|
#else
|
|
byte* msg = NULL;
|
|
#endif
|
|
#if defined(WOLFSSL_PSS_LONG_SALT) || defined(WOLFSSL_PSS_SALT_LEN_DISCOVER)
|
|
byte* salt;
|
|
#else
|
|
byte salt[WC_MAX_DIGEST_SIZE];
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_PSS_LONG_SALT) || defined(WOLFSSL_PSS_SALT_LEN_DISCOVER)
|
|
if (pkcsBlockLen > RSA_MAX_SIZE/8) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
hLen = wc_HashGetDigestSize(hType);
|
|
if (hLen < 0)
|
|
return hLen;
|
|
if ((int)inputLen != hLen) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
hiBits = (bits - 1) & 0x7;
|
|
if (hiBits == 0) {
|
|
/* Per RFC8017, set the leftmost 8emLen - emBits bits of the
|
|
leftmost octet in DB to zero.
|
|
*/
|
|
*(pkcsBlock++) = 0;
|
|
pkcsBlockLen--;
|
|
}
|
|
|
|
if (saltLen == RSA_PSS_SALT_LEN_DEFAULT) {
|
|
saltLen = hLen;
|
|
#ifdef WOLFSSL_SHA512
|
|
/* See FIPS 186-4 section 5.5 item (e). */
|
|
if (bits == 1024 && hLen == WC_SHA512_DIGEST_SIZE) {
|
|
saltLen = RSA_PSS_SALT_MAX_SZ;
|
|
}
|
|
#endif
|
|
}
|
|
#ifndef WOLFSSL_PSS_LONG_SALT
|
|
else if (saltLen > hLen) {
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
#endif
|
|
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
else if (saltLen < RSA_PSS_SALT_LEN_DEFAULT) {
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
#else
|
|
else if (saltLen == RSA_PSS_SALT_LEN_DISCOVER) {
|
|
saltLen = (int)pkcsBlockLen - hLen - 2;
|
|
if (saltLen < 0) {
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
}
|
|
else if (saltLen < RSA_PSS_SALT_LEN_DISCOVER) {
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
#endif
|
|
if ((int)pkcsBlockLen - hLen < saltLen + 2) {
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
maskLen = pkcsBlockLen - 1 - hLen;
|
|
|
|
#if defined(WOLFSSL_PSS_LONG_SALT) || defined(WOLFSSL_PSS_SALT_LEN_DISCOVER)
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
msg = (byte*)XMALLOC(RSA_PSS_PAD_SZ + inputLen + saltLen, heap,
|
|
DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (msg == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
salt = s = m = msg;
|
|
XMEMSET(m, 0, RSA_PSS_PAD_SZ);
|
|
m += RSA_PSS_PAD_SZ;
|
|
XMEMCPY(m, input, inputLen);
|
|
m += inputLen;
|
|
o = (int)(m - s);
|
|
if (saltLen > 0) {
|
|
ret = wc_RNG_GenerateBlock(rng, m, saltLen);
|
|
if (ret == 0) {
|
|
m += saltLen;
|
|
}
|
|
}
|
|
#else
|
|
if (pkcsBlockLen < RSA_PSS_PAD_SZ + inputLen + saltLen) {
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
msg = (byte*)XMALLOC(RSA_PSS_PAD_SZ + inputLen + saltLen, heap,
|
|
DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (msg == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
m = msg;
|
|
}
|
|
else {
|
|
m = pkcsBlock;
|
|
}
|
|
s = m;
|
|
XMEMSET(m, 0, RSA_PSS_PAD_SZ);
|
|
m += RSA_PSS_PAD_SZ;
|
|
XMEMCPY(m, input, inputLen);
|
|
m += inputLen;
|
|
o = 0;
|
|
if (saltLen > 0) {
|
|
ret = wc_RNG_GenerateBlock(rng, salt, saltLen);
|
|
if (ret == 0) {
|
|
XMEMCPY(m, salt, saltLen);
|
|
m += saltLen;
|
|
}
|
|
}
|
|
#endif
|
|
if (ret == 0) {
|
|
/* Put Hash at end of pkcsBlock - 1 */
|
|
ret = wc_Hash(hType, s, (word32)(m - s), pkcsBlock + maskLen, hLen);
|
|
}
|
|
if (ret == 0) {
|
|
/* Set the last eight bits or trailer field to the octet 0xbc */
|
|
pkcsBlock[pkcsBlockLen - 1] = RSA_PSS_PAD_TERM;
|
|
|
|
ret = RsaMGF(mgf, pkcsBlock + maskLen, hLen, pkcsBlock, maskLen, heap);
|
|
}
|
|
if (ret == 0) {
|
|
/* Clear the first high bit when "8emLen - emBits" is non-zero.
|
|
where emBits = n modBits - 1 */
|
|
if (hiBits)
|
|
pkcsBlock[0] &= (1 << hiBits) - 1;
|
|
|
|
m = pkcsBlock + maskLen - saltLen - 1;
|
|
*(m++) ^= 0x01;
|
|
for (i = 0; i < saltLen; i++) {
|
|
m[i] ^= salt[o + i];
|
|
}
|
|
}
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
if (msg != NULL) {
|
|
XFREE(msg, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif /* WC_RSA_PSS */
|
|
#endif /* !WC_NO_RNG */
|
|
|
|
static int RsaPad(const byte* input, word32 inputLen, byte* pkcsBlock,
|
|
word32 pkcsBlockLen, byte padValue, WC_RNG* rng)
|
|
{
|
|
if (input == NULL || inputLen == 0 || pkcsBlock == NULL ||
|
|
pkcsBlockLen == 0) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (pkcsBlockLen - RSA_MIN_PAD_SZ < inputLen) {
|
|
WOLFSSL_MSG("RsaPad error, invalid length");
|
|
return RSA_PAD_E;
|
|
}
|
|
pkcsBlock[0] = 0x0; /* set first byte to zero and advance */
|
|
pkcsBlock++; pkcsBlockLen--;
|
|
pkcsBlock[0] = padValue; /* insert padValue */
|
|
|
|
if (padValue == RSA_BLOCK_TYPE_1) {
|
|
|
|
/* pad with 0xff bytes */
|
|
XMEMSET(&pkcsBlock[1], 0xFF, pkcsBlockLen - inputLen - 2);
|
|
}
|
|
else {
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WC_NO_RNG)
|
|
/* pad with non-zero random bytes */
|
|
word32 padLen, i;
|
|
int ret;
|
|
padLen = pkcsBlockLen - inputLen - 1;
|
|
ret = wc_RNG_GenerateBlock(rng, &pkcsBlock[1], padLen);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* remove zeros */
|
|
for (i = 1; i < padLen; i++) {
|
|
if (pkcsBlock[i] == 0) pkcsBlock[i] = 0x01;
|
|
}
|
|
#else
|
|
(void)rng;
|
|
return RSA_WRONG_TYPE_E;
|
|
#endif
|
|
}
|
|
|
|
pkcsBlock[pkcsBlockLen-inputLen-1] = 0; /* separator */
|
|
XMEMCPY(pkcsBlock+pkcsBlockLen-inputLen, input, inputLen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* helper function to direct which padding is used */
|
|
int wc_RsaPad_ex(const byte* input, word32 inputLen, byte* pkcsBlock,
|
|
word32 pkcsBlockLen, byte padValue, WC_RNG* rng, int padType,
|
|
enum wc_HashType hType, int mgf, byte* optLabel, word32 labelLen,
|
|
int saltLen, int bits, void* heap)
|
|
{
|
|
int ret;
|
|
|
|
switch (padType)
|
|
{
|
|
case WC_RSA_PKCSV15_PAD:
|
|
/*WOLFSSL_MSG("wolfSSL Using RSA PKCSV15 padding");*/
|
|
ret = RsaPad(input, inputLen, pkcsBlock, pkcsBlockLen,
|
|
padValue, rng);
|
|
break;
|
|
|
|
#ifndef WC_NO_RNG
|
|
#ifndef WC_NO_RSA_OAEP
|
|
case WC_RSA_OAEP_PAD:
|
|
WOLFSSL_MSG("wolfSSL Using RSA OAEP padding");
|
|
ret = RsaPad_OAEP(input, inputLen, pkcsBlock, pkcsBlockLen,
|
|
padValue, rng, hType, mgf, optLabel, labelLen, heap);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WC_RSA_PSS
|
|
case WC_RSA_PSS_PAD:
|
|
WOLFSSL_MSG("wolfSSL Using RSA PSS padding");
|
|
ret = RsaPad_PSS(input, inputLen, pkcsBlock, pkcsBlockLen, rng,
|
|
hType, mgf, saltLen, bits, heap);
|
|
break;
|
|
#endif
|
|
#endif /* !WC_NO_RNG */
|
|
|
|
#ifdef WC_RSA_NO_PADDING
|
|
case WC_RSA_NO_PAD:
|
|
WOLFSSL_MSG("wolfSSL Using NO padding");
|
|
|
|
/* In the case of no padding being used check that input is exactly
|
|
* the RSA key length */
|
|
if (bits <= 0 || inputLen != ((word32)bits/WOLFSSL_BIT_SIZE)) {
|
|
WOLFSSL_MSG("Bad input size");
|
|
ret = RSA_PAD_E;
|
|
}
|
|
else {
|
|
XMEMCPY(pkcsBlock, input, inputLen);
|
|
ret = 0;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
WOLFSSL_MSG("Unknown RSA Pad Type");
|
|
ret = RSA_PAD_E;
|
|
}
|
|
|
|
/* silence warning if not used with padding scheme */
|
|
(void)input;
|
|
(void)inputLen;
|
|
(void)pkcsBlock;
|
|
(void)pkcsBlockLen;
|
|
(void)padValue;
|
|
(void)rng;
|
|
(void)padType;
|
|
(void)hType;
|
|
(void)mgf;
|
|
(void)optLabel;
|
|
(void)labelLen;
|
|
(void)saltLen;
|
|
(void)bits;
|
|
(void)heap;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WOLFSSL_RSA_VERIFY_ONLY */
|
|
|
|
|
|
/* UnPadding */
|
|
#ifndef WC_NO_RSA_OAEP
|
|
/* UnPad plaintext, set start to *output, return length of plaintext,
|
|
* < 0 on error */
|
|
static int RsaUnPad_OAEP(byte *pkcsBlock, unsigned int pkcsBlockLen,
|
|
byte **output, enum wc_HashType hType, int mgf,
|
|
byte* optLabel, word32 labelLen, void* heap)
|
|
{
|
|
int hLen;
|
|
int ret;
|
|
byte h[WC_MAX_DIGEST_SIZE]; /* max digest size */
|
|
byte* tmp;
|
|
word32 idx;
|
|
|
|
/* no label is allowed, but catch if no label provided and length > 0 */
|
|
if (optLabel == NULL && labelLen > 0) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
hLen = wc_HashGetDigestSize(hType);
|
|
if ((hLen < 0) || (pkcsBlockLen < (2 * (word32)hLen + 2))) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
tmp = (byte*)XMALLOC(pkcsBlockLen, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (tmp == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
XMEMSET(tmp, 0, pkcsBlockLen);
|
|
|
|
/* find seedMask value */
|
|
if ((ret = RsaMGF(mgf, (byte*)(pkcsBlock + (hLen + 1)),
|
|
pkcsBlockLen - hLen - 1, tmp, hLen, heap)) != 0) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
return ret;
|
|
}
|
|
|
|
/* xor seedMask value with maskedSeed to get seed value */
|
|
for (idx = 0; idx < (word32)hLen; idx++) {
|
|
tmp[idx] = tmp[idx] ^ pkcsBlock[1 + idx];
|
|
}
|
|
|
|
/* get dbMask value */
|
|
if ((ret = RsaMGF(mgf, tmp, hLen, tmp + hLen,
|
|
pkcsBlockLen - hLen - 1, heap)) != 0) {
|
|
XFREE(tmp, NULL, DYNAMIC_TYPE_RSA_BUFFER);
|
|
return ret;
|
|
}
|
|
|
|
/* get DB value by doing maskedDB xor dbMask */
|
|
for (idx = 0; idx < (pkcsBlockLen - hLen - 1); idx++) {
|
|
pkcsBlock[hLen + 1 + idx] = pkcsBlock[hLen + 1 + idx] ^ tmp[idx + hLen];
|
|
}
|
|
|
|
/* done with use of tmp buffer */
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
|
|
/* advance idx to index of PS and msg separator, account for PS size of 0*/
|
|
idx = hLen + 1 + hLen;
|
|
while (idx < pkcsBlockLen && pkcsBlock[idx] == 0) {idx++;}
|
|
|
|
/* create hash of label for comparison with hash sent */
|
|
if ((ret = wc_Hash(hType, optLabel, labelLen, h, hLen)) != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* say no to chosen ciphertext attack.
|
|
Comparison of lHash, Y, and separator value needs to all happen in
|
|
constant time.
|
|
Attackers should not be able to get error condition from the timing of
|
|
these checks.
|
|
*/
|
|
ret = 0;
|
|
ret |= ConstantCompare(pkcsBlock + hLen + 1, h, hLen);
|
|
ret += pkcsBlock[idx++] ^ 0x01; /* separator value is 0x01 */
|
|
ret += pkcsBlock[0] ^ 0x00; /* Y, the first value, should be 0 */
|
|
|
|
/* Return 0 data length on error. */
|
|
idx = ctMaskSelInt(ctMaskEq(ret, 0), idx, pkcsBlockLen);
|
|
|
|
/* adjust pointer to correct location in array and return size of M */
|
|
*output = (byte*)(pkcsBlock + idx);
|
|
return pkcsBlockLen - idx;
|
|
}
|
|
#endif /* WC_NO_RSA_OAEP */
|
|
|
|
#ifdef WC_RSA_PSS
|
|
/* 0x00 .. 0x00 0x01 | Salt | Gen Hash | 0xbc
|
|
* MGF over all bytes down to end of Salt
|
|
*
|
|
* pkcsBlock Buffer holding decrypted data.
|
|
* pkcsBlockLen Length of buffer.
|
|
* htype Hash function to use.
|
|
* mgf Mask generation function.
|
|
* saltLen Length of salt to put in padding.
|
|
* bits Length of key in bits.
|
|
* heap Used for dynamic memory allocation.
|
|
* returns the sum of salt length and SHA-256 digest size on success.
|
|
* Otherwise, PSS_SALTLEN_E for an incorrect salt length,
|
|
* WC_KEY_SIZE_E for an incorrect encoded message (EM) size
|
|
and other negative values on error.
