wolfssl/src/ssl.c
2013-11-10 21:06:34 +09:00

10869 lines
283 KiB
C

/* ssl.c
*
* Copyright (C) 2006-2013 wolfSSL Inc.
*
* This file is part of CyaSSL.
*
* CyaSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CyaSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <cyassl/ctaocrypt/settings.h>
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include <cyassl/ssl.h>
#include <cyassl/internal.h>
#include <cyassl/error.h>
#include <cyassl/ctaocrypt/coding.h>
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
#include <cyassl/openssl/evp.h>
#endif
#ifdef OPENSSL_EXTRA
/* openssl headers begin */
#include <cyassl/openssl/hmac.h>
#include <cyassl/openssl/crypto.h>
#include <cyassl/openssl/des.h>
#include <cyassl/openssl/bn.h>
#include <cyassl/openssl/dh.h>
#include <cyassl/openssl/rsa.h>
#include <cyassl/openssl/pem.h>
/* openssl headers end, cyassl internal headers next */
#include <cyassl/ctaocrypt/hmac.h>
#include <cyassl/ctaocrypt/random.h>
#include <cyassl/ctaocrypt/des3.h>
#include <cyassl/ctaocrypt/md4.h>
#include <cyassl/ctaocrypt/md5.h>
#include <cyassl/ctaocrypt/arc4.h>
#ifdef CYASSL_SHA512
#include <cyassl/ctaocrypt/sha512.h>
#endif
#endif
#ifndef NO_FILESYSTEM
#if !defined(USE_WINDOWS_API) && !defined(NO_CYASSL_DIR) \
&& !defined(EBSNET)
#include <dirent.h>
#include <sys/stat.h>
#endif
#ifdef EBSNET
#include "vfapi.h"
#include "vfile.h"
#endif
#endif /* NO_FILESYSTEM */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef min
static INLINE word32 min(word32 a, word32 b)
{
return a > b ? b : a;
}
#endif /* min */
#ifndef max
#ifdef CYASSL_DTLS
static INLINE word32 max(word32 a, word32 b)
{
return a > b ? a : b;
}
#endif
#endif /* min */
#ifndef CYASSL_LEANPSK
char* mystrnstr(const char* s1, const char* s2, unsigned int n)
{
unsigned int s2_len = (unsigned int)XSTRLEN(s2);
if (s2_len == 0)
return (char*)s1;
while (n >= s2_len && s1[0]) {
if (s1[0] == s2[0])
if (XMEMCMP(s1, s2, s2_len) == 0)
return (char*)s1;
s1++;
n--;
}
return NULL;
}
#endif
/* prevent multiple mutex initializations */
static volatile int initRefCount = 0;
static CyaSSL_Mutex count_mutex; /* init ref count mutex */
CYASSL_CTX* CyaSSL_CTX_new(CYASSL_METHOD* method)
{
CYASSL_CTX* ctx = NULL;
CYASSL_ENTER("CYASSL_CTX_new");
if (initRefCount == 0)
CyaSSL_Init(); /* user no longer forced to call Init themselves */
if (method == NULL)
return ctx;
ctx = (CYASSL_CTX*) XMALLOC(sizeof(CYASSL_CTX), 0, DYNAMIC_TYPE_CTX);
if (ctx) {
if (InitSSL_Ctx(ctx, method) < 0) {
CYASSL_MSG("Init CTX failed");
CyaSSL_CTX_free(ctx);
ctx = NULL;
}
}
else {
CYASSL_MSG("Alloc CTX failed, method freed");
XFREE(method, NULL, DYNAMIC_TYPE_METHOD);
}
CYASSL_LEAVE("CYASSL_CTX_new", 0);
return ctx;
}
void CyaSSL_CTX_free(CYASSL_CTX* ctx)
{
CYASSL_ENTER("SSL_CTX_free");
if (ctx)
FreeSSL_Ctx(ctx);
CYASSL_LEAVE("SSL_CTX_free", 0);
}
CYASSL* CyaSSL_new(CYASSL_CTX* ctx)
{
CYASSL* ssl = NULL;
int ret = 0;
(void)ret;
CYASSL_ENTER("SSL_new");
if (ctx == NULL)
return ssl;
ssl = (CYASSL*) XMALLOC(sizeof(CYASSL), ctx->heap,DYNAMIC_TYPE_SSL);
if (ssl)
if ( (ret = InitSSL(ssl, ctx)) < 0) {
FreeSSL(ssl);
ssl = 0;
}
CYASSL_LEAVE("SSL_new", ret);
return ssl;
}
void CyaSSL_free(CYASSL* ssl)
{
CYASSL_ENTER("SSL_free");
if (ssl)
FreeSSL(ssl);
CYASSL_LEAVE("SSL_free", 0);
}
int CyaSSL_set_fd(CYASSL* ssl, int fd)
{
CYASSL_ENTER("SSL_set_fd");
ssl->rfd = fd; /* not used directly to allow IO callbacks */
ssl->wfd = fd;
ssl->IOCB_ReadCtx = &ssl->rfd;
ssl->IOCB_WriteCtx = &ssl->wfd;
#ifdef CYASSL_DTLS
if (ssl->options.dtls) {
ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx;
ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.fd = fd;
}
#endif
CYASSL_LEAVE("SSL_set_fd", SSL_SUCCESS);
return SSL_SUCCESS;
}
int CyaSSL_get_fd(const CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_fd");
CYASSL_LEAVE("SSL_get_fd", ssl->rfd);
return ssl->rfd;
}
#ifndef CYASSL_LEANPSK
void CyaSSL_set_using_nonblock(CYASSL* ssl, int nonblock)
{
CYASSL_ENTER("CyaSSL_set_using_nonblock");
ssl->options.usingNonblock = (nonblock != 0);
}
int CyaSSL_get_using_nonblock(CYASSL* ssl)
{
CYASSL_ENTER("CyaSSL_get_using_nonblock");
CYASSL_LEAVE("CyaSSL_get_using_nonblock", ssl->options.usingNonblock);
return ssl->options.usingNonblock;
}
int CyaSSL_dtls(CYASSL* ssl)
{
return ssl->options.dtls;
}
int CyaSSL_dtls_set_peer(CYASSL* ssl, void* peer, unsigned int peerSz)
{
#ifdef CYASSL_DTLS
void* sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR);
if (sa != NULL) {
XMEMCPY(sa, peer, peerSz);
ssl->buffers.dtlsCtx.peer.sa = sa;
ssl->buffers.dtlsCtx.peer.sz = peerSz;
return SSL_SUCCESS;
}
return SSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return SSL_NOT_IMPLEMENTED;
#endif
}
int CyaSSL_dtls_get_peer(CYASSL* ssl, void* peer, unsigned int* peerSz)
{
#ifdef CYASSL_DTLS
if (peer != NULL && peerSz != NULL
&& *peerSz >= ssl->buffers.dtlsCtx.peer.sz) {
*peerSz = ssl->buffers.dtlsCtx.peer.sz;
XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz);
return SSL_SUCCESS;
}
return SSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return SSL_NOT_IMPLEMENTED;
#endif
}
#endif /* CYASSL_LEANPSK */
/* return underlyig connect or accept, SSL_SUCCESS on ok */
int CyaSSL_negotiate(CYASSL* ssl)
{
int err = SSL_FATAL_ERROR;
CYASSL_ENTER("CyaSSL_negotiate");
#ifndef NO_CYASSL_SERVER
if (ssl->options.side == CYASSL_SERVER_END)
err = CyaSSL_accept(ssl);
#endif
#ifndef NO_CYASSL_CLIENT
if (ssl->options.side == CYASSL_CLIENT_END)
err = CyaSSL_connect(ssl);
#endif
CYASSL_LEAVE("CyaSSL_negotiate", err);
return err;
}
#ifndef CYASSL_LEANPSK
/* object size based on build */
int CyaSSL_GetObjectSize(void)
{
#ifdef SHOW_SIZES
printf("sizeof suites = %lu\n", sizeof(Suites));
printf("sizeof ciphers(2) = %lu\n", sizeof(Ciphers));
#ifndef NO_RC4
printf(" sizeof arc4 = %lu\n", sizeof(Arc4));
#endif
printf(" sizeof aes = %lu\n", sizeof(Aes));
#ifndef NO_DES3
printf(" sizeof des3 = %lu\n", sizeof(Des3));
#endif
#ifndef NO_RABBIT
printf(" sizeof rabbit = %lu\n", sizeof(Rabbit));
#endif
printf("sizeof cipher specs = %lu\n", sizeof(CipherSpecs));
printf("sizeof keys = %lu\n", sizeof(Keys));
printf("sizeof Hashes(2) = %lu\n", sizeof(Hashes));
#ifndef NO_MD5