|
|
*/
|
|
static int RsaUnPad_PSS(byte *pkcsBlock, unsigned int pkcsBlockLen,
|
|
byte **output, enum wc_HashType hType, int mgf,
|
|
int saltLen, int bits, void* heap)
|
|
{
|
|
int ret;
|
|
byte* tmp;
|
|
int hLen, i, maskLen;
|
|
#ifdef WOLFSSL_SHA512
|
|
int orig_bits = bits;
|
|
#endif
|
|
#if defined(WOLFSSL_NO_MALLOC) && !defined(WOLFSSL_STATIC_MEMORY)
|
|
byte tmp_buf[RSA_MAX_SIZE/8];
|
|
tmp = tmp_buf;
|
|
|
|
if (pkcsBlockLen > RSA_MAX_SIZE/8) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
hLen = wc_HashGetDigestSize(hType);
|
|
if (hLen < 0)
|
|
return hLen;
|
|
bits = (bits - 1) & 0x7;
|
|
if ((pkcsBlock[0] & (0xff << bits)) != 0) {
|
|
return BAD_PADDING_E;
|
|
}
|
|
if (bits == 0) {
|
|
pkcsBlock++;
|
|
pkcsBlockLen--;
|
|
}
|
|
maskLen = (int)pkcsBlockLen - 1 - hLen;
|
|
if (maskLen < 0) {
|
|
WOLFSSL_MSG("RsaUnPad_PSS: Hash too large");
|
|
return WC_KEY_SIZE_E;
|
|
}
|
|
|
|
if (saltLen == RSA_PSS_SALT_LEN_DEFAULT) {
|
|
saltLen = hLen;
|
|
#ifdef WOLFSSL_SHA512
|
|
/* See FIPS 186-4 section 5.5 item (e). */
|
|
if (orig_bits == 1024 && hLen == WC_SHA512_DIGEST_SIZE)
|
|
saltLen = RSA_PSS_SALT_MAX_SZ;
|
|
#endif
|
|
}
|
|
#ifndef WOLFSSL_PSS_LONG_SALT
|
|
else if (saltLen > hLen)
|
|
return PSS_SALTLEN_E;
|
|
#endif
|
|
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
else if (saltLen < RSA_PSS_SALT_LEN_DEFAULT)
|
|
return PSS_SALTLEN_E;
|
|
if (maskLen < saltLen + 1) {
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
#else
|
|
else if (saltLen < RSA_PSS_SALT_LEN_DISCOVER)
|
|
return PSS_SALTLEN_E;
|
|
if (saltLen != RSA_PSS_SALT_LEN_DISCOVER && maskLen < saltLen + 1) {
|
|
return WC_KEY_SIZE_E;
|
|
}
|
|
#endif
|
|
|
|
if (pkcsBlock[pkcsBlockLen - 1] != RSA_PSS_PAD_TERM) {
|
|
WOLFSSL_MSG("RsaUnPad_PSS: Padding Term Error");
|
|
return BAD_PADDING_E;
|
|
}
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
tmp = (byte*)XMALLOC(maskLen, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (tmp == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
if ((ret = RsaMGF(mgf, pkcsBlock + maskLen, hLen, tmp, maskLen,
|
|
heap)) != 0) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
return ret;
|
|
}
|
|
|
|
tmp[0] &= (1 << bits) - 1;
|
|
pkcsBlock[0] &= (1 << bits) - 1;
|
|
#ifdef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
if (saltLen == RSA_PSS_SALT_LEN_DISCOVER) {
|
|
for (i = 0; i < maskLen - 1; i++) {
|
|
if (tmp[i] != pkcsBlock[i]) {
|
|
break;
|
|
}
|
|
}
|
|
if (tmp[i] != (pkcsBlock[i] ^ 0x01)) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
WOLFSSL_MSG("RsaUnPad_PSS: Padding Error Match");
|
|
return PSS_SALTLEN_RECOVER_E;
|
|
}
|
|
saltLen = maskLen - (i + 1);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (i = 0; i < maskLen - 1 - saltLen; i++) {
|
|
if (tmp[i] != pkcsBlock[i]) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
WOLFSSL_MSG("RsaUnPad_PSS: Padding Error Match");
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
}
|
|
if (tmp[i] != (pkcsBlock[i] ^ 0x01)) {
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
WOLFSSL_MSG("RsaUnPad_PSS: Padding Error End");
|
|
return PSS_SALTLEN_E;
|
|
}
|
|
}
|
|
for (i++; i < maskLen; i++)
|
|
pkcsBlock[i] ^= tmp[i];
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
XFREE(tmp, heap, DYNAMIC_TYPE_RSA_BUFFER);
|
|
#endif
|
|
|
|
*output = pkcsBlock + maskLen - saltLen;
|
|
return saltLen + hLen;
|
|
}
|
|
#endif
|
|
|
|
/* UnPad plaintext, set start to *output, return length of plaintext,
|
|
* < 0 on error */
|
|
static int RsaUnPad(const byte *pkcsBlock, unsigned int pkcsBlockLen,
|
|
byte **output, byte padValue)
|
|
{
|
|
int ret = BAD_FUNC_ARG;
|
|
word16 i;
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
byte invalid = 0;
|
|
#endif
|
|
|
|
if (output == NULL || pkcsBlockLen < 2 || pkcsBlockLen > 0xFFFF) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (padValue == RSA_BLOCK_TYPE_1) {
|
|
/* First byte must be 0x00 and Second byte, block type, 0x01 */
|
|
if (pkcsBlock[0] != 0 || pkcsBlock[1] != RSA_BLOCK_TYPE_1) {
|
|
WOLFSSL_MSG("RsaUnPad error, invalid formatting");
|
|
return RSA_PAD_E;
|
|
}
|
|
|
|
/* check the padding until we find the separator */
|
|
for (i = 2; i < pkcsBlockLen && pkcsBlock[i++] == 0xFF; ) { }
|
|
|
|
/* Minimum of 11 bytes of pre-message data and must have separator. */
|
|
if (i < RSA_MIN_PAD_SZ || pkcsBlock[i-1] != 0) {
|
|
WOLFSSL_MSG("RsaUnPad error, bad formatting");
|
|
return RSA_PAD_E;
|
|
}
|
|
|
|
*output = (byte *)(pkcsBlock + i);
|
|
ret = pkcsBlockLen - i;
|
|
}
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
else {
|
|
word16 j;
|
|
word16 pastSep = 0;
|
|
|
|
/* Decrypted with private key - unpad must be constant time. */
|
|
for (i = 0, j = 2; j < pkcsBlockLen; j++) {
|
|
/* Update i if not passed the separator and at separator. */
|
|
i |= (~pastSep) & ctMask16Eq(pkcsBlock[j], 0x00) & (j + 1);
|
|
pastSep |= ctMask16Eq(pkcsBlock[j], 0x00);
|
|
}
|
|
|
|
/* Minimum of 11 bytes of pre-message data - including leading 0x00. */
|
|
invalid |= ctMaskLT(i, RSA_MIN_PAD_SZ);
|
|
/* Must have seen separator. */
|
|
invalid |= ~pastSep;
|
|
/* First byte must be 0x00. */
|
|
invalid |= ctMaskNotEq(pkcsBlock[0], 0x00);
|
|
/* Check against expected block type: padValue */
|
|
invalid |= ctMaskNotEq(pkcsBlock[1], padValue);
|
|
|
|
*output = (byte *)(pkcsBlock + i);
|
|
ret = ((int)~invalid) & (pkcsBlockLen - i);
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* helper function to direct unpadding
|
|
*
|
|
* bits is the key modulus size in bits
|
|
*/
|
|
int wc_RsaUnPad_ex(byte* pkcsBlock, word32 pkcsBlockLen, byte** out,
|
|
byte padValue, int padType, enum wc_HashType hType,
|
|
int mgf, byte* optLabel, word32 labelLen, int saltLen,
|
|
int bits, void* heap)
|
|
{
|
|
int ret;
|
|
|
|
switch (padType) {
|
|
case WC_RSA_PKCSV15_PAD:
|
|
/*WOLFSSL_MSG("wolfSSL Using RSA PKCSV15 un-padding");*/
|
|
ret = RsaUnPad(pkcsBlock, pkcsBlockLen, out, padValue);
|
|
break;
|
|
|
|
#ifndef WC_NO_RSA_OAEP
|
|
case WC_RSA_OAEP_PAD:
|
|
WOLFSSL_MSG("wolfSSL Using RSA OAEP un-padding");
|
|
ret = RsaUnPad_OAEP((byte*)pkcsBlock, pkcsBlockLen, out,
|
|
hType, mgf, optLabel, labelLen, heap);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WC_RSA_PSS
|
|
case WC_RSA_PSS_PAD:
|
|
WOLFSSL_MSG("wolfSSL Using RSA PSS un-padding");
|
|
ret = RsaUnPad_PSS((byte*)pkcsBlock, pkcsBlockLen, out, hType, mgf,
|
|
saltLen, bits, heap);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WC_RSA_NO_PADDING
|
|
case WC_RSA_NO_PAD:
|
|
WOLFSSL_MSG("wolfSSL Using NO un-padding");
|
|
|
|
/* In the case of no padding being used check that input is exactly
|
|
* the RSA key length */
|
|
if (bits <= 0 || pkcsBlockLen !=
|
|
((word32)(bits+WOLFSSL_BIT_SIZE-1)/WOLFSSL_BIT_SIZE)) {
|
|
WOLFSSL_MSG("Bad input size");
|
|
ret = RSA_PAD_E;
|
|
}
|
|
else {
|
|
if (out != NULL) {
|
|
*out = pkcsBlock;
|
|
}
|
|
ret = pkcsBlockLen;
|
|
}
|
|
break;
|
|
#endif /* WC_RSA_NO_PADDING */
|
|
|
|
default:
|
|
WOLFSSL_MSG("Unknown RSA UnPad Type");
|
|
ret = RSA_PAD_E;
|
|
}
|
|
|
|
/* silence warning if not used with padding scheme */
|
|
(void)hType;
|
|
(void)mgf;
|
|
(void)optLabel;
|
|
(void)labelLen;
|
|
(void)saltLen;
|
|
(void)bits;
|
|
(void)heap;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int wc_hash2mgf(enum wc_HashType hType)
|
|
{
|
|
switch (hType) {
|
|
case WC_HASH_TYPE_SHA:
|
|
#ifndef NO_SHA
|
|
return WC_MGF1SHA1;
|
|
#else
|
|
break;
|
|
#endif
|
|
case WC_HASH_TYPE_SHA224:
|
|
#ifdef WOLFSSL_SHA224
|
|
return WC_MGF1SHA224;
|
|
#else
|
|
break;
|
|
#endif
|
|
case WC_HASH_TYPE_SHA256:
|
|
#ifndef NO_SHA256
|
|
return WC_MGF1SHA256;
|
|
#else
|
|
break;
|
|
#endif
|
|
case WC_HASH_TYPE_SHA384:
|
|
#ifdef WOLFSSL_SHA384
|
|
return WC_MGF1SHA384;
|
|
#else
|
|
break;
|
|
#endif
|
|
case WC_HASH_TYPE_SHA512:
|
|
#ifdef WOLFSSL_SHA512
|
|
return WC_MGF1SHA512;
|
|
#else
|
|
break;
|
|
#endif
|
|
case WC_HASH_TYPE_NONE:
|
|
case WC_HASH_TYPE_MD2:
|
|
case WC_HASH_TYPE_MD4:
|
|
case WC_HASH_TYPE_MD5:
|
|
case WC_HASH_TYPE_MD5_SHA:
|
|
case WC_HASH_TYPE_SHA3_224:
|
|
case WC_HASH_TYPE_SHA3_256:
|
|
case WC_HASH_TYPE_SHA3_384:
|
|
case WC_HASH_TYPE_SHA3_512:
|
|
case WC_HASH_TYPE_BLAKE2B:
|
|
case WC_HASH_TYPE_BLAKE2S:
|
|
default:
|
|
break;
|
|
}
|
|
WOLFSSL_MSG("Unrecognized or unsupported hash function");
|
|
return WC_MGF1NONE;
|
|
}
|
|
|
|
#ifdef WC_RSA_NONBLOCK
|
|
static int wc_RsaFunctionNonBlock(const byte* in, word32 inLen, byte* out,
|
|
word32* outLen, int type, RsaKey* key)
|
|
{
|
|
int ret = 0;
|
|
word32 keyLen, len;
|
|
|
|
if (key == NULL || key->nb == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (key->nb->exptmod.state == TFM_EXPTMOD_NB_INIT) {
|
|
if (mp_init(&key->nb->tmp) != MP_OKAY) {
|
|
ret = MP_INIT_E;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (mp_read_unsigned_bin(&key->nb->tmp, (byte*)in, inLen) != MP_OKAY) {
|
|
ret = MP_READ_E;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ret == 0) {
|
|
switch(type) {
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
ret = fp_exptmod_nb(&key->nb->exptmod, &key->nb->tmp, &key->d,
|
|
&key->n, &key->nb->tmp);
|
|
if (ret == FP_WOULDBLOCK)
|
|
return ret;
|
|
if (ret != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
break;
|
|
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
ret = fp_exptmod_nb(&key->nb->exptmod, &key->nb->tmp, &key->e,
|
|
&key->n, &key->nb->tmp);
|
|
if (ret == FP_WOULDBLOCK)
|
|
return ret;
|
|
if (ret != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
break;
|
|
default:
|
|
ret = RSA_WRONG_TYPE_E;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret == 0) {
|
|
keyLen = wc_RsaEncryptSize(key);
|
|
if (keyLen > *outLen)
|
|
ret = RSA_BUFFER_E;
|
|
}
|
|
if (ret == 0) {
|
|
len = mp_unsigned_bin_size(&key->nb->tmp);
|
|
|
|
/* pad front w/ zeros to match key length */
|
|
while (len < keyLen) {
|
|
*out++ = 0x00;
|
|
len++;
|
|
}
|
|
|
|
*outLen = keyLen;
|
|
|
|
/* convert */
|
|
if (mp_to_unsigned_bin(&key->nb->tmp, out) != MP_OKAY) {
|
|
ret = MP_TO_E;
|
|
}
|
|
}
|
|
|
|
mp_clear(&key->nb->tmp);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WC_RSA_NONBLOCK */
|
|
|
|
#ifdef WOLFSSL_XILINX_CRYPT
|
|
/*
|
|
* Xilinx hardened crypto acceleration.
|
|
*
|
|
* Returns 0 on success and negative values on error.
|
|
*/
|
|
static int wc_RsaFunctionSync(const byte* in, word32 inLen, byte* out,
|
|
word32* outLen, int type, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
int ret = 0;
|
|
word32 keyLen;
|
|
(void)rng;
|
|
|
|
keyLen = wc_RsaEncryptSize(key);
|
|
if (keyLen > *outLen) {
|
|
WOLFSSL_MSG("Output buffer is not big enough");
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (inLen != keyLen) {
|
|
WOLFSSL_MSG("Expected that inLen equals RSA key length");
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
switch(type) {
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
#ifdef WOLFSSL_XILINX_CRYPTO_OLD
|
|
/* Currently public exponent is loaded by default.
|
|
* In SDK 2017.1 RSA exponent values are expected to be of 4 bytes
|
|
* leading to private key operations with Xsecure_RsaDecrypt not being
|
|
* supported */
|
|
ret = RSA_WRONG_TYPE_E;
|
|
#else
|
|
{
|
|
byte *d;
|
|
int dSz;
|
|
XSecure_Rsa rsa;
|
|
|
|
dSz = mp_unsigned_bin_size(&key->d);
|
|
d = (byte*)XMALLOC(dSz, key->heap, DYNAMIC_TYPE_PRIVATE_KEY);
|
|
if (d == NULL) {
|
|
ret = MEMORY_E;
|
|
}
|
|
else {
|
|
ret = mp_to_unsigned_bin(&key->d, d);
|
|
XSecure_RsaInitialize(&rsa, key->mod, NULL, d);
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (XSecure_RsaPrivateDecrypt(&rsa, (u8*)in, inLen, out) !=
|
|
XST_SUCCESS) {
|
|
ret = BAD_STATE_E;
|
|
}
|
|
}
|
|
|
|
if (d != NULL) {
|
|
XFREE(d, key->heap, DYNAMIC_TYPE_PRIVATE_KEY);
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
#ifdef WOLFSSL_XILINX_CRYPTO_OLD
|
|
if (XSecure_RsaDecrypt(&(key->xRsa), in, out) != XST_SUCCESS) {
|
|
ret = BAD_STATE_E;
|
|
}
|
|
#else
|
|
/* starting at Xilinx release 2019 the function XSecure_RsaDecrypt was removed */
|
|
if (XSecure_RsaPublicEncrypt(&(key->xRsa), (u8*)in, inLen, out) != XST_SUCCESS) {
|
|
WOLFSSL_MSG("Error happened when calling hardware RSA public operation");
|
|
ret = BAD_STATE_E;
|
|
}
|
|
#endif
|
|
break;
|
|
default:
|
|
ret = RSA_WRONG_TYPE_E;
|
|
}
|
|
|
|
*outLen = keyLen;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_AFALG_XILINX_RSA)
|
|
#ifndef ERROR_OUT
|
|
#define ERROR_OUT(x) ret = (x); goto done
|
|
#endif
|
|
|
|
static const char WC_TYPE_ASYMKEY[] = "skcipher";
|
|
static const char WC_NAME_RSA[] = "xilinx-zynqmp-rsa";
|
|
#ifndef MAX_XILINX_RSA_KEY
|
|
/* max key size of 4096 bits / 512 bytes */
|
|
#define MAX_XILINX_RSA_KEY 512
|
|
#endif
|
|
static const byte XILINX_RSA_FLAG[] = {0x1};
|
|
|
|
|
|
/* AF_ALG implementation of RSA */
|
|
static int wc_RsaFunctionSync(const byte* in, word32 inLen, byte* out,
|
|
word32* outLen, int type, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
struct msghdr msg;
|
|
struct cmsghdr* cmsg;
|
|
struct iovec iov;
|
|
byte* keyBuf = NULL;
|
|
word32 keyBufSz = 0;
|
|
char cbuf[CMSG_SPACE(4) + CMSG_SPACE(sizeof(struct af_alg_iv) + 1)] = {0};
|
|
int ret = 0;
|
|
int op = 0; /* decryption vs encryption flag */
|
|
word32 keyLen;
|
|
|
|
/* input and output buffer need to be aligned */
|
|
ALIGN64 byte outBuf[MAX_XILINX_RSA_KEY];
|
|
ALIGN64 byte inBuf[MAX_XILINX_RSA_KEY];
|
|
|
|
XMEMSET(&msg, 0, sizeof(struct msghdr));
|
|
(void)rng;
|
|
|
|
keyLen = wc_RsaEncryptSize(key);
|
|
if (keyLen > *outLen) {
|
|
ERROR_OUT(RSA_BUFFER_E);
|
|
}
|
|
|
|
if (keyLen > MAX_XILINX_RSA_KEY) {
|
|
WOLFSSL_MSG("RSA key size larger than supported");
|
|
ERROR_OUT(BAD_FUNC_ARG);
|
|
}
|
|
|
|
if ((keyBuf = (byte*)XMALLOC(keyLen * 2, key->heap, DYNAMIC_TYPE_KEY))
|
|
== NULL) {
|
|
ERROR_OUT(MEMORY_E);
|
|
}
|
|
|
|
if ((ret = mp_to_unsigned_bin(&(key->n), keyBuf)) != MP_OKAY) {
|
|
ERROR_OUT(MP_TO_E);
|
|
}
|
|
|
|
switch(type) {
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
op = 1; /* set as decrypt */
|
|
{
|
|
keyBufSz = mp_unsigned_bin_size(&(key->d));
|
|
if ((mp_to_unsigned_bin(&(key->d), keyBuf + keyLen))
|
|
!= MP_OKAY) {
|
|
ERROR_OUT(MP_TO_E);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RSA_PUBLIC_DECRYPT:
|
|
case RSA_PUBLIC_ENCRYPT: {
|
|
word32 exp = 0;
|
|
word32 eSz = mp_unsigned_bin_size(&(key->e));
|
|
if ((mp_to_unsigned_bin(&(key->e), (byte*)&exp +
|
|
(sizeof(word32) - eSz))) != MP_OKAY) {
|
|
ERROR_OUT(MP_TO_E);
|
|
}
|
|
keyBufSz = sizeof(word32);
|
|
XMEMCPY(keyBuf + keyLen, (byte*)&exp, keyBufSz);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ERROR_OUT(RSA_WRONG_TYPE_E);
|
|
}
|
|
keyBufSz += keyLen; /* add size of modulus */
|
|
|
|
/* check for existing sockets before creating new ones */
|
|
if (key->alFd > 0) {
|
|
close(key->alFd);
|
|
key->alFd = WC_SOCK_NOTSET;
|
|
}
|
|
if (key->rdFd > 0) {
|
|
close(key->rdFd);
|
|
key->rdFd = WC_SOCK_NOTSET;
|
|
}
|
|
|
|
/* create new sockets and set the key to use */
|
|
if ((key->alFd = wc_Afalg_Socket()) < 0) {
|
|
WOLFSSL_MSG("Unable to create socket");
|
|
ERROR_OUT(key->alFd);
|
|
}
|
|
if ((key->rdFd = wc_Afalg_CreateRead(key->alFd, WC_TYPE_ASYMKEY,
|
|
WC_NAME_RSA)) < 0) {
|
|
WOLFSSL_MSG("Unable to bind and create read/send socket");
|
|
ERROR_OUT(key->rdFd);
|
|
}
|
|
if ((ret = setsockopt(key->alFd, SOL_ALG, ALG_SET_KEY, keyBuf,
|
|
keyBufSz)) < 0) {
|
|
WOLFSSL_MSG("Error setting RSA key");
|
|
ERROR_OUT(ret);
|
|
}
|
|
|
|
msg.msg_control = cbuf;
|
|
msg.msg_controllen = sizeof(cbuf);
|
|
cmsg = CMSG_FIRSTHDR(&msg);
|
|
if ((ret = wc_Afalg_SetOp(cmsg, op)) < 0) {
|
|
ERROR_OUT(ret);
|
|
}
|
|
|
|
/* set flag in IV spot, needed for Xilinx hardware acceleration use */
|
|
cmsg = CMSG_NXTHDR(&msg, cmsg);
|
|
if ((ret = wc_Afalg_SetIv(cmsg, (byte*)XILINX_RSA_FLAG,
|
|
sizeof(XILINX_RSA_FLAG))) != 0) {
|
|
ERROR_OUT(ret);
|
|
}
|
|
|
|
/* compose and send msg */
|
|
XMEMCPY(inBuf, (byte*)in, inLen); /* for alignment */
|
|
iov.iov_base = inBuf;
|
|
iov.iov_len = inLen;
|
|
msg.msg_iov = &iov;
|
|
msg.msg_iovlen = 1;
|
|
if ((ret = sendmsg(key->rdFd, &msg, 0)) <= 0) {
|
|
ERROR_OUT(WC_AFALG_SOCK_E);
|
|
}
|
|
|
|
if ((ret = read(key->rdFd, outBuf, inLen)) <= 0) {
|
|
ERROR_OUT(WC_AFALG_SOCK_E);
|
|
}
|
|
XMEMCPY(out, outBuf, ret);
|
|
*outLen = keyLen;
|
|
|
|
done:
|
|
/* clear key data and free buffer */
|
|
if (keyBuf != NULL) {
|
|
ForceZero(keyBuf, keyBufSz);
|
|
}
|
|
XFREE(keyBuf, key->heap, DYNAMIC_TYPE_KEY);
|
|
|
|
if (key->alFd > 0) {
|
|
close(key->alFd);
|
|
key->alFd = WC_SOCK_NOTSET;
|
|
}
|
|
if (key->rdFd > 0) {
|
|
close(key->rdFd);
|
|
key->rdFd = WC_SOCK_NOTSET;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else
|
|
static int wc_RsaFunctionSync(const byte* in, word32 inLen, byte* out,
|
|
word32* outLen, int type, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
#if !defined(WOLFSSL_SP_MATH)
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
mp_int* tmp;
|
|
#ifdef WC_RSA_BLINDING
|
|
mp_int* rnd;
|
|
mp_int* rndi;
|
|
#endif
|
|
#else
|
|
mp_int tmp[1];
|
|
#ifdef WC_RSA_BLINDING
|
|
mp_int rnd[1], rndi[1];
|
|
#endif
|
|
#endif
|
|
int ret = 0;
|
|
word32 keyLen = 0;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_HAVE_SP_RSA
|
|
#ifndef WOLFSSL_SP_NO_2048
|
|
if (mp_count_bits(&key->n) == 2048) {
|
|
switch(type) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
#ifdef WC_RSA_BLINDING
|
|
if (rng == NULL)
|
|
return MISSING_RNG_E;
|
|
#endif
|
|
#ifndef RSA_LOW_MEM
|
|
if ((mp_count_bits(&key->p) == 1024) &&
|
|
(mp_count_bits(&key->q) == 1024)) {
|
|
return sp_RsaPrivate_2048(in, inLen, &key->d, &key->p, &key->q,
|
|
&key->dP, &key->dQ, &key->u, &key->n,
|
|
out, outLen);
|
|
}
|
|
break;
|
|
#else
|
|
return sp_RsaPrivate_2048(in, inLen, &key->d, NULL, NULL, NULL,
|
|
NULL, NULL, &key->n, out, outLen);
|
|
#endif
|
|
#endif
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
return sp_RsaPublic_2048(in, inLen, &key->e, &key->n, out, outLen);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef WOLFSSL_SP_NO_3072
|
|
if (mp_count_bits(&key->n) == 3072) {
|
|
switch(type) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
#ifdef WC_RSA_BLINDING
|
|
if (rng == NULL)
|
|
return MISSING_RNG_E;
|
|
#endif
|
|
#ifndef RSA_LOW_MEM
|
|
if ((mp_count_bits(&key->p) == 1536) &&
|
|
(mp_count_bits(&key->q) == 1536)) {
|
|
return sp_RsaPrivate_3072(in, inLen, &key->d, &key->p, &key->q,
|
|
&key->dP, &key->dQ, &key->u, &key->n,
|
|
out, outLen);
|
|
}
|
|
break;
|
|
#else
|
|
return sp_RsaPrivate_3072(in, inLen, &key->d, NULL, NULL, NULL,
|
|
NULL, NULL, &key->n, out, outLen);
|
|
#endif
|
|
#endif
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
return sp_RsaPublic_3072(in, inLen, &key->e, &key->n, out, outLen);
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef WOLFSSL_SP_4096
|
|
if (mp_count_bits(&key->n) == 4096) {
|
|
switch(type) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
#ifdef WC_RSA_BLINDING
|
|
if (rng == NULL)
|
|
return MISSING_RNG_E;
|
|
#endif
|
|
#ifndef RSA_LOW_MEM
|
|
if ((mp_count_bits(&key->p) == 2048) &&
|
|
(mp_count_bits(&key->q) == 2048)) {
|
|
return sp_RsaPrivate_4096(in, inLen, &key->d, &key->p, &key->q,
|
|
&key->dP, &key->dQ, &key->u, &key->n,
|
|
out, outLen);
|
|
}
|
|
break;
|
|
#else
|
|
return sp_RsaPrivate_4096(in, inLen, &key->d, NULL, NULL, NULL,
|
|
NULL, NULL, &key->n, out, outLen);
|
|
#endif
|
|
#endif
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
return sp_RsaPublic_4096(in, inLen, &key->e, &key->n, out, outLen);
|
|
}
|
|
}
|
|
#endif
|
|
#endif /* WOLFSSL_HAVE_SP_RSA */
|
|
|
|
#if defined(WOLFSSL_SP_MATH)
|
|
(void)rng;
|
|
WOLFSSL_MSG("SP Key Size Error");
|
|
return WC_KEY_SIZE_E;
|
|
#else
|
|
(void)rng;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
tmp = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_RSA);
|
|
if (tmp == NULL)
|
|
return MEMORY_E;
|
|
#ifdef WC_RSA_BLINDING
|
|
rnd = (mp_int*)XMALLOC(sizeof(mp_int) * 2, key->heap, DYNAMIC_TYPE_RSA);
|
|
if (rnd == NULL) {
|
|
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
|
|
return MEMORY_E;
|
|
}
|
|
rndi = rnd + 1;
|
|
#endif /* WC_RSA_BLINDING */
|
|
#endif /* WOLFSSL_SMALL_STACK */
|
|
|
|
if (mp_init(tmp) != MP_OKAY)
|
|
ret = MP_INIT_E;
|
|
|
|
#ifdef WC_RSA_BLINDING
|
|
if (ret == 0) {
|
|
if (type == RSA_PRIVATE_DECRYPT || type == RSA_PRIVATE_ENCRYPT) {
|
|
if (mp_init_multi(rnd, rndi, NULL, NULL, NULL, NULL) != MP_OKAY) {
|
|
mp_clear(tmp);
|
|
ret = MP_INIT_E;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef TEST_UNPAD_CONSTANT_TIME
|
|
if (ret == 0 && mp_read_unsigned_bin(tmp, (byte*)in, inLen) != MP_OKAY)
|
|
ret = MP_READ_E;
|
|
|
|
if (ret == 0) {
|
|
switch(type) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
{
|
|
#if defined(WC_RSA_BLINDING) && !defined(WC_NO_RNG)
|
|
/* blind */
|
|
ret = mp_rand(rnd, get_digit_count(&key->n), rng);
|
|
|
|
/* rndi = 1/rnd mod n */
|
|
if (ret == 0 && mp_invmod(rnd, &key->n, rndi) != MP_OKAY)
|
|
ret = MP_INVMOD_E;
|
|
|
|
/* rnd = rnd^e */
|
|
#ifndef WOLFSSL_SP_MATH_ALL
|
|
if (ret == 0 && mp_exptmod(rnd, &key->e, &key->n, rnd) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
#else
|
|
if (ret == 0 && mp_exptmod_nct(rnd, &key->e, &key->n,
|
|
rnd) != MP_OKAY) {
|
|
ret = MP_EXPTMOD_E;
|
|
}
|
|
#endif
|
|
|
|
/* tmp = tmp*rnd mod n */
|
|
if (ret == 0 && mp_mulmod(tmp, rnd, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_MULMOD_E;
|
|
#endif /* WC_RSA_BLINDING && !WC_NO_RNG */
|
|
|
|
#ifdef RSA_LOW_MEM /* half as much memory but twice as slow */
|
|
if (ret == 0 && mp_exptmod(tmp, &key->d, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
#else
|
|
if (ret == 0) {
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
mp_int* tmpa;
|
|
mp_int* tmpb = NULL;
|
|
#else
|
|
mp_int tmpa[1], tmpb[1];
|
|
#endif
|
|
int cleara = 0, clearb = 0;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
tmpa = (mp_int*)XMALLOC(sizeof(mp_int) * 2,
|
|
key->heap, DYNAMIC_TYPE_RSA);
|
|
if (tmpa != NULL)
|
|
tmpb = tmpa + 1;
|
|
else
|
|
ret = MEMORY_E;
|
|
#endif
|
|
|
|
if (ret == 0) {
|
|
if (mp_init(tmpa) != MP_OKAY)
|
|
ret = MP_INIT_E;
|
|
else
|
|
cleara = 1;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (mp_init(tmpb) != MP_OKAY)
|
|
ret = MP_INIT_E;
|
|
else
|
|
clearb = 1;
|
|
}
|
|
|
|
/* tmpa = tmp^dP mod p */
|
|
if (ret == 0 && mp_exptmod(tmp, &key->dP, &key->p,
|
|
tmpa) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
|
|
/* tmpb = tmp^dQ mod q */
|
|
if (ret == 0 && mp_exptmod(tmp, &key->dQ, &key->q,
|
|
tmpb) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
|
|
/* tmp = (tmpa - tmpb) * qInv (mod p) */
|
|
#if defined(WOLFSSL_SP_MATH) || (defined(WOLFSSL_SP_MATH_ALL) && \
|
|
!defined(WOLFSSL_SP_INT_NEGATIVE))
|
|
if (ret == 0 && mp_submod(tmpa, tmpb, &key->p, tmp) != MP_OKAY)
|
|
ret = MP_SUB_E;
|
|
#else
|
|
if (ret == 0 && mp_sub(tmpa, tmpb, tmp) != MP_OKAY)
|
|
ret = MP_SUB_E;
|
|
#endif
|
|
|
|
if (ret == 0 && mp_mulmod(tmp, &key->u, &key->p,
|
|
tmp) != MP_OKAY)
|
|
ret = MP_MULMOD_E;
|
|
|
|
/* tmp = tmpb + q * tmp */
|
|
if (ret == 0 && mp_mul(tmp, &key->q, tmp) != MP_OKAY)
|
|
ret = MP_MUL_E;
|
|
|
|
if (ret == 0 && mp_add(tmp, tmpb, tmp) != MP_OKAY)
|
|
ret = MP_ADD_E;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
if (tmpa != NULL)
|
|
#endif
|
|
{
|
|
if (cleara)
|
|
mp_clear(tmpa);
|
|
if (clearb)
|
|
mp_clear(tmpb);
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(tmpa, key->heap, DYNAMIC_TYPE_RSA);
|
|
#endif
|
|
}
|