printf(" sizeof MD5 = %lu\n", sizeof(Md5));
#endif
#ifndef NO_SHA
printf(" sizeof SHA = %lu\n", sizeof(Sha));
#endif
#ifndef NO_SHA256
printf(" sizeof SHA256 = %lu\n", sizeof(Sha256));
#endif
#ifdef CYASSL_SHA384
printf(" sizeof SHA384 = %lu\n", sizeof(Sha384));
#endif
#ifdef CYASSL_SHA384
printf(" sizeof SHA512 = %lu\n", sizeof(Sha512));
#endif
printf("sizeof Buffers = %lu\n", sizeof(Buffers));
printf("sizeof Options = %lu\n", sizeof(Options));
printf("sizeof Arrays = %lu\n", sizeof(Arrays));
#ifndef NO_RSA
printf("sizeof RsaKey = %lu\n", sizeof(RsaKey));
#endif
#ifdef HAVE_ECC
printf("sizeof ecc_key = %lu\n", sizeof(ecc_key));
#endif
printf("sizeof CYASSL_CIPHER = %lu\n", sizeof(CYASSL_CIPHER));
printf("sizeof CYASSL_SESSION = %lu\n", sizeof(CYASSL_SESSION));
printf("sizeof CYASSL = %lu\n", sizeof(CYASSL));
printf("sizeof CYASSL_CTX = %lu\n", sizeof(CYASSL_CTX));
#endif
return sizeof(CYASSL);
}
#endif
/* XXX should be NO_DH */
#ifndef NO_CERTS
/* server Diffie-Hellman parameters, SSL_SUCCESS on ok */
int CyaSSL_SetTmpDH(CYASSL* ssl, const unsigned char* p, int pSz,
const unsigned char* g, int gSz)
{
byte havePSK = 0;
byte haveRSA = 1;
CYASSL_ENTER("CyaSSL_SetTmpDH");
if (ssl == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG;
if (ssl->options.side != CYASSL_SERVER_END)
return SIDE_ERROR;
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH)
XFREE(ssl->buffers.serverDH_P.buffer, ssl->ctx->heap, DYNAMIC_TYPE_DH);
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH)
XFREE(ssl->buffers.serverDH_G.buffer, ssl->ctx->heap, DYNAMIC_TYPE_DH);
ssl->buffers.weOwnDH = 1; /* SSL owns now */
ssl->buffers.serverDH_P.buffer = (byte*)XMALLOC(pSz, ssl->ctx->heap,
DYNAMIC_TYPE_DH);
if (ssl->buffers.serverDH_P.buffer == NULL)
return MEMORY_E;
ssl->buffers.serverDH_G.buffer = (byte*)XMALLOC(gSz, ssl->ctx->heap,
DYNAMIC_TYPE_DH);
if (ssl->buffers.serverDH_G.buffer == NULL) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->ctx->heap, DYNAMIC_TYPE_DH);
return MEMORY_E;
}
ssl->buffers.serverDH_P.length = pSz;
ssl->buffers.serverDH_G.length = gSz;
XMEMCPY(ssl->buffers.serverDH_P.buffer, p, pSz);
XMEMCPY(ssl->buffers.serverDH_G.buffer, g, gSz);
ssl->options.haveDH = 1;
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifdef NO_RSA
haveRSA = 0;
#endif
InitSuites(ssl->suites, ssl->version, haveRSA, havePSK, ssl->options.haveDH,
ssl->options.haveNTRU, ssl->options.haveECDSAsig,
ssl->options.haveStaticECC, ssl->options.side);
CYASSL_LEAVE("CyaSSL_SetTmpDH", 0);
return SSL_SUCCESS;
}
#endif /* !NO_CERTS */
int CyaSSL_write(CYASSL* ssl, const void* data, int sz)
{
int ret;
CYASSL_ENTER("SSL_write()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
ret = SendData(ssl, data, sz);
CYASSL_LEAVE("SSL_write()", ret);
if (ret < 0)
return SSL_FATAL_ERROR;
else
return ret;
}
static int CyaSSL_read_internal(CYASSL* ssl, void* data, int sz, int peek)
{
int ret;
CYASSL_ENTER("CyaSSL_read_internal()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifdef CYASSL_DTLS
if (ssl->options.dtls)
ssl->dtls_expected_rx = max(sz + 100, MAX_MTU);
#endif
#ifdef HAVE_MAX_FRAGMENT
ret = ReceiveData(ssl, (byte*)data,
min(sz, min(ssl->max_fragment, OUTPUT_RECORD_SIZE)), peek);
#else
ret = ReceiveData(ssl, (byte*)data, min(sz, OUTPUT_RECORD_SIZE), peek);
#endif
CYASSL_LEAVE("CyaSSL_read_internal()", ret);
if (ret < 0)
return SSL_FATAL_ERROR;
else
return ret;
}
int CyaSSL_peek(CYASSL* ssl, void* data, int sz)
{
CYASSL_ENTER("CyaSSL_peek()");
return CyaSSL_read_internal(ssl, data, sz, TRUE);
}
int CyaSSL_read(CYASSL* ssl, void* data, int sz)
{
CYASSL_ENTER("CyaSSL_read()");
return CyaSSL_read_internal(ssl, data, sz, FALSE);
}
#ifdef HAVE_CAVIUM
/* let's use cavium, SSL_SUCCESS on ok */
int CyaSSL_UseCavium(CYASSL* ssl, int devId)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->devId = devId;
return SSL_SUCCESS;
}
/* let's use cavium, SSL_SUCCESS on ok */
int CyaSSL_CTX_UseCavium(CYASSL_CTX* ctx, int devId)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->devId = devId;
return SSL_SUCCESS;
}
#endif /* HAVE_CAVIUM */
#ifdef HAVE_SNI
int CyaSSL_UseSNI(CYASSL* ssl, byte type, const void* data, word16 size)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ssl->extensions, type, data, size);
}
int CyaSSL_CTX_UseSNI(CYASSL_CTX* ctx, byte type, const void* data, word16 size)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ctx->extensions, type, data, size);
}
#ifndef NO_CYASSL_SERVER
void CyaSSL_SNI_SetOptions(CYASSL* ssl, byte type, byte options)
{
if (ssl && ssl->extensions)
TLSX_SNI_SetOptions(ssl->extensions, type, options);
}
void CyaSSL_CTX_SNI_SetOptions(CYASSL_CTX* ctx, byte type, byte options)
{
if (ctx && ctx->extensions)
TLSX_SNI_SetOptions(ctx->extensions, type, options);
}
byte CyaSSL_SNI_Status(CYASSL* ssl, byte type)
{
return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type);
}
word16 CyaSSL_SNI_GetRequest(CYASSL* ssl, byte type, void** data)
{
if (data)
*data = NULL;
if (ssl && ssl->extensions)
return TLSX_SNI_GetRequest(ssl->extensions, type, data);
return 0;
}
#endif /* NO_CYASSL_SERVER */
#endif /* HAVE_SNI */
#ifdef HAVE_MAX_FRAGMENT
#ifndef NO_CYASSL_CLIENT
int CyaSSL_UseMaxFragment(CYASSL* ssl, byte mfl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseMaxFragment(&ssl->extensions, mfl);
}
int CyaSSL_CTX_UseMaxFragment(CYASSL_CTX* ctx, byte mfl)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseMaxFragment(&ctx->extensions, mfl);
}
#endif /* NO_CYASSL_CLIENT */
#endif /* HAVE_MAX_FRAGMENT */
#ifdef HAVE_TRUNCATED_HMAC
#ifndef NO_CYASSL_CLIENT
int CyaSSL_UseTruncatedHMAC(CYASSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ssl->extensions);
}
int CyaSSL_CTX_UseTruncatedHMAC(CYASSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ctx->extensions);
}
#endif /* NO_CYASSL_CLIENT */
#endif /* HAVE_TRUNCATED_HMAC */
#ifndef CYASSL_LEANPSK
int CyaSSL_send(CYASSL* ssl, const void* data, int sz, int flags)
{
int ret;
int oldFlags;
CYASSL_ENTER("CyaSSL_send()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->wflags;
ssl->wflags = flags;
ret = CyaSSL_write(ssl, data, sz);
ssl->wflags = oldFlags;
CYASSL_LEAVE("CyaSSL_send()", ret);