|
} /* tmpa/b scope */
|
|
#endif /* RSA_LOW_MEM */
|
|
|
|
#ifdef WC_RSA_BLINDING
|
|
/* unblind */
|
|
if (ret == 0 && mp_mulmod(tmp, rndi, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_MULMOD_E;
|
|
#endif /* WC_RSA_BLINDING */
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
if (mp_exptmod_nct(tmp, &key->e, &key->n, tmp) != MP_OKAY)
|
|
ret = MP_EXPTMOD_E;
|
|
break;
|
|
default:
|
|
ret = RSA_WRONG_TYPE_E;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret == 0) {
|
|
keyLen = wc_RsaEncryptSize(key);
|
|
if (keyLen > *outLen)
|
|
ret = RSA_BUFFER_E;
|
|
}
|
|
|
|
#ifndef WOLFSSL_XILINX_CRYPT
|
|
if (ret == 0) {
|
|
*outLen = keyLen;
|
|
if (mp_to_unsigned_bin_len(tmp, out, keyLen) != MP_OKAY)
|
|
ret = MP_TO_E;
|
|
}
|
|
#endif
|
|
#else
|
|
(void)type;
|
|
(void)key;
|
|
(void)keyLen;
|
|
XMEMCPY(out, in, inLen);
|
|
*outLen = inLen;
|
|
#endif
|
|
|
|
mp_clear(tmp);
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
|
|
#endif
|
|
#ifdef WC_RSA_BLINDING
|
|
if (type == RSA_PRIVATE_DECRYPT || type == RSA_PRIVATE_ENCRYPT) {
|
|
mp_clear(rndi);
|
|
mp_clear(rnd);
|
|
}
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(rnd, key->heap, DYNAMIC_TYPE_RSA);
|
|
#endif
|
|
#endif /* WC_RSA_BLINDING */
|
|
return ret;
|
|
#endif /* WOLFSSL_SP_MATH */
|
|
}
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
|
|
static int wc_RsaFunctionAsync(const byte* in, word32 inLen, byte* out,
|
|
word32* outLen, int type, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
int ret = 0;
|
|
|
|
(void)rng;
|
|
|
|
#ifdef WOLFSSL_ASYNC_CRYPT_TEST
|
|
if (wc_AsyncTestInit(&key->asyncDev, ASYNC_TEST_RSA_FUNC)) {
|
|
WC_ASYNC_TEST* testDev = &key->asyncDev.test;
|
|
testDev->rsaFunc.in = in;
|
|
testDev->rsaFunc.inSz = inLen;
|
|
testDev->rsaFunc.out = out;
|
|
testDev->rsaFunc.outSz = outLen;
|
|
testDev->rsaFunc.type = type;
|
|
testDev->rsaFunc.key = key;
|
|
testDev->rsaFunc.rng = rng;
|
|
return WC_PENDING_E;
|
|
}
|
|
#endif /* WOLFSSL_ASYNC_CRYPT_TEST */
|
|
|
|
switch(type) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
case RSA_PRIVATE_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
#ifdef HAVE_CAVIUM
|
|
key->dataLen = key->n.raw.len;
|
|
ret = NitroxRsaExptMod(in, inLen,
|
|
key->d.raw.buf, key->d.raw.len,
|
|
key->n.raw.buf, key->n.raw.len,
|
|
out, outLen, key);
|
|
#elif defined(HAVE_INTEL_QA)
|
|
#ifdef RSA_LOW_MEM
|
|
ret = IntelQaRsaPrivate(&key->asyncDev, in, inLen,
|
|
&key->d.raw, &key->n.raw,
|
|
out, outLen);
|
|
#else
|
|
ret = IntelQaRsaCrtPrivate(&key->asyncDev, in, inLen,
|
|
&key->p.raw, &key->q.raw,
|
|
&key->dP.raw, &key->dQ.raw,
|
|
&key->u.raw,
|
|
out, outLen);
|
|
#endif
|
|
#else /* WOLFSSL_ASYNC_CRYPT_TEST */
|
|
ret = wc_RsaFunctionSync(in, inLen, out, outLen, type, key, rng);
|
|
#endif
|
|
break;
|
|
#endif
|
|
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
#ifdef HAVE_CAVIUM
|
|
key->dataLen = key->n.raw.len;
|
|
ret = NitroxRsaExptMod(in, inLen,
|
|
key->e.raw.buf, key->e.raw.len,
|
|
key->n.raw.buf, key->n.raw.len,
|
|
out, outLen, key);
|
|
#elif defined(HAVE_INTEL_QA)
|
|
ret = IntelQaRsaPublic(&key->asyncDev, in, inLen,
|
|
&key->e.raw, &key->n.raw,
|
|
out, outLen);
|
|
#else /* WOLFSSL_ASYNC_CRYPT_TEST */
|
|
ret = wc_RsaFunctionSync(in, inLen, out, outLen, type, key, rng);
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
ret = RSA_WRONG_TYPE_E;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WOLFSSL_ASYNC_CRYPT && WC_ASYNC_ENABLE_RSA */
|
|
|
|
#if defined(WC_RSA_DIRECT) || defined(WC_RSA_NO_PADDING)
|
|
/* Function that does the RSA operation directly with no padding.
|
|
*
|
|
* in buffer to do operation on
|
|
* inLen length of input buffer
|
|
* out buffer to hold results
|
|
* outSz gets set to size of result buffer. Should be passed in as length
|
|
* of out buffer. If the pointer "out" is null then outSz gets set to
|
|
* the expected buffer size needed and LENGTH_ONLY_E gets returned.
|
|
* key RSA key to use for encrypt/decrypt
|
|
* type if using private or public key {RSA_PUBLIC_ENCRYPT,
|
|
* RSA_PUBLIC_DECRYPT, RSA_PRIVATE_ENCRYPT, RSA_PRIVATE_DECRYPT}
|
|
* rng wolfSSL RNG to use if needed
|
|
*
|
|
* returns size of result on success
|
|
*/
|
|
int wc_RsaDirect(byte* in, word32 inLen, byte* out, word32* outSz,
|
|
RsaKey* key, int type, WC_RNG* rng)
|
|
{
|
|
int ret;
|
|
|
|
if (in == NULL || outSz == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
/* sanity check on type of RSA operation */
|
|
switch (type) {
|
|
case RSA_PUBLIC_ENCRYPT:
|
|
case RSA_PUBLIC_DECRYPT:
|
|
case RSA_PRIVATE_ENCRYPT:
|
|
case RSA_PRIVATE_DECRYPT:
|
|
break;
|
|
default:
|
|
WOLFSSL_MSG("Bad RSA type");
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if ((ret = wc_RsaEncryptSize(key)) < 0) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (inLen != (word32)ret) {
|
|
WOLFSSL_MSG("Bad input length. Should be RSA key size");
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (out == NULL) {
|
|
*outSz = inLen;
|
|
return LENGTH_ONLY_E;
|
|
}
|
|
|
|
switch (key->state) {
|
|
case RSA_STATE_NONE:
|
|
case RSA_STATE_ENCRYPT_PAD:
|
|
case RSA_STATE_ENCRYPT_EXPTMOD:
|
|
case RSA_STATE_DECRYPT_EXPTMOD:
|
|
case RSA_STATE_DECRYPT_UNPAD:
|
|
key->state = (type == RSA_PRIVATE_ENCRYPT ||
|
|
type == RSA_PUBLIC_ENCRYPT) ? RSA_STATE_ENCRYPT_EXPTMOD:
|
|
RSA_STATE_DECRYPT_EXPTMOD;
|
|
|
|
key->dataLen = *outSz;
|
|
|
|
ret = wc_RsaFunction(in, inLen, out, &key->dataLen, type, key, rng);
|
|
if (ret >= 0 || ret == WC_PENDING_E) {
|
|
key->state = (type == RSA_PRIVATE_ENCRYPT ||
|
|
type == RSA_PUBLIC_ENCRYPT) ? RSA_STATE_ENCRYPT_RES:
|
|
RSA_STATE_DECRYPT_RES;
|
|
}
|
|
if (ret < 0) {
|
|
break;
|
|
}
|
|
|
|
FALL_THROUGH;
|
|
|
|
case RSA_STATE_ENCRYPT_RES:
|
|
case RSA_STATE_DECRYPT_RES:
|
|
ret = key->dataLen;
|
|
break;
|
|
|
|
default:
|
|
ret = BAD_STATE_E;
|
|
}
|
|
|
|
/* if async pending then skip cleanup*/
|
|
if (ret == WC_PENDING_E
|
|
#ifdef WC_RSA_NONBLOCK
|
|
|| ret == FP_WOULDBLOCK
|
|
#endif
|
|
) {
|
|
return ret;
|
|
}
|
|
|
|
key->state = RSA_STATE_NONE;
|
|
wc_RsaCleanup(key);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WC_RSA_DIRECT || WC_RSA_NO_PADDING */
|
|
|
|
#if defined(WOLFSSL_CRYPTOCELL)
|
|
static int cc310_RsaPublicEncrypt(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key)
|
|
{
|
|
CRYSError_t ret = 0;
|
|
CRYS_RSAPrimeData_t primeData;
|
|
int modulusSize = wc_RsaEncryptSize(key);
|
|
|
|
/* The out buffer must be at least modulus size bytes long. */
|
|
if (outLen < modulusSize)
|
|
return BAD_FUNC_ARG;
|
|
|
|
ret = CRYS_RSA_PKCS1v15_Encrypt(&wc_rndState,
|
|
wc_rndGenVectFunc,
|
|
&key->ctx.pubKey,
|
|
&primeData,
|
|
(byte*)in,
|
|
inLen,
|
|
out);
|
|
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_PKCS1v15_Encrypt failed");
|
|
return -1;
|
|
}
|
|
|
|
return modulusSize;
|
|
}
|
|
static int cc310_RsaPublicDecrypt(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key)
|
|
{
|
|
CRYSError_t ret = 0;
|
|
CRYS_RSAPrimeData_t primeData;
|
|
uint16_t actualOutLen = outLen;
|
|
|
|
ret = CRYS_RSA_PKCS1v15_Decrypt(&key->ctx.privKey,
|
|
&primeData,
|
|
(byte*)in,
|
|
inLen,
|
|
out,
|
|
&actualOutLen);
|
|
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_PKCS1v15_Decrypt failed");
|
|
return -1;
|
|
}
|
|
return actualOutLen;
|
|
}
|
|
|
|
int cc310_RsaSSL_Sign(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key, CRYS_RSA_HASH_OpMode_t mode)
|
|
{
|
|
CRYSError_t ret = 0;
|
|
uint16_t actualOutLen = outLen*sizeof(byte);
|
|
CRYS_RSAPrivUserContext_t contextPrivate;
|
|
|
|
ret = CRYS_RSA_PKCS1v15_Sign(&wc_rndState,
|
|
wc_rndGenVectFunc,
|
|
&contextPrivate,
|
|
&key->ctx.privKey,
|
|
mode,
|
|
(byte*)in,
|
|
inLen,
|
|
out,
|
|
&actualOutLen);
|
|
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_PKCS1v15_Sign failed");
|
|
return -1;
|
|
}
|
|
return actualOutLen;
|
|
}
|
|
|
|
int cc310_RsaSSL_Verify(const byte* in, word32 inLen, byte* sig,
|
|
RsaKey* key, CRYS_RSA_HASH_OpMode_t mode)
|
|
{
|
|
CRYSError_t ret = 0;
|
|
CRYS_RSAPubUserContext_t contextPub;
|
|
|
|
/* verify the signature in the sig pointer */
|
|
ret = CRYS_RSA_PKCS1v15_Verify(&contextPub,
|
|
&key->ctx.pubKey,
|
|
mode,
|
|
(byte*)in,
|
|
inLen,
|
|
sig);
|
|
|
|
if (ret != SA_SILIB_RET_OK){
|
|
WOLFSSL_MSG("CRYS_RSA_PKCS1v15_Verify failed");
|
|
return -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WOLFSSL_CRYPTOCELL */
|
|
|
|
int wc_RsaFunction(const byte* in, word32 inLen, byte* out,
|
|
word32* outLen, int type, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (key == NULL || in == NULL || inLen == 0 || out == NULL ||
|
|
outLen == NULL || *outLen == 0 || type == RSA_TYPE_UNKNOWN) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (key->devId != INVALID_DEVID) {
|
|
ret = wc_CryptoCb_Rsa(in, inLen, out, outLen, type, key, rng);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
ret = 0; /* reset error code and try using software */
|
|
}
|
|
#endif
|
|
|
|
#ifndef TEST_UNPAD_CONSTANT_TIME
|
|
#ifndef NO_RSA_BOUNDS_CHECK
|
|
if (type == RSA_PRIVATE_DECRYPT &&
|
|
key->state == RSA_STATE_DECRYPT_EXPTMOD) {
|
|
|
|
/* Check that 1 < in < n-1. (Requirement of 800-56B.) */
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
mp_int* c;
|
|
#else
|
|
mp_int c[1];
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
c = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_RSA);
|
|
if (c == NULL)
|
|
ret = MEMORY_E;
|
|
#endif
|
|
|
|
if (mp_init(c) != MP_OKAY)
|
|
ret = MP_INIT_E;
|
|
if (ret == 0) {
|
|
if (mp_read_unsigned_bin(c, in, inLen) != 0)
|
|
ret = MP_READ_E;
|
|
}
|
|
if (ret == 0) {
|
|
/* check c > 1 */
|
|
if (mp_cmp_d(c, 1) != MP_GT)
|
|
ret = RSA_OUT_OF_RANGE_E;
|
|
}
|
|
if (ret == 0) {
|
|
/* add c+1 */
|
|
if (mp_add_d(c, 1, c) != MP_OKAY)
|
|
ret = MP_ADD_E;
|
|
}
|
|
if (ret == 0) {
|
|
/* check c+1 < n */
|
|
if (mp_cmp(c, &key->n) != MP_LT)
|
|
ret = RSA_OUT_OF_RANGE_E;
|
|
}
|
|
mp_clear(c);
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(c, key->heap, DYNAMIC_TYPE_RSA);
|
|
#endif
|
|
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
#endif /* NO_RSA_BOUNDS_CHECK */
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
|
|
if (key->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RSA &&
|
|
key->n.raw.len > 0) {
|
|
ret = wc_RsaFunctionAsync(in, inLen, out, outLen, type, key, rng);
|
|
}
|
|
else
|
|
#endif
|
|
#ifdef WC_RSA_NONBLOCK
|
|
if (key->nb) {
|
|
ret = wc_RsaFunctionNonBlock(in, inLen, out, outLen, type, key);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
ret = wc_RsaFunctionSync(in, inLen, out, outLen, type, key, rng);
|
|
}
|
|
|
|
/* handle error */
|
|
if (ret < 0 && ret != WC_PENDING_E
|
|
#ifdef WC_RSA_NONBLOCK
|
|
&& ret != FP_WOULDBLOCK
|
|
#endif
|
|
) {
|
|
if (ret == MP_EXPTMOD_E) {
|
|
/* This can happen due to incorrectly set FP_MAX_BITS or missing XREALLOC */
|
|
WOLFSSL_MSG("RSA_FUNCTION MP_EXPTMOD_E: memory/config problem");
|
|
}
|
|
|
|
key->state = RSA_STATE_NONE;
|
|
wc_RsaCleanup(key);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
/* Internal Wrappers */
|
|
/* Gives the option of choosing padding type
|
|
in : input to be encrypted
|
|
inLen: length of input buffer
|
|
out: encrypted output
|
|
outLen: length of encrypted output buffer
|
|
key : wolfSSL initialized RSA key struct
|
|
rng : wolfSSL initialized random number struct
|
|
rsa_type : type of RSA: RSA_PUBLIC_ENCRYPT, RSA_PUBLIC_DECRYPT,
|
|
RSA_PRIVATE_ENCRYPT or RSA_PRIVATE_DECRYPT
|
|
pad_value: RSA_BLOCK_TYPE_1 or RSA_BLOCK_TYPE_2
|
|
pad_type : type of padding: WC_RSA_PKCSV15_PAD, WC_RSA_OAEP_PAD,
|
|
WC_RSA_NO_PAD or WC_RSA_PSS_PAD
|
|
hash : type of hash algorithm to use found in wolfssl/wolfcrypt/hash.h
|
|
mgf : type of mask generation function to use
|
|
label : optional label
|
|
labelSz : size of optional label buffer
|
|
saltLen : Length of salt used in PSS
|
|
rng : random number generator */
|
|
static int RsaPublicEncryptEx(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key, int rsa_type,
|
|
byte pad_value, int pad_type,
|
|
enum wc_HashType hash, int mgf,
|
|
byte* label, word32 labelSz, int saltLen,
|
|
WC_RNG* rng)
|
|
{
|
|
int ret, sz;
|
|
|
|
if (in == NULL || inLen == 0 || out == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
sz = wc_RsaEncryptSize(key);
|
|
if (sz > (int)outLen) {
|
|
return RSA_BUFFER_E;
|
|
}
|
|
|
|
if (sz < RSA_MIN_PAD_SZ) {
|
|
return WC_KEY_SIZE_E;
|
|
}
|
|
|
|
if (inLen > (word32)(sz - RSA_MIN_PAD_SZ)) {
|
|
#ifdef WC_RSA_NO_PADDING
|
|