return ret;
}
int CyaSSL_recv(CYASSL* ssl, void* data, int sz, int flags)
{
int ret;
int oldFlags;
CYASSL_ENTER("CyaSSL_recv()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->rflags;
ssl->rflags = flags;
ret = CyaSSL_read(ssl, data, sz);
ssl->rflags = oldFlags;
CYASSL_LEAVE("CyaSSL_recv()", ret);
return ret;
}
#endif
/* SSL_SUCCESS on ok */
int CyaSSL_shutdown(CYASSL* ssl)
{
CYASSL_ENTER("SSL_shutdown()");
if (ssl == NULL)
return SSL_FATAL_ERROR;
if (ssl->options.quietShutdown) {
CYASSL_MSG("quiet shutdown, no close notify sent");
return SSL_SUCCESS;
}
/* try to send close notify, not an error if can't */
if (!ssl->options.isClosed && !ssl->options.connReset &&
!ssl->options.sentNotify) {
ssl->error = SendAlert(ssl, alert_warning, close_notify);
if (ssl->error < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.sentNotify = 1; /* don't send close_notify twice */
}
CYASSL_LEAVE("SSL_shutdown()", ssl->error);
ssl->error = SSL_ERROR_SYSCALL; /* simulate OpenSSL behavior */
return SSL_SUCCESS;
}
int CyaSSL_get_error(CYASSL* ssl, int ret)
{
CYASSL_ENTER("SSL_get_error");
if (ret > 0)
return SSL_ERROR_NONE;
if (ssl == NULL)
return BAD_FUNC_ARG;
CYASSL_LEAVE("SSL_get_error", ssl->error);
/* make sure converted types are handled in SetErrorString() too */
if (ssl->error == WANT_READ)
return SSL_ERROR_WANT_READ; /* convert to OpenSSL type */
else if (ssl->error == WANT_WRITE)
return SSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */
else if (ssl->error == ZERO_RETURN)
return SSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */
return ssl->error;
}
/* retrive alert history, SSL_SUCCESS on ok */
int CyaSSL_get_alert_history(CYASSL* ssl, CYASSL_ALERT_HISTORY *h)
{
if (ssl && h) {
*h = ssl->alert_history;
}
return SSL_SUCCESS;
}
/* return TRUE if current error is want read */
int CyaSSL_want_read(CYASSL* ssl)
{
CYASSL_ENTER("SSL_want_read");
if (ssl->error == WANT_READ)
return 1;
return 0;
}
/* return TRUE if current error is want write */
int CyaSSL_want_write(CYASSL* ssl)
{
CYASSL_ENTER("SSL_want_write");
if (ssl->error == WANT_WRITE)
return 1;
return 0;
}
char* CyaSSL_ERR_error_string(unsigned long errNumber, char* data)
{
static const char* msg = "Please supply a buffer for error string";
CYASSL_ENTER("ERR_error_string");
if (data) {
SetErrorString((int)errNumber, data);
return data;
}
return (char*)msg;
}
void CyaSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len)
{
CYASSL_ENTER("CyaSSL_ERR_error_string_n");
if (len >= CYASSL_MAX_ERROR_SZ)
CyaSSL_ERR_error_string(e, buf);
else {
char tmp[CYASSL_MAX_ERROR_SZ];
CYASSL_MSG("Error buffer too short, truncating");
if (len) {
CyaSSL_ERR_error_string(e, tmp);
XMEMCPY(buf, tmp, len-1);
buf[len-1] = '\0';
}
}
}
/* don't free temporary arrays at end of handshake */
void CyaSSL_KeepArrays(CYASSL* ssl)
{
if (ssl)
ssl->options.saveArrays = 1;
}
/* user doesn't need temporary arrays anymore, Free */
void CyaSSL_FreeArrays(CYASSL* ssl)
{
if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) {
ssl->options.saveArrays = 0;
FreeArrays(ssl, 1);
}
}
const byte* CyaSSL_GetMacSecret(CYASSL* ssl, int verify)
{
if (ssl == NULL)
return NULL;
if ( (ssl->options.side == CYASSL_CLIENT_END && !verify) ||
(ssl->options.side == CYASSL_SERVER_END && verify) )
return ssl->keys.client_write_MAC_secret;
else
return ssl->keys.server_write_MAC_secret;
}
#ifdef ATOMIC_USER
void CyaSSL_CTX_SetMacEncryptCb(CYASSL_CTX* ctx, CallbackMacEncrypt cb)
{
if (ctx)
ctx->MacEncryptCb = cb;
}
void CyaSSL_SetMacEncryptCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->MacEncryptCtx = ctx;
}
void* CyaSSL_GetMacEncryptCtx(CYASSL* ssl)
{
if (ssl)
return ssl->MacEncryptCtx;
return NULL;
}
void CyaSSL_CTX_SetDecryptVerifyCb(CYASSL_CTX* ctx, CallbackDecryptVerify cb)
{
if (ctx)
ctx->DecryptVerifyCb = cb;
}
void CyaSSL_SetDecryptVerifyCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->DecryptVerifyCtx = ctx;
}
void* CyaSSL_GetDecryptVerifyCtx(CYASSL* ssl)
{
if (ssl)
return ssl->DecryptVerifyCtx;
return NULL;
}
const byte* CyaSSL_GetClientWriteKey(CYASSL* ssl)
{
if (ssl)
return ssl->keys.client_write_key;
return NULL;
}
const byte* CyaSSL_GetClientWriteIV(CYASSL* ssl)
{
if (ssl)
return ssl->keys.client_write_IV;
return NULL;
}
const byte* CyaSSL_GetServerWriteKey(CYASSL* ssl)
{
if (ssl)
return ssl->keys.server_write_key;
return NULL;
}
const byte* CyaSSL_GetServerWriteIV(CYASSL* ssl)
{
if (ssl)
return ssl->keys.server_write_IV;
return NULL;
}
int CyaSSL_GetKeySize(CYASSL* ssl)
{
if (ssl)
return ssl->specs.key_size;
return BAD_FUNC_ARG;
}
int CyaSSL_GetBulkCipher(CYASSL* ssl)
{
if (ssl)
return ssl->specs.bulk_cipher_algorithm;
return BAD_FUNC_ARG;
}
int CyaSSL_GetCipherType(CYASSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->specs.cipher_type == block)
return CYASSL_BLOCK_TYPE;
if (ssl->specs.cipher_type == stream)
return CYASSL_STREAM_TYPE;
if (ssl->specs.cipher_type == aead)
return CYASSL_AEAD_TYPE;
return -1;
}
int CyaSSL_GetCipherBlockSize(CYASSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.block_size;
}
int CyaSSL_GetAeadMacSize(CYASSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.aead_mac_size;
}
int CyaSSL_IsTLSv1_1(CYASSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.tls1_1)
return 1;
return 0;
}
int CyaSSL_GetSide(CYASSL* ssl)
{
if (ssl)
return ssl->options.side;
return BAD_FUNC_ARG;
}
int CyaSSL_GetHmacSize(CYASSL* ssl)
{
if (ssl)
return ssl->specs.hash_size;
return BAD_FUNC_ARG;
}
#endif /* ATOMIC_USER */
#ifndef NO_CERTS
CYASSL_CERT_MANAGER* CyaSSL_CertManagerNew(void)
{
CYASSL_CERT_MANAGER* cm = NULL;
CYASSL_ENTER("CyaSSL_CertManagerNew");
cm = (CYASSL_CERT_MANAGER*) XMALLOC(sizeof(CYASSL_CERT_MANAGER), 0,
DYNAMIC_TYPE_CERT_MANAGER);
if (cm) {
int i;
for (i = 0; i < CA_TABLE_SIZE; i++)
cm->caTable[i] = NULL;
cm->heap = NULL;
cm->caCacheCallback = NULL;
cm->crl = NULL;
cm->crlEnabled = 0;
cm->crlCheckAll = 0;
cm->cbMissingCRL = NULL;
if (InitMutex(&cm->caLock) != 0) {
CYASSL_MSG("Bad mutex init");
CyaSSL_CertManagerFree(cm);
return NULL;
}
}
return cm;
}
void CyaSSL_CertManagerFree(CYASSL_CERT_MANAGER* cm)
{
CYASSL_ENTER("CyaSSL_CertManagerFree");
if (cm) {