/* In the case that no padding is used the input length can and should
|
|
* be the same size as the RSA key. */
|
|
if (pad_type != WC_RSA_NO_PAD)
|
|
#endif
|
|
return RSA_BUFFER_E;
|
|
}
|
|
|
|
switch (key->state) {
|
|
case RSA_STATE_NONE:
|
|
case RSA_STATE_ENCRYPT_PAD:
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA) && \
|
|
defined(HAVE_CAVIUM)
|
|
if (key->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RSA &&
|
|
pad_type != WC_RSA_PSS_PAD && key->n.raw.buf) {
|
|
/* Async operations that include padding */
|
|
if (rsa_type == RSA_PUBLIC_ENCRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_2) {
|
|
key->state = RSA_STATE_ENCRYPT_RES;
|
|
key->dataLen = key->n.raw.len;
|
|
return NitroxRsaPublicEncrypt(in, inLen, out, outLen, key);
|
|
}
|
|
else if (rsa_type == RSA_PRIVATE_ENCRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_1) {
|
|
key->state = RSA_STATE_ENCRYPT_RES;
|
|
key->dataLen = key->n.raw.len;
|
|
return NitroxRsaSSL_Sign(in, inLen, out, outLen, key);
|
|
}
|
|
}
|
|
#elif defined(WOLFSSL_CRYPTOCELL)
|
|
if (rsa_type == RSA_PUBLIC_ENCRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_2) {
|
|
|
|
return cc310_RsaPublicEncrypt(in, inLen, out, outLen, key);
|
|
}
|
|
else if (rsa_type == RSA_PRIVATE_ENCRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_1) {
|
|
return cc310_RsaSSL_Sign(in, inLen, out, outLen, key,
|
|
cc310_hashModeRSA(hash, 0));
|
|
}
|
|
#endif /* WOLFSSL_CRYPTOCELL */
|
|
|
|
key->state = RSA_STATE_ENCRYPT_PAD;
|
|
ret = wc_RsaPad_ex(in, inLen, out, sz, pad_value, rng, pad_type, hash,
|
|
mgf, label, labelSz, saltLen, mp_count_bits(&key->n),
|
|
key->heap);
|
|
if (ret < 0) {
|
|
break;
|
|
}
|
|
|
|
key->state = RSA_STATE_ENCRYPT_EXPTMOD;
|
|
FALL_THROUGH;
|
|
|
|
case RSA_STATE_ENCRYPT_EXPTMOD:
|
|
|
|
key->dataLen = outLen;
|
|
ret = wc_RsaFunction(out, sz, out, &key->dataLen, rsa_type, key, rng);
|
|
|
|
if (ret >= 0 || ret == WC_PENDING_E) {
|
|
key->state = RSA_STATE_ENCRYPT_RES;
|
|
}
|
|
if (ret < 0) {
|
|
break;
|
|
}
|
|
|
|
FALL_THROUGH;
|
|
|
|
case RSA_STATE_ENCRYPT_RES:
|
|
ret = key->dataLen;
|
|
break;
|
|
|
|
default:
|
|
ret = BAD_STATE_E;
|
|
break;
|
|
}
|
|
|
|
/* if async pending then return and skip done cleanup below */
|
|
if (ret == WC_PENDING_E
|
|
#ifdef WC_RSA_NONBLOCK
|
|
|| ret == FP_WOULDBLOCK
|
|
#endif
|
|
) {
|
|
return ret;
|
|
}
|
|
|
|
key->state = RSA_STATE_NONE;
|
|
wc_RsaCleanup(key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Gives the option of choosing padding type
|
|
in : input to be decrypted
|
|
inLen: length of input buffer
|
|
out: decrypted message
|
|
outLen: length of decrypted message in bytes
|
|
outPtr: optional inline output pointer (if provided doing inline)
|
|
key : wolfSSL initialized RSA key struct
|
|
rsa_type : type of RSA: RSA_PUBLIC_ENCRYPT, RSA_PUBLIC_DECRYPT,
|
|
RSA_PRIVATE_ENCRYPT or RSA_PRIVATE_DECRYPT
|
|
pad_value: RSA_BLOCK_TYPE_1 or RSA_BLOCK_TYPE_2
|
|
pad_type : type of padding: WC_RSA_PKCSV15_PAD, WC_RSA_OAEP_PAD,
|
|
WC_RSA_NO_PAD, WC_RSA_PSS_PAD
|
|
hash : type of hash algorithm to use found in wolfssl/wolfcrypt/hash.h
|
|
mgf : type of mask generation function to use
|
|
label : optional label
|
|
labelSz : size of optional label buffer
|
|
saltLen : Length of salt used in PSS
|
|
rng : random number generator */
|
|
static int RsaPrivateDecryptEx(byte* in, word32 inLen, byte* out,
|
|
word32 outLen, byte** outPtr, RsaKey* key,
|
|
int rsa_type, byte pad_value, int pad_type,
|
|
enum wc_HashType hash, int mgf,
|
|
byte* label, word32 labelSz, int saltLen,
|
|
WC_RNG* rng)
|
|
{
|
|
int ret = RSA_WRONG_TYPE_E;
|
|
byte* pad = NULL;
|
|
|
|
if (in == NULL || inLen == 0 || out == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
switch (key->state) {
|
|
case RSA_STATE_NONE:
|
|
key->dataLen = inLen;
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA) && \
|
|
defined(HAVE_CAVIUM)
|
|
/* Async operations that include padding */
|
|
if (key->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RSA &&
|
|
pad_type != WC_RSA_PSS_PAD) {
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
if (rsa_type == RSA_PRIVATE_DECRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_2) {
|
|
key->state = RSA_STATE_DECRYPT_RES;
|
|
key->data = NULL;
|
|
return NitroxRsaPrivateDecrypt(in, inLen, out, &key->dataLen,
|
|
key);
|
|
#endif
|
|
}
|
|
else if (rsa_type == RSA_PUBLIC_DECRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_1) {
|
|
key->state = RSA_STATE_DECRYPT_RES;
|
|
key->data = NULL;
|
|
return NitroxRsaSSL_Verify(in, inLen, out, &key->dataLen, key);
|
|
}
|
|
}
|
|
#elif defined(WOLFSSL_CRYPTOCELL)
|
|
if (rsa_type == RSA_PRIVATE_DECRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_2) {
|
|
ret = cc310_RsaPublicDecrypt(in, inLen, out, outLen, key);
|
|
if (outPtr != NULL)
|
|
*outPtr = out; /* for inline */
|
|
return ret;
|
|
}
|
|
else if (rsa_type == RSA_PUBLIC_DECRYPT &&
|
|
pad_value == RSA_BLOCK_TYPE_1) {
|
|
return cc310_RsaSSL_Verify(in, inLen, out, key,
|
|
cc310_hashModeRSA(hash, 0));
|
|
}
|
|
#endif /* WOLFSSL_CRYPTOCELL */
|
|
|
|
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WOLFSSL_RSA_VERIFY_INLINE)
|
|
/* verify the tmp ptr is NULL, otherwise indicates bad state */
|
|
if (key->data != NULL) {
|
|
ret = BAD_STATE_E;
|
|
break;
|
|
}
|
|
|
|
/* if not doing this inline then allocate a buffer for it */
|
|
if (outPtr == NULL) {
|
|
key->data = (byte*)XMALLOC(inLen, key->heap,
|
|
DYNAMIC_TYPE_WOLF_BIGINT);
|
|
key->dataIsAlloc = 1;
|
|
if (key->data == NULL) {
|
|
ret = MEMORY_E;
|
|
break;
|
|
}
|
|
XMEMCPY(key->data, in, inLen);
|
|
}
|
|
else {
|
|
key->data = out;
|
|
}
|
|
#endif
|
|
|
|
key->state = RSA_STATE_DECRYPT_EXPTMOD;
|
|
FALL_THROUGH;
|
|
|
|
case RSA_STATE_DECRYPT_EXPTMOD:
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WOLFSSL_RSA_VERIFY_INLINE)
|
|
ret = wc_RsaFunction(key->data, inLen, key->data, &key->dataLen,
|
|
rsa_type, key, rng);
|
|
#else
|
|
ret = wc_RsaFunction(in, inLen, out, &key->dataLen, rsa_type, key, rng);
|
|
#endif
|
|
|
|
if (ret >= 0 || ret == WC_PENDING_E) {
|
|
key->state = RSA_STATE_DECRYPT_UNPAD;
|
|
}
|
|
if (ret < 0) {
|
|
break;
|
|
}
|
|
|
|
FALL_THROUGH;
|
|
|
|
case RSA_STATE_DECRYPT_UNPAD:
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WOLFSSL_RSA_VERIFY_INLINE)
|
|
ret = wc_RsaUnPad_ex(key->data, key->dataLen, &pad, pad_value, pad_type,
|
|
hash, mgf, label, labelSz, saltLen,
|
|
mp_count_bits(&key->n), key->heap);
|
|
#else
|
|
ret = wc_RsaUnPad_ex(out, key->dataLen, &pad, pad_value, pad_type, hash,
|
|
mgf, label, labelSz, saltLen,
|
|
mp_count_bits(&key->n), key->heap);
|
|
#endif
|
|
if (rsa_type == RSA_PUBLIC_DECRYPT && ret > (int)outLen)
|
|
ret = RSA_BUFFER_E;
|
|
else if (ret >= 0 && pad != NULL) {
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WOLFSSL_RSA_VERIFY_INLINE)
|
|
signed char c;
|
|
#endif
|
|
|
|
/* only copy output if not inline */
|
|
if (outPtr == NULL) {
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WOLFSSL_RSA_VERIFY_INLINE)
|
|
if (rsa_type == RSA_PRIVATE_DECRYPT) {
|
|
word32 i, j;
|
|
int start = (int)((size_t)pad - (size_t)key->data);
|
|
|
|
for (i = 0, j = 0; j < key->dataLen; j++) {
|
|
out[i] = key->data[j];
|
|
c = ctMaskGTE(j, start);
|
|
c &= ctMaskLT(i, outLen);
|
|
/* 0 - no add, -1 add */
|
|
i += (word32)((byte)(-c));
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
XMEMCPY(out, pad, ret);
|
|
}
|
|
}
|
|
else
|
|
*outPtr = pad;
|
|
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY)
|
|
ret = ctMaskSelInt(ctMaskLTE(ret, outLen), ret, RSA_BUFFER_E);
|
|
ret = ctMaskSelInt(ctMaskNotEq(ret, 0), ret, RSA_BUFFER_E);
|
|
#else
|
|
if (outLen < (word32)ret)
|
|
ret = RSA_BUFFER_E;
|
|
#endif
|
|
}
|
|
|
|
key->state = RSA_STATE_DECRYPT_RES;
|
|
FALL_THROUGH;
|
|
|
|
case RSA_STATE_DECRYPT_RES:
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA) && \
|
|
defined(HAVE_CAVIUM)
|
|
if (key->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RSA &&
|
|
pad_type != WC_RSA_PSS_PAD) {
|
|
ret = key->asyncDev.event.ret;
|
|
if (ret >= 0) {
|
|
/* convert result */
|
|
byte* dataLen = (byte*)&key->dataLen;
|
|
ret = (dataLen[0] << 8) | (dataLen[1]);
|
|
|
|
if (outPtr)
|
|
*outPtr = in;
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
ret = BAD_STATE_E;
|
|
break;
|
|
}
|
|
|
|
/* if async pending then return and skip done cleanup below */
|
|
if (ret == WC_PENDING_E
|
|
#ifdef WC_RSA_NONBLOCK
|
|
|| ret == FP_WOULDBLOCK
|
|
#endif
|
|
) {
|
|
return ret;
|
|
}
|
|
|
|
key->state = RSA_STATE_NONE;
|
|
wc_RsaCleanup(key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
/* Public RSA Functions */
|
|
int wc_RsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
RsaKey* key, WC_RNG* rng)
|
|
{
|
|
return RsaPublicEncryptEx(in, inLen, out, outLen, key,
|
|
RSA_PUBLIC_ENCRYPT, RSA_BLOCK_TYPE_2, WC_RSA_PKCSV15_PAD,
|
|
WC_HASH_TYPE_NONE, WC_MGF1NONE, NULL, 0, 0, rng);
|
|
}
|
|
|
|
|
|
#if !defined(WC_NO_RSA_OAEP) || defined(WC_RSA_NO_PADDING)
|
|
int wc_RsaPublicEncrypt_ex(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key, WC_RNG* rng, int type,
|
|
enum wc_HashType hash, int mgf, byte* label,
|
|
word32 labelSz)
|
|
{
|
|
return RsaPublicEncryptEx(in, inLen, out, outLen, key, RSA_PUBLIC_ENCRYPT,
|
|
RSA_BLOCK_TYPE_2, type, hash, mgf, label, labelSz, 0, rng);
|
|
}
|
|
#endif /* WC_NO_RSA_OAEP */
|
|
#endif
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
int wc_RsaPrivateDecryptInline(byte* in, word32 inLen, byte** out, RsaKey* key)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx(in, inLen, in, inLen, out, key,
|
|
RSA_PRIVATE_DECRYPT, RSA_BLOCK_TYPE_2, WC_RSA_PKCSV15_PAD,
|
|
WC_HASH_TYPE_NONE, WC_MGF1NONE, NULL, 0, 0, rng);
|
|
}
|
|
|
|
|
|
#ifndef WC_NO_RSA_OAEP
|
|
int wc_RsaPrivateDecryptInline_ex(byte* in, word32 inLen, byte** out,
|
|
RsaKey* key, int type, enum wc_HashType hash,
|
|
int mgf, byte* label, word32 labelSz)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx(in, inLen, in, inLen, out, key,
|
|
RSA_PRIVATE_DECRYPT, RSA_BLOCK_TYPE_2, type, hash,
|
|
mgf, label, labelSz, 0, rng);
|
|
}
|
|
#endif /* WC_NO_RSA_OAEP */
|
|
|
|
|
|
int wc_RsaPrivateDecrypt(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx((byte*)in, inLen, out, outLen, NULL, key,
|
|
RSA_PRIVATE_DECRYPT, RSA_BLOCK_TYPE_2, WC_RSA_PKCSV15_PAD,
|
|
WC_HASH_TYPE_NONE, WC_MGF1NONE, NULL, 0, 0, rng);
|
|
}
|
|
|
|
#if !defined(WC_NO_RSA_OAEP) || defined(WC_RSA_NO_PADDING)
|
|
int wc_RsaPrivateDecrypt_ex(const byte* in, word32 inLen, byte* out,
|
|
word32 outLen, RsaKey* key, int type,
|
|
enum wc_HashType hash, int mgf, byte* label,
|
|
word32 labelSz)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx((byte*)in, inLen, out, outLen, NULL, key,
|
|
RSA_PRIVATE_DECRYPT, RSA_BLOCK_TYPE_2, type, hash, mgf, label,
|
|
labelSz, 0, rng);
|
|
}
|
|
#endif /* WC_NO_RSA_OAEP || WC_RSA_NO_PADDING */
|
|
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
|
|
|
|
#if !defined(WOLFSSL_CRYPTOCELL)
|
|
int wc_RsaSSL_VerifyInline(byte* in, word32 inLen, byte** out, RsaKey* key)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx(in, inLen, in, inLen, out, key,
|
|
RSA_PUBLIC_DECRYPT, RSA_BLOCK_TYPE_1, WC_RSA_PKCSV15_PAD,
|
|
WC_HASH_TYPE_NONE, WC_MGF1NONE, NULL, 0, 0, rng);
|
|
}
|
|
#endif
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
int wc_RsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
RsaKey* key)
|
|
{
|
|
return wc_RsaSSL_Verify_ex(in, inLen, out, outLen, key, WC_RSA_PKCSV15_PAD);
|
|
}
|
|
|
|
int wc_RsaSSL_Verify_ex(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
RsaKey* key, int pad_type)
|
|
{
|
|
return wc_RsaSSL_Verify_ex2(in, inLen, out, outLen, key, pad_type,
|
|
WC_HASH_TYPE_NONE);
|
|
}
|
|
|
|
int wc_RsaSSL_Verify_ex2(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
RsaKey* key, int pad_type, enum wc_HashType hash)
|
|
{
|
|
WC_RNG* rng;
|
|
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
|
|
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
return RsaPrivateDecryptEx((byte*)in, inLen, out, outLen, NULL, key,
|
|
RSA_PUBLIC_DECRYPT, RSA_BLOCK_TYPE_1, pad_type,
|
|
hash, wc_hash2mgf(hash), NULL, 0, RSA_PSS_SALT_LEN_DEFAULT, rng);
|
|
#else
|
|
return RsaPrivateDecryptEx((byte*)in, inLen, out, outLen, NULL, key,
|
|
RSA_PUBLIC_DECRYPT, RSA_BLOCK_TYPE_1, pad_type,
|
|
hash, wc_hash2mgf(hash), NULL, 0, RSA_PSS_SALT_LEN_DISCOVER, rng);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef WC_RSA_PSS
|
|
/* Verify the message signed with RSA-PSS.