#ifdef HAVE_CRL
if (cm->crl)
FreeCRL(cm->crl, 1);
#endif
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, NULL);
FreeMutex(&cm->caLock);
XFREE(cm, NULL, DYNAMIC_TYPE_CERT_MANAGER);
}
}
/* Unload the CA signer list */
int CyaSSL_CertManagerUnloadCAs(CYASSL_CERT_MANAGER* cm)
{
CYASSL_ENTER("CyaSSL_CertManagerUnloadCAs");
if (cm == NULL)
return BAD_FUNC_ARG;
if (LockMutex(&cm->caLock) != 0)
return BAD_MUTEX_E;
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, NULL);
UnLockMutex(&cm->caLock);
return SSL_SUCCESS;
}
#endif /* !NO_CERTS */
#ifndef NO_FILESYSTEM
void CyaSSL_ERR_print_errors_fp(FILE* fp, int err)
{
char data[CYASSL_MAX_ERROR_SZ + 1];
CYASSL_ENTER("CyaSSL_ERR_print_errors_fp");
SetErrorString(err, data);
fprintf(fp, "%s", data);
}
#endif
int CyaSSL_pending(CYASSL* ssl)
{
CYASSL_ENTER("SSL_pending");
return ssl->buffers.clearOutputBuffer.length;
}
#ifndef CYASSL_LEANPSK
/* trun on handshake group messages for context */
int CyaSSL_CTX_set_group_messages(CYASSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->groupMessages = 1;
return SSL_SUCCESS;
}
#endif
#ifndef NO_CYASSL_CLIENT
/* connect enough to get peer cert chain */
int CyaSSL_connect_cert(CYASSL* ssl)
{
int ret;
if (ssl == NULL)
return SSL_FAILURE;
ssl->options.certOnly = 1;
ret = CyaSSL_connect(ssl);
ssl->options.certOnly = 0;
return ret;
}
#endif
#ifndef CYASSL_LEANPSK
/* trun on handshake group messages for ssl object */
int CyaSSL_set_group_messages(CYASSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.groupMessages = 1;
return SSL_SUCCESS;
}
int CyaSSL_SetVersion(CYASSL* ssl, int version)
{
byte haveRSA = 1;
byte havePSK = 0;
CYASSL_ENTER("CyaSSL_SetVersion");
if (ssl == NULL) {
CYASSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
switch (version) {
#ifndef NO_OLD_TLS
case CYASSL_SSLV3:
ssl->version = MakeSSLv3();
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
case CYASSL_TLSV1:
ssl->version = MakeTLSv1();
break;
case CYASSL_TLSV1_1:
ssl->version = MakeTLSv1_1();
break;
#endif
case CYASSL_TLSV1_2:
ssl->version = MakeTLSv1_2();
break;
#endif
default:
CYASSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
InitSuites(ssl->suites, ssl->version, haveRSA, havePSK, ssl->options.haveDH,
ssl->options.haveNTRU, ssl->options.haveECDSAsig,
ssl->options.haveStaticECC, ssl->options.side);
return SSL_SUCCESS;
}
#endif /* !leanpsk */
#if !defined(NO_CERTS) || !defined(NO_SESSION_CACHE)
/* Make a work from the front of random hash */
static INLINE word32 MakeWordFromHash(const byte* hashID)
{
return (hashID[0] << 24) | (hashID[1] << 16) | (hashID[2] << 8) |
hashID[3];
}
#endif /* !NO_CERTS || !NO_SESSION_CACHE */
#ifndef NO_CERTS
/* hash is the SHA digest of name, just use first 32 bits as hash */
static INLINE word32 HashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % CA_TABLE_SIZE;
}
/* does CA already exist on signer list */
int AlreadySigner(CYASSL_CERT_MANAGER* cm, byte* hash)
{
Signer* signers;
int ret = 0;
word32 row = HashSigner(hash);
if (LockMutex(&cm->caLock) != 0)
return ret;
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SHA_DIGEST_SIZE) == 0) {
ret = 1;
break;
}
signers = signers->next;
}
UnLockMutex(&cm->caLock);
return ret;
}
/* return CA if found, otherwise NULL */
Signer* GetCA(void* vp, byte* hash)
{
CYASSL_CERT_MANAGER* cm = (CYASSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row = HashSigner(hash);
if (cm == NULL)
return NULL;
if (LockMutex(&cm->caLock) != 0)
return ret;
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SHA_DIGEST_SIZE) == 0) {
ret = signers;
break;
}
signers = signers->next;
}
UnLockMutex(&cm->caLock);
return ret;
}
#ifndef NO_SKID
/* return CA if found, otherwise NULL. Walk through hash table. */
Signer* GetCAByName(void* vp, byte* hash)
{
CYASSL_CERT_MANAGER* cm = (CYASSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row;
if (cm == NULL)
return NULL;
if (LockMutex(&cm->caLock) != 0)
return ret;
for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) {
signers = cm->caTable[row];
while (signers && ret == NULL) {
if (XMEMCMP(hash, signers->subjectNameHash, SHA_DIGEST_SIZE) == 0) {
ret = signers;
}
signers = signers->next;
}
}
UnLockMutex(&cm->caLock);
return ret;
}
#endif
/* owns der, internal now uses too */
/* type flag ids from user or from chain received during verify
don't allow chain ones to be added w/o isCA extension */
int AddCA(CYASSL_CERT_MANAGER* cm, buffer der, int type, int verify)
{
int ret;
DecodedCert cert;
Signer* signer = 0;
word32 row;
byte* subjectHash;
CYASSL_MSG("Adding a CA");
InitDecodedCert(&cert, der.buffer, der.length, cm->heap);
ret = ParseCert(&cert, CA_TYPE, verify, cm);
CYASSL_MSG(" Parsed new CA");
#ifndef NO_SKID
subjectHash = cert.extSubjKeyId;
#else
subjectHash = cert.subjectHash;
#endif
if (ret == 0 && cert.isCA == 0 && type != CYASSL_USER_CA) {
CYASSL_MSG(" Can't add as CA if not actually one");
ret = NOT_CA_ERROR;
}
else if (ret == 0 && AlreadySigner(cm, subjectHash)) {
CYASSL_MSG(" Already have this CA, not adding again");
(void)ret;
}
else if (ret == 0) {
/* take over signer parts */
signer = MakeSigner(cm->heap);
if (!signer)
ret = MEMORY_ERROR;
else {
signer->keyOID = cert.keyOID;
signer->publicKey = cert.publicKey;
signer->pubKeySize = cert.pubKeySize;
signer->nameLen = cert.subjectCNLen;
signer->name = cert.subjectCN;
#ifndef NO_SKID
XMEMCPY(signer->subjectKeyIdHash,
cert.extSubjKeyId, SHA_DIGEST_SIZE);
#endif
XMEMCPY(signer->subjectNameHash, cert.subjectHash, SHA_DIGEST_SIZE);
signer->next = NULL; /* in case lock fails */
cert.publicKey = 0; /* don't free here */
cert.subjectCN = 0;
#ifndef NO_SKID
row = HashSigner(signer->subjectKeyIdHash);
#else
row = HashSigner(signer->subjectNameHash);
#endif
if (LockMutex(&cm->caLock) == 0) {
signer->next = cm->caTable[row];
cm->caTable[row] = signer; /* takes ownership */
UnLockMutex(&cm->caLock);
if (cm->caCacheCallback)
cm->caCacheCallback(der.buffer, (int)der.length, type);
}
else {
CYASSL_MSG(" CA Mutex Lock failed");
ret = BAD_MUTEX_E;
FreeSigner(signer, cm->heap);
}
}
}
CYASSL_MSG(" Freeing Parsed CA");
FreeDecodedCert(&cert);
CYASSL_MSG(" Freeing der CA");
XFREE(der.buffer, cm->heap, DYNAMIC_TYPE_CA);
CYASSL_MSG(" OK Freeing der CA");
CYASSL_LEAVE("AddCA", ret);
if (ret == 0) return SSL_SUCCESS;
return ret;
}
#endif /* !NO_CERTS */
#ifndef NO_SESSION_CACHE
/* basic config gives a cache with 33 sessions, adequate for clients and
embedded servers
MEDIUM_SESSION_CACHE allows 1055 sessions, adequate for servers that
aren't under heavy load, basically allows 200 new sessions per minute
BIG_SESSION_CACHE yields 20,027 sessions
HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load,
allows over 13,000 new sessions per minute or over 200 new sessions per
second
SMALL_SESSION_CACHE only stores 6 sessions, good for embedded clients
or systems where the default of nearly 3kB is too much RAM, this define
uses less than 500 bytes RAM
default SESSION_CACHE stores 33 sessions (no XXX_SESSION_CACHE defined)
*/
#ifdef HUGE_SESSION_CACHE
#define SESSIONS_PER_ROW 11
#define SESSION_ROWS 5981
#elif defined(BIG_SESSION_CACHE)
#define SESSIONS_PER_ROW 7
#define SESSION_ROWS 2861
#elif defined(MEDIUM_SESSION_CACHE)
#define SESSIONS_PER_ROW 5
#define SESSION_ROWS 211
#elif defined(SMALL_SESSION_CACHE)
#define SESSIONS_PER_ROW 2
#define SESSION_ROWS 3
#else
#define SESSIONS_PER_ROW 3
#define SESSION_ROWS 11
#endif
typedef struct SessionRow {
int nextIdx; /* where to place next one */
int totalCount; /* sessions ever on this row */
CYASSL_SESSION Sessions[SESSIONS_PER_ROW];
} SessionRow;
static SessionRow SessionCache[SESSION_ROWS];
static CyaSSL_Mutex session_mutex; /* SessionCache mutex */
#ifndef NO_CLIENT_CACHE
typedef struct ClientSession {
word16 serverRow; /* SessionCache Row id */
word16 serverIdx; /* SessionCache Idx (column) */
} ClientSession;
typedef struct ClientRow {
int nextIdx; /* where to place next one */
int totalCount; /* sessions ever on this row */
ClientSession Clients[SESSIONS_PER_ROW];
} ClientRow;
static ClientRow ClientCache[SESSION_ROWS]; /* Client Cache */
/* uses session mutex */
#endif /* NO_CLIENT_CACHE */
/* for persistance, if changes to layout need to increment and modify
save_session_cache() and restore_session_cache and memory versions too */
#define CYASSL_CACHE_VERSION 2
#endif /* NO_SESSION_CACHE */
int CyaSSL_Init(void)
{
int ret = SSL_SUCCESS;
CYASSL_ENTER("CyaSSL_Init");
if (initRefCount == 0) {
#ifndef NO_SESSION_CACHE
if (InitMutex(&session_mutex) != 0)
ret = BAD_MUTEX_E;
#endif
if (InitMutex(&count_mutex) != 0)
ret = BAD_MUTEX_E;
}
if (ret == SSL_SUCCESS) {
if (LockMutex(&count_mutex) != 0) {
CYASSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
initRefCount++;
UnLockMutex(&count_mutex);
}
return ret;
}
#ifndef NO_CERTS
/* Remove PEM header/footer, convert to ASN1, store any encrypted data
info->consumed tracks of PEM bytes consumed in case multiple parts */
int PemToDer(const unsigned char* buff, long longSz, int type,
buffer* der, void* heap, EncryptedInfo* info, int* eccKey)
{
char header[PEM_LINE_LEN];
char footer[PEM_LINE_LEN];
char* headerEnd;
char* footerEnd;
char* consumedEnd;
char* bufferEnd = (char*)(buff + longSz);
long neededSz;
int pkcs8 = 0;
int pkcs8Enc = 0;
int dynamicType = 0;
int sz = (int)longSz;
(void)heap;
(void)dynamicType;
if (type == CERT_TYPE || type == CA_TYPE) {
XSTRNCPY(header, "-----BEGIN CERTIFICATE-----", sizeof(header));
XSTRNCPY(footer, "-----END CERTIFICATE-----", sizeof(footer));
dynamicType = (type == CA_TYPE) ? DYNAMIC_TYPE_CA :
DYNAMIC_TYPE_CERT;
} else if (type == DH_PARAM_TYPE) {
XSTRNCPY(header, "-----BEGIN DH PARAMETERS-----", sizeof(header));
XSTRNCPY(footer, "-----END DH PARAMETERS-----", sizeof(footer));
dynamicType = DYNAMIC_TYPE_KEY;
} else if (type == CRL_TYPE) {
XSTRNCPY(header, "-----BEGIN X509 CRL-----", sizeof(header));
XSTRNCPY(footer, "-----END X509 CRL-----", sizeof(footer));
dynamicType = DYNAMIC_TYPE_CRL;
} else {
XSTRNCPY(header, "-----BEGIN RSA PRIVATE KEY-----", sizeof(header));
XSTRNCPY(footer, "-----END RSA PRIVATE KEY-----", sizeof(footer));
dynamicType = DYNAMIC_TYPE_KEY;
}
/* find header */
headerEnd = XSTRNSTR((char*)buff, header, sz);
if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be pkcs8 */
XSTRNCPY(header, "-----BEGIN PRIVATE KEY-----", sizeof(header));
XSTRNCPY(footer, "-----END PRIVATE KEY-----", sizeof(footer));
headerEnd = XSTRNSTR((char*)buff, header, sz);
if (headerEnd)
pkcs8 = 1;
else {
XSTRNCPY(header, "-----BEGIN ENCRYPTED PRIVATE KEY-----",
sizeof(header));
XSTRNCPY(footer, "-----END ENCRYPTED PRIVATE KEY-----",
sizeof(footer));
headerEnd = XSTRNSTR((char*)buff, header, sz);
if (headerEnd) {
pkcs8Enc = 1;
(void)pkcs8Enc; /* only opensslextra will read */
}
}
}
if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be ecc */
XSTRNCPY(header, "-----BEGIN EC PRIVATE KEY-----", sizeof(header));
XSTRNCPY(footer, "-----END EC PRIVATE KEY-----", sizeof(footer));
headerEnd = XSTRNSTR((char*)buff, header, sz);
if (headerEnd)
*eccKey = 1;
}
if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be dsa */
XSTRNCPY(header, "-----BEGIN DSA PRIVATE KEY-----", sizeof(header));
XSTRNCPY(footer, "-----END DSA PRIVATE KEY-----", sizeof(footer));
headerEnd = XSTRNSTR((char*)buff, header, sz);
}
if (!headerEnd) {
CYASSL_MSG("Couldn't find PEM header");
return SSL_NO_PEM_HEADER;
}
headerEnd += XSTRLEN(header);
/* eat end of line */
if (headerEnd[0] == '\n')
headerEnd++;
else if (headerEnd[1] == '\n')
headerEnd += 2;
else
return SSL_BAD_FILE;
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
{
/* remove encrypted header if there */
char encHeader[] = "Proc-Type";
char* line = XSTRNSTR((char*)buff, encHeader, PEM_LINE_LEN);
if (line) {
char* newline;
char* finish;
char* start = XSTRNSTR(line, "DES", PEM_LINE_LEN);
if (!start)
start = XSTRNSTR(line, "AES", PEM_LINE_LEN);
if (!start) return SSL_BAD_FILE;
if (!info) return SSL_BAD_FILE;
finish = XSTRNSTR(start, ",", PEM_LINE_LEN);
if (start && finish && (start < finish)) {
newline = XSTRNSTR(finish, "\r", PEM_LINE_LEN);
XMEMCPY(info->name, start, finish - start);
info->name[finish - start] = 0;
XMEMCPY(info->iv, finish + 1, sizeof(info->iv));
if (!newline) newline = XSTRNSTR(finish, "\n", PEM_LINE_LEN);
if (newline && (newline > finish)) {
info->ivSz = (word32)(newline - (finish + 1));