|
|
* The input buffer is reused for the output buffer.
|
|
* Salt length is equal to hash length.
|
|
*
|
|
* in Buffer holding encrypted data.
|
|
* inLen Length of data in buffer.
|
|
* out Pointer to address containing the PSS data.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* returns the length of the PSS data on success and negative indicates failure.
|
|
*/
|
|
int wc_RsaPSS_VerifyInline(byte* in, word32 inLen, byte** out,
|
|
enum wc_HashType hash, int mgf, RsaKey* key)
|
|
{
|
|
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
return wc_RsaPSS_VerifyInline_ex(in, inLen, out, hash, mgf,
|
|
RSA_PSS_SALT_LEN_DEFAULT, key);
|
|
#else
|
|
return wc_RsaPSS_VerifyInline_ex(in, inLen, out, hash, mgf,
|
|
RSA_PSS_SALT_LEN_DISCOVER, key);
|
|
#endif
|
|
}
|
|
|
|
/* Verify the message signed with RSA-PSS.
|
|
* The input buffer is reused for the output buffer.
|
|
*
|
|
* in Buffer holding encrypted data.
|
|
* inLen Length of data in buffer.
|
|
* out Pointer to address containing the PSS data.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* saltLen Length of salt used. RSA_PSS_SALT_LEN_DEFAULT (-1) indicates salt
|
|
* length is the same as the hash length. RSA_PSS_SALT_LEN_DISCOVER
|
|
* indicates salt length is determined from the data.
|
|
* returns the length of the PSS data on success and negative indicates failure.
|
|
*/
|
|
int wc_RsaPSS_VerifyInline_ex(byte* in, word32 inLen, byte** out,
|
|
enum wc_HashType hash, int mgf, int saltLen,
|
|
RsaKey* key)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx(in, inLen, in, inLen, out, key,
|
|
RSA_PUBLIC_DECRYPT, RSA_BLOCK_TYPE_1, WC_RSA_PSS_PAD,
|
|
hash, mgf, NULL, 0, saltLen, rng);
|
|
}
|
|
|
|
/* Verify the message signed with RSA-PSS.
|
|
* Salt length is equal to hash length.
|
|
*
|
|
* in Buffer holding encrypted data.
|
|
* inLen Length of data in buffer.
|
|
* out Pointer to address containing the PSS data.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* returns the length of the PSS data on success and negative indicates failure.
|
|
*/
|
|
int wc_RsaPSS_Verify(byte* in, word32 inLen, byte* out, word32 outLen,
|
|
enum wc_HashType hash, int mgf, RsaKey* key)
|
|
{
|
|
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
return wc_RsaPSS_Verify_ex(in, inLen, out, outLen, hash, mgf,
|
|
RSA_PSS_SALT_LEN_DEFAULT, key);
|
|
#else
|
|
return wc_RsaPSS_Verify_ex(in, inLen, out, outLen, hash, mgf,
|
|
RSA_PSS_SALT_LEN_DISCOVER, key);
|
|
#endif
|
|
}
|
|
|
|
/* Verify the message signed with RSA-PSS.
|
|
*
|
|
* in Buffer holding encrypted data.
|
|
* inLen Length of data in buffer.
|
|
* out Pointer to address containing the PSS data.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* saltLen Length of salt used. RSA_PSS_SALT_LEN_DEFAULT (-1) indicates salt
|
|
* length is the same as the hash length. RSA_PSS_SALT_LEN_DISCOVER
|
|
* indicates salt length is determined from the data.
|
|
* returns the length of the PSS data on success and negative indicates failure.
|
|
*/
|
|
int wc_RsaPSS_Verify_ex(byte* in, word32 inLen, byte* out, word32 outLen,
|
|
enum wc_HashType hash, int mgf, int saltLen,
|
|
RsaKey* key)
|
|
{
|
|
WC_RNG* rng;
|
|
#ifdef WC_RSA_BLINDING
|
|
rng = key->rng;
|
|
#else
|
|
rng = NULL;
|
|
#endif
|
|
return RsaPrivateDecryptEx(in, inLen, out, outLen, NULL, key,
|
|
RSA_PUBLIC_DECRYPT, RSA_BLOCK_TYPE_1, WC_RSA_PSS_PAD,
|
|
hash, mgf, NULL, 0, saltLen, rng);
|
|
}
|
|
|
|
|
|
/* Checks the PSS data to ensure that the signature matches.
|
|
* Salt length is equal to hash length.
|
|
*
|
|
* in Hash of the data that is being verified.
|
|
* inSz Length of hash.
|
|
* sig Buffer holding PSS data.
|
|
* sigSz Size of PSS data.
|
|
* hashType Hash algorithm.
|
|
* returns BAD_PADDING_E when the PSS data is invalid, BAD_FUNC_ARG when
|
|
* NULL is passed in to in or sig or inSz is not the same as the hash
|
|
* algorithm length and 0 on success.
|
|
*/
|
|
int wc_RsaPSS_CheckPadding(const byte* in, word32 inSz, byte* sig,
|
|
word32 sigSz, enum wc_HashType hashType)
|
|
{
|
|
return wc_RsaPSS_CheckPadding_ex(in, inSz, sig, sigSz, hashType, inSz, 0);
|
|
}
|
|
|
|
/* Checks the PSS data to ensure that the signature matches.
|
|
*
|
|
* in Hash of the data that is being verified.
|
|
* inSz Length of hash.
|
|
* sig Buffer holding PSS data.
|
|
* sigSz Size of PSS data.
|
|
* hashType Hash algorithm.
|
|
* saltLen Length of salt used. RSA_PSS_SALT_LEN_DEFAULT (-1) indicates salt
|
|
* length is the same as the hash length. RSA_PSS_SALT_LEN_DISCOVER
|
|
* indicates salt length is determined from the data.
|
|
* returns BAD_PADDING_E when the PSS data is invalid, BAD_FUNC_ARG when
|
|
* NULL is passed in to in or sig or inSz is not the same as the hash
|
|
* algorithm length and 0 on success.
|
|
*/
|
|
int wc_RsaPSS_CheckPadding_ex(const byte* in, word32 inSz, byte* sig,
|
|
word32 sigSz, enum wc_HashType hashType,
|
|
int saltLen, int bits)
|
|
{
|
|
int ret = 0;
|
|
#ifndef WOLFSSL_PSS_LONG_SALT
|
|
byte sigCheck[WC_MAX_DIGEST_SIZE*2 + RSA_PSS_PAD_SZ];
|
|
#else
|
|
byte *sigCheck = NULL;
|
|
#endif
|
|
|
|
(void)bits;
|
|
|
|
if (in == NULL || sig == NULL ||
|
|
inSz != (word32)wc_HashGetDigestSize(hashType)) {
|
|
ret = BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (saltLen == RSA_PSS_SALT_LEN_DEFAULT) {
|
|
saltLen = inSz;
|
|
#ifdef WOLFSSL_SHA512
|
|
/* See FIPS 186-4 section 5.5 item (e). */
|
|
if (bits == 1024 && inSz == WC_SHA512_DIGEST_SIZE) {
|
|
saltLen = RSA_PSS_SALT_MAX_SZ;
|
|
}
|
|
#endif
|
|
}
|
|
#ifndef WOLFSSL_PSS_LONG_SALT
|
|
else if ((word32)saltLen > inSz) {
|
|
ret = PSS_SALTLEN_E;
|
|
}
|
|
#endif
|
|
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
|
|
else if (saltLen < RSA_PSS_SALT_LEN_DEFAULT) {
|
|
ret = PSS_SALTLEN_E;
|
|
}
|
|
#else
|
|
else if (saltLen == RSA_PSS_SALT_LEN_DISCOVER) {
|
|
saltLen = sigSz - inSz;
|
|
if (saltLen < 0) {
|
|
ret = PSS_SALTLEN_E;
|
|
}
|
|
}
|
|
else if (saltLen < RSA_PSS_SALT_LEN_DISCOVER) {
|
|
ret = PSS_SALTLEN_E;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Sig = Salt | Exp Hash */
|
|
if (ret == 0) {
|
|
if (sigSz != inSz + saltLen) {
|
|
ret = PSS_SALTLEN_E;
|
|
}
|
|
}
|
|
|
|
#ifdef WOLFSSL_PSS_LONG_SALT
|
|
if (ret == 0) {
|
|
sigCheck = (byte*)XMALLOC(RSA_PSS_PAD_SZ + inSz + saltLen, NULL,
|
|
DYNAMIC_TYPE_RSA_BUFFER);
|
|
if (sigCheck == NULL) {
|
|
ret = MEMORY_E;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Exp Hash = HASH(8 * 0x00 | Message Hash | Salt) */
|
|
if (ret == 0) {
|
|
XMEMSET(sigCheck, 0, RSA_PSS_PAD_SZ);
|
|
XMEMCPY(sigCheck + RSA_PSS_PAD_SZ, in, inSz);
|
|
XMEMCPY(sigCheck + RSA_PSS_PAD_SZ + inSz, sig, saltLen);
|
|
ret = wc_Hash(hashType, sigCheck, RSA_PSS_PAD_SZ + inSz + saltLen,
|
|
sigCheck, inSz);
|
|
}
|
|
if (ret == 0) {
|
|
if (XMEMCMP(sigCheck, sig + saltLen, inSz) != 0) {
|
|
WOLFSSL_MSG("RsaPSS_CheckPadding: Padding Error");
|
|
ret = BAD_PADDING_E;
|
|
}
|
|
}
|
|
|
|
#ifdef WOLFSSL_PSS_LONG_SALT
|
|
if (sigCheck != NULL) {
|
|
XFREE(sigCheck, NULL, DYNAMIC_TYPE_RSA_BUFFER);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Verify the message signed with RSA-PSS.
|
|
* The input buffer is reused for the output buffer.
|
|
* Salt length is equal to hash length.
|
|
*
|
|
* in Buffer holding encrypted data.
|
|
* inLen Length of data in buffer.
|
|
* out Pointer to address containing the PSS data.
|
|
* digest Hash of the data that is being verified.
|
|
* digestLen Length of hash.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* returns the length of the PSS data on success and negative indicates failure.
|
|
*/
|
|
int wc_RsaPSS_VerifyCheckInline(byte* in, word32 inLen, byte** out,
|
|
const byte* digest, word32 digestLen,
|
|
enum wc_HashType hash, int mgf, RsaKey* key)
|
|
{
|
|
int ret = 0, verify, saltLen, hLen, bits = 0;
|
|
|
|
hLen = wc_HashGetDigestSize(hash);
|
|
if (hLen < 0)
|
|
return BAD_FUNC_ARG;
|
|
if ((word32)hLen != digestLen)
|
|
return BAD_FUNC_ARG;
|
|
|
|
saltLen = hLen;
|
|
#ifdef WOLFSSL_SHA512
|
|
/* See FIPS 186-4 section 5.5 item (e). */
|
|
bits = mp_count_bits(&key->n);
|
|
if (bits == 1024 && hLen == WC_SHA512_DIGEST_SIZE)
|
|
saltLen = RSA_PSS_SALT_MAX_SZ;
|
|
#endif
|
|
|
|
verify = wc_RsaPSS_VerifyInline_ex(in, inLen, out, hash, mgf, saltLen, key);
|
|
if (verify > 0)
|
|
ret = wc_RsaPSS_CheckPadding_ex(digest, digestLen, *out, verify,
|
|
hash, saltLen, bits);
|
|
if (ret == 0)
|
|
ret = verify;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Verify the message signed with RSA-PSS.
|
|
* Salt length is equal to hash length.
|
|
*
|
|
* in Buffer holding encrypted data.
|
|
* inLen Length of data in buffer.
|
|
* out Pointer to address containing the PSS data.
|
|
* outLen Length of the output.
|
|
* digest Hash of the data that is being verified.
|
|
* digestLen Length of hash.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* returns the length of the PSS data on success and negative indicates failure.
|
|
*/
|
|
int wc_RsaPSS_VerifyCheck(byte* in, word32 inLen, byte* out, word32 outLen,
|
|
const byte* digest, word32 digestLen,
|
|
enum wc_HashType hash, int mgf,
|
|
RsaKey* key)
|
|
{
|
|
int ret = 0, verify, saltLen, hLen, bits = 0;
|
|
|
|
hLen = wc_HashGetDigestSize(hash);
|
|
if (hLen < 0)
|
|
return hLen;
|
|
if ((word32)hLen != digestLen)
|
|
return BAD_FUNC_ARG;
|
|
|
|
saltLen = hLen;
|
|
#ifdef WOLFSSL_SHA512
|
|
/* See FIPS 186-4 section 5.5 item (e). */
|
|
bits = mp_count_bits(&key->n);
|
|
if (bits == 1024 && hLen == WC_SHA512_DIGEST_SIZE)
|
|
saltLen = RSA_PSS_SALT_MAX_SZ;
|
|
#endif
|
|
|
|
verify = wc_RsaPSS_Verify_ex(in, inLen, out, outLen, hash,
|
|
mgf, saltLen, key);
|
|
if (verify > 0)
|
|
ret = wc_RsaPSS_CheckPadding_ex(digest, digestLen, out, verify,
|
|
hash, saltLen, bits);
|
|
if (ret == 0)
|
|
ret = verify;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !defined(WOLFSSL_RSA_PUBLIC_ONLY) && !defined(WOLFSSL_RSA_VERIFY_ONLY)
|
|
int wc_RsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
RsaKey* key, WC_RNG* rng)
|
|
{
|
|
return RsaPublicEncryptEx(in, inLen, out, outLen, key,
|
|
RSA_PRIVATE_ENCRYPT, RSA_BLOCK_TYPE_1, WC_RSA_PKCSV15_PAD,
|
|
WC_HASH_TYPE_NONE, WC_MGF1NONE, NULL, 0, 0, rng);
|
|
}
|
|
|
|
#ifdef WC_RSA_PSS
|
|
/* Sign the hash of a message using RSA-PSS.