info->set = 1;
}
else
return SSL_BAD_FILE;
}
else
return SSL_BAD_FILE;
/* eat blank line */
while (*newline == '\r' || *newline == '\n')
newline++;
headerEnd = newline;
}
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
/* find footer */
footerEnd = XSTRNSTR((char*)buff, footer, sz);
if (!footerEnd) return SSL_BAD_FILE;
consumedEnd = footerEnd + XSTRLEN(footer);
if (consumedEnd < bufferEnd) { /* handle no end of line on last line */
/* eat end of line */
if (consumedEnd[0] == '\n')
consumedEnd++;
else if (consumedEnd[1] == '\n')
consumedEnd += 2;
else
return SSL_BAD_FILE;
}
if (info)
info->consumed = (long)(consumedEnd - (char*)buff);
/* set up der buffer */
neededSz = (long)(footerEnd - headerEnd);
if (neededSz > sz || neededSz < 0) return SSL_BAD_FILE;
der->buffer = (byte*) XMALLOC(neededSz, heap, dynamicType);
if (!der->buffer) return MEMORY_ERROR;
der->length = (word32)neededSz;
if (Base64_Decode((byte*)headerEnd, (word32)neededSz, der->buffer,
&der->length) < 0)
return SSL_BAD_FILE;
if (pkcs8)
return ToTraditional(der->buffer, der->length);
#if defined(OPENSSL_EXTRA) && !defined(NO_PWDBASED)
if (pkcs8Enc) {
int passwordSz;
char password[80];
if (!info || !info->ctx || !info->ctx->passwd_cb)
return SSL_BAD_FILE; /* no callback error */
passwordSz = info->ctx->passwd_cb(password, sizeof(password), 0,
info->ctx->userdata);
return ToTraditionalEnc(der->buffer, der->length, password,
passwordSz);
}
#endif
return 0;
}
/* process the buffer buff, legnth sz, into ctx of format and type
used tracks bytes consumed, userChain specifies a user cert chain
to pass during the handshake */
static int ProcessBuffer(CYASSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, CYASSL* ssl,
long* used, int userChain)
{
EncryptedInfo info;
buffer der; /* holds DER or RAW (for NTRU) */
int ret;
int dynamicType = 0;
int eccKey = 0;
int rsaKey = 0;
void* heap = ctx ? ctx->heap : NULL;
info.set = 0;
info.ctx = ctx;
info.consumed = 0;
der.buffer = 0;
(void)dynamicType;
if (used)
*used = sz; /* used bytes default to sz, PEM chain may shorten*/
if (format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM
&& format != SSL_FILETYPE_RAW)
return SSL_BAD_FILETYPE;
if (type == CA_TYPE)
dynamicType = DYNAMIC_TYPE_CA;
else if (type == CERT_TYPE)
dynamicType = DYNAMIC_TYPE_CERT;
else
dynamicType = DYNAMIC_TYPE_KEY;
if (format == SSL_FILETYPE_PEM) {
ret = PemToDer(buff, sz, type, &der, heap, &info, &eccKey);
if (ret < 0) {
XFREE(der.buffer, heap, dynamicType);
return ret;
}
if (used)
*used = info.consumed;
/* we may have a user cert chain, try to consume */
if (userChain && type == CERT_TYPE && info.consumed < sz) {
byte staticBuffer[FILE_BUFFER_SIZE]; /* tmp chain buffer */
byte* chainBuffer = staticBuffer;
int dynamicBuffer = 0;
word32 bufferSz = sizeof(staticBuffer);
long consumed = info.consumed;
word32 idx = 0;
int gotOne = 0;
if ( (sz - consumed) > (int)bufferSz) {
CYASSL_MSG("Growing Tmp Chain Buffer");
bufferSz = (word32)(sz - consumed);
/* will shrink to actual size */
chainBuffer = (byte*)XMALLOC(bufferSz, heap,
DYNAMIC_TYPE_FILE);
if (chainBuffer == NULL) {
XFREE(der.buffer, heap, dynamicType);
return MEMORY_E;
}
dynamicBuffer = 1;
}
CYASSL_MSG("Processing Cert Chain");
while (consumed < sz) {
buffer part;
info.consumed = 0;
part.buffer = 0;
ret = PemToDer(buff + consumed, sz - consumed, type, &part,
heap, &info, &eccKey);
if (ret == 0) {
gotOne = 1;
if ( (idx + part.length) > bufferSz) {
CYASSL_MSG(" Cert Chain bigger than buffer");
ret = BUFFER_E;
}
else {
c32to24(part.length, &chainBuffer[idx]);
idx += CERT_HEADER_SZ;
XMEMCPY(&chainBuffer[idx], part.buffer,part.length);
idx += part.length;
consumed += info.consumed;
if (used)
*used += info.consumed;
}
}
XFREE(part.buffer, heap, dynamicType);
if (ret == SSL_NO_PEM_HEADER && gotOne) {
CYASSL_MSG("We got one good PEM so stuff at end ok");
break;
}
if (ret < 0) {
CYASSL_MSG(" Error in Cert in Chain");
XFREE(der.buffer, heap, dynamicType);
return ret;
}
CYASSL_MSG(" Consumed another Cert in Chain");
}
CYASSL_MSG("Finished Processing Cert Chain");
if (ctx == NULL) {
CYASSL_MSG("certChain needs context");
return BAD_FUNC_ARG;
}
ctx->certChain.buffer = (byte*)XMALLOC(idx, heap,
dynamicType);
if (ctx->certChain.buffer) {
ctx->certChain.length = idx;
XMEMCPY(ctx->certChain.buffer, chainBuffer, idx);
}
if (dynamicBuffer)
XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE);
if (ctx->certChain.buffer == NULL) {
XFREE(der.buffer, heap, dynamicType);
return MEMORY_E;
}
}
}
else { /* ASN1 (DER) or RAW (NTRU) */
der.buffer = (byte*) XMALLOC(sz, heap, dynamicType);
if (!der.buffer) return MEMORY_ERROR;
XMEMCPY(der.buffer, buff, sz);
der.length = (word32)sz;
}
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
if (info.set) {
/* decrypt */
char password[80];
int passwordSz;
byte key[AES_256_KEY_SIZE];
byte iv[AES_IV_SIZE];
if (!ctx || !ctx->passwd_cb) {
XFREE(der.buffer, heap, dynamicType);
return NO_PASSWORD;
}
/* use file's salt for key derivation, hex decode first */
if (Base16_Decode(info.iv, info.ivSz, info.iv, &info.ivSz) != 0) {
XFREE(der.buffer, heap, dynamicType);
return ASN_INPUT_E;
}
passwordSz = ctx->passwd_cb(password, sizeof(password), 0,
ctx->userdata);
if ( (ret = EVP_BytesToKey(info.name, "MD5", info.iv,
(byte*)password, passwordSz, 1, key, iv)) <= 0) {
XFREE(der.buffer, heap, dynamicType);
return ret;
}
if (XSTRNCMP(info.name, "DES-CBC", 7) == 0) {
Des enc;
Des_SetKey(&enc, key, info.iv, DES_DECRYPTION);
Des_CbcDecrypt(&enc, der.buffer, der.buffer, der.length);
}
else if (XSTRNCMP(info.name, "DES-EDE3-CBC", 13) == 0) {
Des3 enc;
Des3_SetKey(&enc, key, info.iv, DES_DECRYPTION);
Des3_CbcDecrypt(&enc, der.buffer, der.buffer, der.length);
}
else if (XSTRNCMP(info.name, "AES-128-CBC", 13) == 0) {
Aes enc;
AesSetKey(&enc, key, AES_128_KEY_SIZE, info.iv, AES_DECRYPTION);
AesCbcDecrypt(&enc, der.buffer, der.buffer, der.length);
}
else if (XSTRNCMP(info.name, "AES-192-CBC", 13) == 0) {
Aes enc;
AesSetKey(&enc, key, AES_192_KEY_SIZE, info.iv, AES_DECRYPTION);
AesCbcDecrypt(&enc, der.buffer, der.buffer, der.length);
}
else if (XSTRNCMP(info.name, "AES-256-CBC", 13) == 0) {
Aes enc;
AesSetKey(&enc, key, AES_256_KEY_SIZE, info.iv, AES_DECRYPTION);
AesCbcDecrypt(&enc, der.buffer, der.buffer, der.length);
}
else {
XFREE(der.buffer, heap, dynamicType);
return SSL_BAD_FILE;
}
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
if (type == CA_TYPE) {
if (ctx == NULL) {
CYASSL_MSG("Need context for CA load");
XFREE(der.buffer, heap, dynamicType);
return BAD_FUNC_ARG;
}
return AddCA(ctx->cm, der, CYASSL_USER_CA, ctx->verifyPeer);
/* takes der over */
}
else if (type == CERT_TYPE) {
if (ssl) {
if (ssl->buffers.weOwnCert && ssl->buffers.certificate.buffer)
XFREE(ssl->buffers.certificate.buffer, heap,
dynamicType);
ssl->buffers.certificate = der;
ssl->buffers.weOwnCert = 1;
}
else if (ctx) {
if (ctx->certificate.buffer)
XFREE(ctx->certificate.buffer, heap, dynamicType);
ctx->certificate = der; /* takes der over */
}
}
else if (type == PRIVATEKEY_TYPE) {
if (ssl) {
if (ssl->buffers.weOwnKey && ssl->buffers.key.buffer)
XFREE(ssl->buffers.key.buffer, heap, dynamicType);
ssl->buffers.key = der;
ssl->buffers.weOwnKey = 1;
}
else if (ctx) {
if (ctx->privateKey.buffer)
XFREE(ctx->privateKey.buffer, heap, dynamicType);
ctx->privateKey = der; /* takes der over */
}
}
else {
XFREE(der.buffer, heap, dynamicType);
return SSL_BAD_CERTTYPE;
}
if (type == PRIVATEKEY_TYPE && format != SSL_FILETYPE_RAW) {
#ifndef NO_RSA
if (!eccKey) {
/* make sure RSA key can be used */
RsaKey key;
word32 idx = 0;
InitRsaKey(&key, 0);
if (RsaPrivateKeyDecode(der.buffer,&idx,&key,der.length) != 0) {
#ifdef HAVE_ECC
/* could have DER ECC (or pkcs8 ecc), no easy way to tell */
eccKey = 1; /* so try it out */
#endif
if (!eccKey) {
FreeRsaKey(&key);
return SSL_BAD_FILE;
}
} else {
rsaKey = 1;
(void)rsaKey; /* for no ecc builds */
}
FreeRsaKey(&key);
}
#endif
#ifdef HAVE_ECC
if (!rsaKey) {
/* make sure ECC key can be used */
word32 idx = 0;
ecc_key key;
ecc_init(&key);
if (EccPrivateKeyDecode(der.buffer,&idx,&key,der.length) != 0) {
ecc_free(&key);
return SSL_BAD_FILE;
}
ecc_free(&key);
eccKey = 1;
ctx->haveStaticECC = 1;
if (ssl)
ssl->options.haveStaticECC = 1;
}
#endif /* HAVE_ECC */
}
else if (type == CERT_TYPE) {
DecodedCert cert;
CYASSL_MSG("Checking cert signature type");
InitDecodedCert(&cert, der.buffer, der.length, heap);
if (DecodeToKey(&cert, 0) < 0) {
CYASSL_MSG("Decode to key failed");
return SSL_BAD_FILE;
}
switch (cert.signatureOID) {
case CTC_SHAwECDSA:
case CTC_SHA256wECDSA:
case CTC_SHA384wECDSA:
case CTC_SHA512wECDSA:
CYASSL_MSG("ECDSA cert signature");
if (ctx)
ctx->haveECDSAsig = 1;
if (ssl)
ssl->options.haveECDSAsig = 1;
break;
default:
CYASSL_MSG("Not ECDSA cert signature");
break;
}
FreeDecodedCert(&cert);
}
return SSL_SUCCESS;
}
/* CA PEM file for verification, may have multiple/chain certs to process */
static int ProcessChainBuffer(CYASSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, CYASSL* ssl)
{
long used = 0;
int ret = 0;
int gotOne = 0;
CYASSL_MSG("Processing CA PEM file");
while (used < sz) {
long consumed = 0;
ret = ProcessBuffer(ctx, buff + used, sz - used, format, type, ssl,
&consumed, 0);
if (ret == SSL_NO_PEM_HEADER && gotOne) {
CYASSL_MSG("We got one good PEM file so stuff at end ok");
ret = SSL_SUCCESS;
break;
}
if (ret < 0)
break;
CYASSL_MSG(" Processed a CA");
gotOne = 1;
used += consumed;
}
return ret;
}
/* Verify the ceritficate, SSL_SUCCESS for ok, < 0 for error */
int CyaSSL_CertManagerVerifyBuffer(CYASSL_CERT_MANAGER* cm, const byte* buff,
long sz, int format)
{
int ret = 0;
int eccKey = 0; /* not used */
DecodedCert cert;
buffer der;
CYASSL_ENTER("CyaSSL_CertManagerVerifyBuffer");
der.buffer = NULL;
der.length = 0;
if (format == SSL_FILETYPE_PEM) {
EncryptedInfo info;
info.set = 0;
info.ctx = NULL;
info.consumed = 0;
ret = PemToDer(buff, sz, CERT_TYPE, &der, cm->heap, &info, &eccKey);
InitDecodedCert(&cert, der.buffer, der.length, cm->heap);
}
else
InitDecodedCert(&cert, (byte*)buff, (word32)sz, cm->heap);
if (ret == 0)
ret = ParseCertRelative(&cert, CERT_TYPE, 1, cm);
#ifdef HAVE_CRL
if (ret == 0 && cm->crlEnabled)
ret = CheckCertCRL(cm->crl, &cert);
#endif
FreeDecodedCert(&cert);
XFREE(der.buffer, cm->heap, DYNAMIC_TYPE_CERT);
if (ret == 0)
return SSL_SUCCESS;
return ret;
}
#ifndef NO_FILESYSTEM
#if defined(EBSNET)
#define XFILE int
#define XFOPEN(NAME, MODE) vf_open((const char *)NAME, VO_RDONLY, 0);
#define XFSEEK vf_lseek
#define XFTELL vf_tell
#define XREWIND vf_rewind
#define XFREAD(BUF, SZ, AMT, FD) vf_read(FD, BUF, SZ*AMT)
#define XFWRITE(BUF, SZ, AMT, FD) vf_write(FD, BUF, SZ*AMT)
#define XFCLOSE vf_close
#define XSEEK_END VSEEK_END
#define XBADFILE -1
#elif defined(LSR_FS)
#include <fs.h>
#define XFILE struct fs_file*
#define XFOPEN(NAME, MODE) fs_open((char*)NAME);
#define XFSEEK(F, O, W) (void)F
#define XFTELL(F) (F)->len
#define XREWIND(F) (void)F
#define XFREAD(BUF, SZ, AMT, F) fs_read(F, (char*)BUF, SZ*AMT)
#define XFWRITE(BUF, SZ, AMT, F) fs_write(F, (char*)BUF, SZ*AMT)
#define XFCLOSE fs_close
#define XSEEK_END 0
#define XBADFILE NULL
#elif defined(FREESCALE_MQX)
#define XFILE MQX_FILE_PTR
#define XFOPEN fopen
#define XFSEEK fseek
#define XFTELL ftell
#define XREWIND(F) fseek(F, 0, IO_SEEK_SET)
#define XFREAD fread
#define XFWRITE fwrite
#define XFCLOSE fclose
#define XSEEK_END IO_SEEK_END
#define XBADFILE NULL
#elif defined(MICRIUM)
#include <fs.h>
#define XFILE FS_FILE*
#define XFOPEN fs_fopen
#define XFSEEK fs_fseek
#define XFTELL fs_ftell
#define XREWIND fs_rewind
#define XFREAD fs_fread
#define XFWRITE fs_fwrite
#define XFCLOSE fs_fclose
#define XSEEK_END FS_SEEK_END
#define XBADFILE NULL
#else
/* stdio, default case */
#define XFILE FILE*
#if defined(CYASSL_MDK_ARM)
extern FILE * CyaSSL_fopen(const char *name, const char *mode) ;
#define XFOPEN CyaSSL_fopen
#else
#define XFOPEN fopen
#endif
#define XFSEEK fseek
#define XFTELL ftell
#define XREWIND rewind
#define XFREAD fread
#define XFWRITE fwrite
#define XFCLOSE fclose
#define XSEEK_END SEEK_END
#define XBADFILE NULL
#endif
/* process a file with name fname into ctx of format and type
userChain specifies a user certificate chain to pass during handshake */
int ProcessFile(CYASSL_CTX* ctx, const char* fname, int format, int type,