|
|
* Salt length is equal to hash length.
|
|
*
|
|
* in Buffer holding hash of message.
|
|
* inLen Length of data in buffer (hash length).
|
|
* out Buffer to write encrypted signature into.
|
|
* outLen Size of buffer to write to.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* key Public RSA key.
|
|
* rng Random number generator.
|
|
* returns the length of the encrypted signature on success, a negative value
|
|
* indicates failure.
|
|
*/
|
|
int wc_RsaPSS_Sign(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
enum wc_HashType hash, int mgf, RsaKey* key, WC_RNG* rng)
|
|
{
|
|
return wc_RsaPSS_Sign_ex(in, inLen, out, outLen, hash, mgf,
|
|
RSA_PSS_SALT_LEN_DEFAULT, key, rng);
|
|
}
|
|
|
|
/* Sign the hash of a message using RSA-PSS.
|
|
*
|
|
* in Buffer holding hash of message.
|
|
* inLen Length of data in buffer (hash length).
|
|
* out Buffer to write encrypted signature into.
|
|
* outLen Size of buffer to write to.
|
|
* hash Hash algorithm.
|
|
* mgf Mask generation function.
|
|
* saltLen Length of salt used. RSA_PSS_SALT_LEN_DEFAULT (-1) indicates salt
|
|
* length is the same as the hash length. RSA_PSS_SALT_LEN_DISCOVER
|
|
* indicates salt length is determined from the data.
|
|
* key Public RSA key.
|
|
* rng Random number generator.
|
|
* returns the length of the encrypted signature on success, a negative value
|
|
* indicates failure.
|
|
*/
|
|
int wc_RsaPSS_Sign_ex(const byte* in, word32 inLen, byte* out, word32 outLen,
|
|
enum wc_HashType hash, int mgf, int saltLen, RsaKey* key,
|
|
WC_RNG* rng)
|
|
{
|
|
return RsaPublicEncryptEx(in, inLen, out, outLen, key,
|
|
RSA_PRIVATE_ENCRYPT, RSA_BLOCK_TYPE_1, WC_RSA_PSS_PAD,
|
|
hash, mgf, NULL, 0, saltLen, rng);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(WOLFSSL_RSA_VERIFY_ONLY) || !defined(WOLFSSL_SP_MATH) || \
|
|
defined(WC_RSA_PSS)
|
|
int wc_RsaEncryptSize(RsaKey* key)
|
|
{
|
|
int ret;
|
|
|
|
if (key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
ret = mp_unsigned_bin_size(&key->n);
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (ret == 0 && key->devId != INVALID_DEVID) {
|
|
ret = 2048/8; /* hardware handles, use 2048-bit as default */
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
/* flatten RsaKey structure into individual elements (e, n) */
|
|
int wc_RsaFlattenPublicKey(RsaKey* key, byte* e, word32* eSz, byte* n,
|
|
word32* nSz)
|
|
{
|
|
int sz, ret;
|
|
|
|
if (key == NULL || e == NULL || eSz == NULL || n == NULL || nSz == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
sz = mp_unsigned_bin_size(&key->e);
|
|
if ((word32)sz > *eSz)
|
|
return RSA_BUFFER_E;
|
|
ret = mp_to_unsigned_bin(&key->e, e);
|
|
if (ret != MP_OKAY)
|
|
return ret;
|
|
*eSz = (word32)sz;
|
|
|
|
sz = wc_RsaEncryptSize(key);
|
|
if ((word32)sz > *nSz)
|
|
return RSA_BUFFER_E;
|
|
ret = mp_to_unsigned_bin(&key->n, n);
|
|
if (ret != MP_OKAY)
|
|
return ret;
|
|
*nSz = (word32)sz;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#endif /* HAVE_FIPS */
|
|
|
|
|
|
#ifndef WOLFSSL_RSA_VERIFY_ONLY
|
|
static int RsaGetValue(mp_int* in, byte* out, word32* outSz)
|
|
{
|
|
word32 sz;
|
|
int ret = 0;
|
|
|
|
/* Parameters ensured by calling function. */
|
|
|
|
sz = (word32)mp_unsigned_bin_size(in);
|
|
if (sz > *outSz)
|
|
ret = RSA_BUFFER_E;
|
|
|
|
if (ret == 0)
|
|
ret = mp_to_unsigned_bin(in, out);
|
|
|
|
if (ret == MP_OKAY)
|
|
*outSz = sz;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int wc_RsaExportKey(RsaKey* key,
|
|
byte* e, word32* eSz, byte* n, word32* nSz,
|
|
byte* d, word32* dSz, byte* p, word32* pSz,
|
|
byte* q, word32* qSz)
|
|
{
|
|
int ret = BAD_FUNC_ARG;
|
|
|
|
if (key && e && eSz && n && nSz && d && dSz && p && pSz && q && qSz)
|
|
ret = 0;
|
|
|
|
if (ret == 0)
|
|
ret = RsaGetValue(&key->e, e, eSz);
|
|
if (ret == 0)
|
|
ret = RsaGetValue(&key->n, n, nSz);
|
|
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
|
|
if (ret == 0)
|
|
ret = RsaGetValue(&key->d, d, dSz);
|
|
if (ret == 0)
|
|
ret = RsaGetValue(&key->p, p, pSz);
|
|
if (ret == 0)
|
|
ret = RsaGetValue(&key->q, q, qSz);
|
|
#else
|
|
/* no private parts to key */
|
|
if (d == NULL || p == NULL || q == NULL || dSz == NULL || pSz == NULL
|
|
|| qSz == NULL) {
|
|
ret = BAD_FUNC_ARG;
|
|
}
|
|
else {
|
|
*dSz = 0;
|
|
*pSz = 0;
|
|
*qSz = 0;
|
|
}
|
|
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef WOLFSSL_KEY_GEN
|
|
|
|
/* Check that |p-q| > 2^((size/2)-100) */
|
|
static int wc_CompareDiffPQ(mp_int* p, mp_int* q, int size)
|
|
{
|
|
mp_int c, d;
|
|
int ret;
|
|
|
|
if (p == NULL || q == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
ret = mp_init_multi(&c, &d, NULL, NULL, NULL, NULL);
|
|
|
|
/* c = 2^((size/2)-100) */
|
|
if (ret == 0)
|
|
ret = mp_2expt(&c, (size/2)-100);
|
|
|
|
/* d = |p-q| */
|
|
if (ret == 0)
|
|
ret = mp_sub(p, q, &d);
|
|
|
|
#if !defined(WOLFSSL_SP_MATH) && (!defined(WOLFSSL_SP_MATH_ALL) || \
|
|
defined(WOLFSSL_SP_INT_NEGATIVE))
|
|
if (ret == 0)
|
|
ret = mp_abs(&d, &d);
|
|
#endif
|
|
|
|
/* compare */
|
|
if (ret == 0)
|
|
ret = mp_cmp(&d, &c);
|
|
|
|
if (ret == MP_GT)
|
|
ret = MP_OKAY;
|
|
|
|
mp_clear(&d);
|
|
mp_clear(&c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* The lower_bound value is floor(2^(0.5) * 2^((nlen/2)-1)) where nlen is 4096.
|
|
* This number was calculated using a small test tool written with a common
|
|
* large number math library. Other values of nlen may be checked with a subset
|
|
* of lower_bound. */
|
|
static const byte lower_bound[] = {
|
|
0xB5, 0x04, 0xF3, 0x33, 0xF9, 0xDE, 0x64, 0x84,
|
|
0x59, 0x7D, 0x89, 0xB3, 0x75, 0x4A, 0xBE, 0x9F,
|
|
0x1D, 0x6F, 0x60, 0xBA, 0x89, 0x3B, 0xA8, 0x4C,
|
|
0xED, 0x17, 0xAC, 0x85, 0x83, 0x33, 0x99, 0x15,
|
|
/* 512 */
|
|
0x4A, 0xFC, 0x83, 0x04, 0x3A, 0xB8, 0xA2, 0xC3,
|
|
0xA8, 0xB1, 0xFE, 0x6F, 0xDC, 0x83, 0xDB, 0x39,
|
|
0x0F, 0x74, 0xA8, 0x5E, 0x43, 0x9C, 0x7B, 0x4A,
|
|
0x78, 0x04, 0x87, 0x36, 0x3D, 0xFA, 0x27, 0x68,
|
|
/* 1024 */
|
|
0xD2, 0x20, 0x2E, 0x87, 0x42, 0xAF, 0x1F, 0x4E,
|
|
0x53, 0x05, 0x9C, 0x60, 0x11, 0xBC, 0x33, 0x7B,
|
|
0xCA, 0xB1, 0xBC, 0x91, 0x16, 0x88, 0x45, 0x8A,
|
|
0x46, 0x0A, 0xBC, 0x72, 0x2F, 0x7C, 0x4E, 0x33,
|
|
0xC6, 0xD5, 0xA8, 0xA3, 0x8B, 0xB7, 0xE9, 0xDC,
|
|
0xCB, 0x2A, 0x63, 0x43, 0x31, 0xF3, 0xC8, 0x4D,
|
|
0xF5, 0x2F, 0x12, 0x0F, 0x83, 0x6E, 0x58, 0x2E,
|
|
0xEA, 0xA4, 0xA0, 0x89, 0x90, 0x40, 0xCA, 0x4A,
|
|
/* 2048 */
|
|
0x81, 0x39, 0x4A, 0xB6, 0xD8, 0xFD, 0x0E, 0xFD,
|
|
0xF4, 0xD3, 0xA0, 0x2C, 0xEB, 0xC9, 0x3E, 0x0C,
|
|
0x42, 0x64, 0xDA, 0xBC, 0xD5, 0x28, 0xB6, 0x51,
|
|
0xB8, 0xCF, 0x34, 0x1B, 0x6F, 0x82, 0x36, 0xC7,
|
|
0x01, 0x04, 0xDC, 0x01, 0xFE, 0x32, 0x35, 0x2F,
|
|
0x33, 0x2A, 0x5E, 0x9F, 0x7B, 0xDA, 0x1E, 0xBF,
|
|
0xF6, 0xA1, 0xBE, 0x3F, 0xCA, 0x22, 0x13, 0x07,
|
|
0xDE, 0xA0, 0x62, 0x41, 0xF7, 0xAA, 0x81, 0xC2,
|
|
/* 3072 */
|
|
0xC1, 0xFC, 0xBD, 0xDE, 0xA2, 0xF7, 0xDC, 0x33,
|
|
0x18, 0x83, 0x8A, 0x2E, 0xAF, 0xF5, 0xF3, 0xB2,
|
|
0xD2, 0x4F, 0x4A, 0x76, 0x3F, 0xAC, 0xB8, 0x82,
|
|
0xFD, 0xFE, 0x17, 0x0F, 0xD3, 0xB1, 0xF7, 0x80,
|
|
0xF9, 0xAC, 0xCE, 0x41, 0x79, 0x7F, 0x28, 0x05,
|
|
0xC2, 0x46, 0x78, 0x5E, 0x92, 0x95, 0x70, 0x23,
|
|
0x5F, 0xCF, 0x8F, 0x7B, 0xCA, 0x3E, 0xA3, 0x3B,
|
|
0x4D, 0x7C, 0x60, 0xA5, 0xE6, 0x33, 0xE3, 0xE1
|
|
/* 4096 */
|
|
};
|
|
|
|
|
|
/* returns 1 on key size ok and 0 if not ok */
|
|
static WC_INLINE int RsaSizeCheck(int size)
|
|
{
|
|
if (size < RSA_MIN_SIZE || size > RSA_MAX_SIZE) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_FIPS
|
|
/* Key size requirements for CAVP */
|
|
switch (size) {
|
|
case 1024:
|
|
case 2048:
|
|
case 3072:
|
|
case 4096:
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
#else
|
|
return 1; /* allow unusual key sizes in non FIPS mode */
|
|
#endif /* HAVE_FIPS */
|
|
}
|
|
|
|
|
|
static int _CheckProbablePrime(mp_int* p, mp_int* q, mp_int* e, int nlen,
|
|
int* isPrime, WC_RNG* rng)
|
|
{
|
|
int ret;
|
|
mp_int tmp1, tmp2;
|
|
mp_int* prime;
|
|
|
|
if (p == NULL || e == NULL || isPrime == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (!RsaSizeCheck(nlen))
|
|
return BAD_FUNC_ARG;
|
|
|
|
*isPrime = MP_NO;
|
|
|
|
if (q != NULL) {
|
|
/* 5.4 - check that |p-q| <= (2^(1/2))(2^((nlen/2)-1)) */
|
|
ret = wc_CompareDiffPQ(p, q, nlen);
|
|
if (ret != MP_OKAY) goto notOkay;
|
|
prime = q;
|
|
}
|
|
else
|
|
prime = p;
|
|
|
|
ret = mp_init_multi(&tmp1, &tmp2, NULL, NULL, NULL, NULL);
|
|
if (ret != MP_OKAY) goto notOkay;
|
|
|
|
/* 4.4,5.5 - Check that prime >= (2^(1/2))(2^((nlen/2)-1))
|
|
* This is a comparison against lowerBound */
|
|
ret = mp_read_unsigned_bin(&tmp1, lower_bound, nlen/16);
|
|
if (ret != MP_OKAY) goto notOkay;
|
|
ret = mp_cmp(prime, &tmp1);
|
|
if (ret == MP_LT) goto exit;
|
|
|
|
/* 4.5,5.6 - Check that GCD(p-1, e) == 1 */
|
|
ret = mp_sub_d(prime, 1, &tmp1); /* tmp1 = prime-1 */
|
|
if (ret != MP_OKAY) goto notOkay;
|
|
ret = mp_gcd(&tmp1, e, &tmp2); /* tmp2 = gcd(prime-1, e) */
|
|
if (ret != MP_OKAY) goto notOkay;
|
|
ret = mp_cmp_d(&tmp2, 1);
|
|
if (ret != MP_EQ) goto exit; /* e divides p-1 */
|
|
|
|
/* 4.5.1,5.6.1 - Check primality of p with 8 rounds of M-R.
|
|
* mp_prime_is_prime_ex() performs test divisions against the first 256
|
|
* prime numbers. After that it performs 8 rounds of M-R using random
|
|
* bases between 2 and n-2.
|
|
* mp_prime_is_prime() performs the same test divisions and then does
|
|
* M-R with the first 8 primes. Both functions set isPrime as a
|
|
* side-effect. */
|
|
if (rng != NULL)
|
|
ret = mp_prime_is_prime_ex(prime, 8, isPrime, rng);
|
|
else
|
|
ret = mp_prime_is_prime(prime, 8, isPrime);
|
|
if (ret != MP_OKAY) goto notOkay;
|
|
|
|
exit:
|
|
ret = MP_OKAY;
|
|
notOkay:
|
|
mp_clear(&tmp1);
|
|
mp_clear(&tmp2);
|
|
return ret;
|
|
}
|
|
|
|
|
|
int wc_CheckProbablePrime_ex(const byte* pRaw, word32 pRawSz,
|
|
const byte* qRaw, word32 qRawSz,
|
|
const byte* eRaw, word32 eRawSz,
|
|
int nlen, int* isPrime, WC_RNG* rng)
|
|
{
|
|
mp_int p, q, e;
|
|
mp_int* Q = NULL;
|
|
int ret;
|
|
|
|
if (pRaw == NULL || pRawSz == 0 ||
|
|
eRaw == NULL || eRawSz == 0 ||
|
|
isPrime == NULL) {
|
|
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if ((qRaw != NULL && qRawSz == 0) || (qRaw == NULL && qRawSz != 0))
|
|
return BAD_FUNC_ARG;
|
|
|
|
ret = mp_init_multi(&p, &q, &e, NULL, NULL, NULL);
|
|
|
|
if (ret == MP_OKAY)
|
|
ret = mp_read_unsigned_bin(&p, pRaw, pRawSz);
|
|
|
|
if (ret == MP_OKAY) {
|
|
if (qRaw != NULL) {
|
|
ret = mp_read_unsigned_bin(&q, qRaw, qRawSz);
|
|
if (ret == MP_OKAY)
|
|
Q = &q;
|
|
}
|
|
}
|
|
|
|
if (ret == MP_OKAY)
|
|
ret = mp_read_unsigned_bin(&e, eRaw, eRawSz);
|
|
|
|
if (ret == MP_OKAY)
|
|
ret = _CheckProbablePrime(&p, Q, &e, nlen, isPrime, rng);
|
|
|
|
ret = (ret == MP_OKAY) ? 0 : PRIME_GEN_E;
|
|
|
|
mp_clear(&p);
|
|
mp_clear(&q);
|
|
mp_clear(&e);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int wc_CheckProbablePrime(const byte* pRaw, word32 pRawSz,
|
|
const byte* qRaw, word32 qRawSz,
|
|
const byte* eRaw, word32 eRawSz,
|
|
int nlen, int* isPrime)
|
|
{
|
|
return wc_CheckProbablePrime_ex(pRaw, pRawSz, qRaw, qRawSz,
|
|
eRaw, eRawSz, nlen, isPrime, NULL);
|
|
}
|
|
|
|
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS) && \
|
|
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2))
|
|
/* Make an RSA key for size bits, with e specified, 65537 is a good e */
|
|
int wc_MakeRsaKey(RsaKey* key, int size, long e, WC_RNG* rng)
|
|
{
|
|
#ifndef WC_NO_RNG
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
mp_int *p = (mp_int *)XMALLOC(sizeof *p, key->heap, DYNAMIC_TYPE_RSA);
|
|
mp_int *q = (mp_int *)XMALLOC(sizeof *q, key->heap, DYNAMIC_TYPE_RSA);
|
|
mp_int *tmp1 = (mp_int *)XMALLOC(sizeof *tmp1, key->heap, DYNAMIC_TYPE_RSA);
|
|
mp_int *tmp2 = (mp_int *)XMALLOC(sizeof *tmp2, key->heap, DYNAMIC_TYPE_RSA);
|
|
mp_int *tmp3 = (mp_int *)XMALLOC(sizeof *tmp3, key->heap, DYNAMIC_TYPE_RSA);
|
|
#else
|
|
mp_int p_buf, *p = &p_buf;
|
|
mp_int q_buf, *q = &q_buf;
|
|
mp_int tmp1_buf, *tmp1 = &tmp1_buf;
|
|
mp_int tmp2_buf, *tmp2 = &tmp2_buf;
|
|
mp_int tmp3_buf, *tmp3 = &tmp3_buf;
|
|
#endif
|
|
int err, i, failCount, primeSz, isPrime = 0;
|
|
byte* buf = NULL;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
if ((p == NULL) ||
|
|
(q == NULL) ||
|
|
(tmp1 == NULL) ||
|
|
(tmp2 == NULL) ||
|
|
(tmp3 == NULL)) {
|
|
err = MEMORY_E;
|
|
goto out;
|
|
}
|
|
#endif
|
|
|
|
if (key == NULL || rng == NULL) {
|
|
err = BAD_FUNC_ARG;
|
|
goto out;
|
|
}
|
|
|
|
if (!RsaSizeCheck(size)) {
|
|
err = BAD_FUNC_ARG;
|
|
goto out;
|
|
}
|
|
|
|
if (e < 3 || (e & 1) == 0) {
|
|
err = BAD_FUNC_ARG;
|
|
goto out;
|
|
}
|
|
|
|
#if defined(WOLFSSL_CRYPTOCELL)
|
|
|
|
err = cc310_RSA_GenerateKeyPair(key, size, e);
|
|
goto out;
|
|
|
|
#endif /*WOLFSSL_CRYPTOCELL*/
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (key->devId != INVALID_DEVID) {
|
|
err = wc_CryptoCb_MakeRsaKey(key, size, e, rng);
|
|
if (err != CRYPTOCB_UNAVAILABLE)
|
|
goto out;
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA) && \
|
|
defined(WC_ASYNC_ENABLE_RSA_KEYGEN)
|
|
if (key->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RSA) {
|
|
#ifdef HAVE_CAVIUM
|
|
/* TODO: Not implemented */
|
|
#elif defined(HAVE_INTEL_QA)
|
|
err = IntelQaRsaKeyGen(&key->asyncDev, key, size, e, rng);
|
|
goto out;
|
|
#else
|
|
if (wc_AsyncTestInit(&key->asyncDev, ASYNC_TEST_RSA_MAKE)) {
|
|
WC_ASYNC_TEST* testDev = &key->asyncDev.test;
|
|
testDev->rsaMake.rng = rng;
|
|
testDev->rsaMake.key = key;
|
|
testDev->rsaMake.size = size;
|
|
testDev->rsaMake.e = e;
|
|
err = WC_PENDING_E;
|
|
goto out;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
err = mp_init_multi(p, q, tmp1, tmp2, tmp3, NULL);
|
|
|
|
if (err == MP_OKAY)
|
|
err = mp_set_int(tmp3, e);
|
|
|
|
/* The failCount value comes from NIST FIPS 186-4, section B.3.3,
|
|
* process steps 4.7 and 5.8. */
|
|
failCount = 5 * (size / 2);
|
|
primeSz = size / 16; /* size is the size of n in bits.
|
|
primeSz is in bytes. */
|
|
|
|
/* allocate buffer to work with */
|
|
if (err == MP_OKAY) {
|
|
buf = (byte*)XMALLOC(primeSz, key->heap, DYNAMIC_TYPE_RSA);
|
|
if (buf == NULL)
|
|
err = MEMORY_E;
|
|
}
|
|
|
|
/* make p */
|
|
if (err == MP_OKAY) {
|
|
isPrime = 0;
|
|
i = 0;
|
|
do {
|
|
#ifdef SHOW_GEN
|
|
printf(".");
|
|
fflush(stdout);
|
|
#endif
|
|
/* generate value */
|
|
err = wc_RNG_GenerateBlock(rng, buf, primeSz);
|
|
if (err == 0) {
|
|
/* prime lower bound has the MSB set, set it in candidate */
|
|
buf[0] |= 0x80;
|
|
/* make candidate odd */
|
|
buf[primeSz-1] |= 0x01;
|
|
/* load value */
|
|
err = mp_read_unsigned_bin(p, buf, primeSz);
|
|
}
|
|
|
|
if (err == MP_OKAY)
|
|
err = _CheckProbablePrime(p, NULL, tmp3, size, &isPrime, rng);
|
|
|
|
#ifdef HAVE_FIPS
|
|
i++;
|
|
#else
|
|
/* Keep the old retry behavior in non-FIPS build. */
|
|
(void)i;
|
|
#endif
|
|
} while (err == MP_OKAY && !isPrime && i < failCount);
|
|
}
|
|
|
|
if (err == MP_OKAY && !isPrime)
|
|
err = PRIME_GEN_E;
|
|
|
|
/* make q */
|
|
if (err == MP_OKAY) {
|
|
isPrime = 0;
|
|
i = 0;
|
|
do {
|
|
#ifdef SHOW_GEN
|
|
printf(".");
|
|
fflush(stdout);
|
|
#endif
|
|
/* generate value */
|
|
err = wc_RNG_GenerateBlock(rng, buf, primeSz);
|
|
if (err == 0) {
|
|
/* prime lower bound has the MSB set, set it in candidate */
|
|
buf[0] |= 0x80;
|
|
/* make candidate odd */
|
|
buf[primeSz-1] |= 0x01;
|
|
/* load value */
|
|
err = mp_read_unsigned_bin(q, buf, primeSz);
|
|
}
|
|
|
|
if (err == MP_OKAY)
|
|
err = _CheckProbablePrime(p, q, tmp3, size, &isPrime, rng);
|
|
|
|
#ifdef HAVE_FIPS
|
|
i++;
|
|
#else
|
|
/* Keep the old retry behavior in non-FIPS build. */
|
|
(void)i;
|
|
#endif
|
|
} while (err == MP_OKAY && !isPrime && i < failCount);
|
|
}
|
|
|
|
if (err == MP_OKAY && !isPrime)
|
|
err = PRIME_GEN_E;
|
|
|
|
if (buf) {
|
|
ForceZero(buf, primeSz);
|
|
XFREE(buf, key->heap, DYNAMIC_TYPE_RSA);
|
|
}
|
|
|
|
if (err == MP_OKAY && mp_cmp(p, q) < 0) {
|
|
err = mp_copy(p, tmp1);
|
|
if (err == MP_OKAY)
|
|
err = mp_copy(q, p);
|
|
if (err == MP_OKAY)
|
|
mp_copy(tmp1, q);
|
|
}
|
|
|
|
/* Setup RsaKey buffers */
|
|
if (err == MP_OKAY)
|
|
err = mp_init_multi(&key->n, &key->e, &key->d, &key->p, &key->q, NULL);
|
|
if (err == MP_OKAY)
|
|
err = mp_init_multi(&key->dP, &key->dQ, &key->u, NULL, NULL, NULL);
|
|
|
|
/* Software Key Calculation */
|
|
if (err == MP_OKAY) /* tmp1 = p-1 */
|
|
err = mp_sub_d(p, 1, tmp1);
|
|
if (err == MP_OKAY) /* tmp2 = q-1 */
|
|
err = mp_sub_d(q, 1, tmp2);
|
|
#ifdef WC_RSA_BLINDING
|
|
if (err == MP_OKAY) /* tmp3 = order of n */
|
|
err = mp_mul(tmp1, tmp2, tmp3);
|
|
#else
|
|
if (err == MP_OKAY) /* tmp3 = lcm(p-1, q-1), last loop */
|
|
err = mp_lcm(tmp1, tmp2, tmp3);
|
|
#endif
|
|
/* make key */
|
|
if (err == MP_OKAY) /* key->e = e */
|
|
err = mp_set_int(&key->e, (mp_digit)e);
|
|
#ifdef WC_RSA_BLINDING
|
|
/* Blind the inverse operation with a value that is invertable */
|
|
if (err == MP_OKAY) {
|
|
do {
|
|
err = mp_rand(&key->p, get_digit_count(tmp3), rng);
|
|
if (err == MP_OKAY)
|
|
err = mp_set_bit(&key->p, 0);
|
|
if (err == MP_OKAY)
|
|
err = mp_set_bit(&key->p, size - 1);
|
|
if (err == MP_OKAY)
|
|
err = mp_gcd(&key->p, tmp3, &key->q);
|
|
}
|
|
while ((err == MP_OKAY) && !mp_isone(&key->q));
|
|
}
|
|
if (err == MP_OKAY)
|
|
err = mp_mul_d(&key->p, (mp_digit)e, &key->e);
|
|
#endif
|
|
if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */
|
|
err = mp_invmod(&key->e, tmp3, &key->d);
|
|
#ifdef WC_RSA_BLINDING
|
|
/* Take off blinding from d and reset e */
|
|
if (err == MP_OKAY)
|
|
err = mp_mulmod(&key->d, &key->p, tmp3, &key->d);
|
|
if (err == MP_OKAY)
|
|
err = mp_set_int(&key->e, (mp_digit)e);
|
|
#endif
|
|
if (err == MP_OKAY) /* key->n = pq */
|
|
err = mp_mul(p, q, &key->n);
|
|
if (err == MP_OKAY) /* key->dP = d mod(p-1) */
|
|
err = mp_mod(&key->d, tmp1, &key->dP);
|
|
if (err == MP_OKAY) /* key->dQ = d mod(q-1) */
|
|
err = mp_mod(&key->d, tmp2, &key->dQ);
|
|
#ifdef WOLFSSL_MP_INVMOD_CONSTANT_TIME
|
|
if (err == MP_OKAY) /* key->u = 1/q mod p */
|
|
err = mp_invmod(q, p, &key->u);
|
|
#else
|
|
if (err == MP_OKAY)
|
|
err = mp_sub_d(p, 2, tmp3);
|
|
if (err == MP_OKAY) /* key->u = 1/q mod p = q^p-2 mod p */
|
|
err = mp_exptmod(q, tmp3 , p, &key->u);
|
|
#endif
|
|
if (err == MP_OKAY)
|
|
err = mp_copy(p, &key->p);
|
|
if (err == MP_OKAY)
|
|
err = mp_copy(q, &key->q);
|
|
|
|
#ifdef HAVE_WOLF_BIGINT
|
|
/* make sure raw unsigned bin version is available */
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->n, &key->n.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->e, &key->e.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->d, &key->d.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->p, &key->p.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->q, &key->q.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->dP, &key->dP.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->dQ, &key->dQ.raw);
|
|
if (err == MP_OKAY)
|
|
err = wc_mp_to_bigint(&key->u, &key->u.raw);
|
|
#endif
|
|
|
|
if (err == MP_OKAY)
|
|
key->type = RSA_PRIVATE;
|
|
|
|
mp_clear(tmp1);
|
|
mp_clear(tmp2);
|
|
mp_clear(tmp3);
|
|
mp_clear(p);
|
|
mp_clear(q);
|
|
|
|
#if defined(WOLFSSL_KEY_GEN) && !defined(WOLFSSL_NO_RSA_KEY_CHECK)
|
|
/* Perform the pair-wise consistency test on the new key. */
|
|
if (err == 0)
|
|
err = wc_CheckRsaKey(key);
|
|
#endif
|
|
|
|
if (err != 0) {
|
|
wc_FreeRsaKey(key);
|
|
goto out;
|
|
}
|
|
|
|
#if defined(WOLFSSL_XILINX_CRYPT) || defined(WOLFSSL_CRYPTOCELL)
|
|
if (wc_InitRsaHw(key) != 0) {
|
|
return BAD_STATE_E;
|
|
}
|
|
#endif
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
if (p)
|
|
XFREE(p, key->heap, DYNAMIC_TYPE_RSA);
|
|
if (q)
|
|
XFREE(q, key->heap, DYNAMIC_TYPE_RSA);
|
|
if (tmp1)
|
|
XFREE(tmp1, key->heap, DYNAMIC_TYPE_RSA);
|
|
if (tmp2)
|
|
XFREE(tmp2, key->heap, DYNAMIC_TYPE_RSA);
|
|
if (tmp3)
|
|
XFREE(tmp3, key->heap, DYNAMIC_TYPE_RSA);
|
|
#endif
|
|
|
|
return err;
|
|
#else
|
|
return NOT_COMPILED_IN;
|
|
#endif
|
|
}
|
|
#endif /* !FIPS || FIPS_VER >= 2 */
|
|
#endif /* WOLFSSL_KEY_GEN */
|
|
|
|
|
|
#ifdef WC_RSA_BLINDING
|
|
int wc_RsaSetRNG(RsaKey* key, WC_RNG* rng)
|
|
{
|
|
if (key == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
key->rng = rng;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* WC_RSA_BLINDING */
|
|
|
|
#ifdef WC_RSA_NONBLOCK
|
|
int wc_RsaSetNonBlock(RsaKey* key, RsaNb* nb)
|
|
{
|
|
if (key == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (nb) {
|
|
XMEMSET(nb, 0, sizeof(RsaNb));
|
|
}
|
|
|
|
/* Allow nb == NULL to clear non-block mode */
|
|
key->nb = nb;
|
|
|
|
return 0;
|
|
}
|
|
#ifdef WC_RSA_NONBLOCK_TIME
|
|
int wc_RsaSetNonBlockTime(RsaKey* key, word32 maxBlockUs, word32 cpuMHz)
|
|
{
|
|
if (key == NULL || key->nb == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
/* calculate maximum number of instructions to block */
|
|
key->nb->exptmod.maxBlockInst = cpuMHz * maxBlockUs;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* WC_RSA_NONBLOCK_TIME */
|
|
#endif /* WC_RSA_NONBLOCK */
|
|
|
|
#endif /* NO_RSA */
|