CYASSL* ssl, int userChain, CYASSL_CRL* crl)
{
byte staticBuffer[FILE_BUFFER_SIZE];
byte* myBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
void* heapHint = ctx ? ctx->heap : NULL;
(void)crl;
(void)heapHint;
if (fname == NULL) return SSL_BAD_FILE;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return SSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
CYASSL_MSG("Getting dynamic buffer");
myBuffer = (byte*)XMALLOC(sz, heapHint, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
dynamic = 1;
}
else if (sz < 0) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
if ( (ret = (int)XFREAD(myBuffer, sz, 1, file)) < 0)
ret = SSL_BAD_FILE;
else {
if (type == CA_TYPE && format == SSL_FILETYPE_PEM)
ret = ProcessChainBuffer(ctx, myBuffer, sz, format, type, ssl);
#ifdef HAVE_CRL
else if (type == CRL_TYPE)
ret = BufferLoadCRL(crl, myBuffer, sz, format);
#endif
else
ret = ProcessBuffer(ctx, myBuffer, sz, format, type, ssl, NULL,
userChain);
}
XFCLOSE(file);
if (dynamic) XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE);
return ret;
}
/* loads file then loads each file in path, no c_rehash */
int CyaSSL_CTX_load_verify_locations(CYASSL_CTX* ctx, const char* file,
const char* path)
{
int ret = SSL_SUCCESS;
CYASSL_ENTER("CyaSSL_CTX_load_verify_locations");
(void)path;
if (ctx == NULL || (file == NULL && path == NULL) )
return SSL_FAILURE;
if (file)
ret = ProcessFile(ctx, file, SSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL);
if (ret == SSL_SUCCESS && path) {
/* try to load each regular file in path */
#ifdef USE_WINDOWS_API
WIN32_FIND_DATAA FindFileData;
HANDLE hFind;
char name[MAX_FILENAME_SZ];
XMEMSET(name, 0, sizeof(name));
XSTRNCPY(name, path, MAX_FILENAME_SZ - 4);
XSTRNCAT(name, "\\*", 3);
hFind = FindFirstFileA(name, &FindFileData);
if (hFind == INVALID_HANDLE_VALUE) {
CYASSL_MSG("FindFirstFile for path verify locations failed");
return BAD_PATH_ERROR;
}
do {
if (FindFileData.dwFileAttributes != FILE_ATTRIBUTE_DIRECTORY) {
XSTRNCPY(name, path, MAX_FILENAME_SZ/2 - 3);
XSTRNCAT(name, "\\", 2);
XSTRNCAT(name, FindFileData.cFileName, MAX_FILENAME_SZ/2);
ret = ProcessFile(ctx, name, SSL_FILETYPE_PEM, CA_TYPE, NULL,0,
NULL);
}
} while (ret == SSL_SUCCESS && FindNextFileA(hFind, &FindFileData));
FindClose(hFind);
#elif !defined(NO_CYASSL_DIR)
struct dirent* entry;
DIR* dir = opendir(path);
if (dir == NULL) {
CYASSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
while ( ret == SSL_SUCCESS && (entry = readdir(dir)) != NULL) {
char name[MAX_FILENAME_SZ];
struct stat s;
XMEMSET(name, 0, sizeof(name));
XSTRNCPY(name, path, MAX_FILENAME_SZ/2 - 2);
XSTRNCAT(name, "/", 1);
XSTRNCAT(name, entry->d_name, MAX_FILENAME_SZ/2);
if (stat(name, &s) != 0) {
CYASSL_MSG("stat on name failed");
closedir(dir);
return BAD_PATH_ERROR;
}
if (s.st_mode & S_IFREG) {
ret = ProcessFile(ctx, name, SSL_FILETYPE_PEM, CA_TYPE, NULL,0,
NULL);
}
}
closedir(dir);
#endif
}
return ret;
}
/* Verify the ceritficate, SSL_SUCCESS for ok, < 0 for error */
int CyaSSL_CertManagerVerify(CYASSL_CERT_MANAGER* cm, const char* fname,
int format)
{
int ret = SSL_FATAL_ERROR;
byte staticBuffer[FILE_BUFFER_SIZE];
byte* myBuffer = staticBuffer;
int dynamic = 0;
long sz = 0;
XFILE file = XFOPEN(fname, "rb");
CYASSL_ENTER("CyaSSL_CertManagerVerify");
if (file == XBADFILE) return SSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_CYASSL_FILE_SIZE || sz < 0) {
CYASSL_MSG("CertManagerVerify file bad size");
XFCLOSE(file);
return SSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
CYASSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, cm->heap, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
dynamic = 1;
}
if ( (ret = (int)XFREAD(myBuffer, sz, 1, file)) < 0)
ret = SSL_BAD_FILE;
else
ret = CyaSSL_CertManagerVerifyBuffer(cm, myBuffer, sz, format);
XFCLOSE(file);
if (dynamic) XFREE(myBuffer, cm->heap, DYNAMIC_TYPE_FILE);
return ret;
}
static INLINE CYASSL_METHOD* cm_pick_method(void)
{
#ifndef NO_CYASSL_CLIENT
#ifdef NO_OLD_TLS
return CyaTLSv1_2_client_method();
#else
return CyaSSLv3_client_method();
#endif
#elif !defined(NO_CYASSL_SERVER)
#ifdef NO_OLD_TLS
return CyaTLSv1_2_server_method();
#else
return CyaSSLv3_server_method();
#endif
#else
return NULL;
#endif
}
/* like load verify locations, 1 for success, < 0 for error */
int CyaSSL_CertManagerLoadCA(CYASSL_CERT_MANAGER* cm, const char* file,
const char* path)
{
int ret = SSL_FATAL_ERROR;
CYASSL_CTX* tmp;
CYASSL_ENTER("CyaSSL_CertManagerLoadCA");
if (cm == NULL) {
CYASSL_MSG("No CertManager error");
return ret;
}
tmp = CyaSSL_CTX_new(cm_pick_method());
if (tmp == NULL) {
CYASSL_MSG("CTX new failed");
return ret;
}
/* for tmp use */
CyaSSL_CertManagerFree(tmp->cm);
tmp->cm = cm;
ret = CyaSSL_CTX_load_verify_locations(tmp, file, path);
/* don't loose our good one */
tmp->cm = NULL;
CyaSSL_CTX_free(tmp);
return ret;
}
/* turn on CRL if off and compiled in, set options */
int CyaSSL_CertManagerEnableCRL(CYASSL_CERT_MANAGER* cm, int options)
{
int ret = SSL_SUCCESS;
(void)options;
CYASSL_ENTER("CyaSSL_CertManagerEnableCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_CRL
if (cm->crl == NULL) {
cm->crl = (CYASSL_CRL*)XMALLOC(sizeof(CYASSL_CRL), cm->heap,
DYNAMIC_TYPE_CRL);
if (cm->crl == NULL)
return MEMORY_E;
if (InitCRL(cm->crl, cm) != 0) {
CYASSL_MSG("Init CRL failed");
FreeCRL(cm->crl, 1);
cm->crl = NULL;
return SSL_FAILURE;
}
}
cm->crlEnabled = 1;
if (options & CYASSL_CRL_CHECKALL)
cm->crlCheckAll = 1;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int CyaSSL_CertManagerDisableCRL(CYASSL_CERT_MANAGER* cm)
{
CYASSL_ENTER("CyaSSL_CertManagerDisableCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->crlEnabled = 0;
return SSL_SUCCESS;
}
int CyaSSL_CTX_check_private_key(CYASSL_CTX* ctx)
{
/* TODO: check private against public for RSA match */
(void)ctx;
CYASSL_ENTER("SSL_CTX_check_private_key");
return SSL_SUCCESS;
}
#ifdef HAVE_CRL
/* check CRL if enabled, SSL_SUCCESS */
int CyaSSL_CertManagerCheckCRL(CYASSL_CERT_MANAGER* cm, byte* der, int sz)
{
int ret;
DecodedCert cert;
CYASSL_ENTER("CyaSSL_CertManagerCheckCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crlEnabled == 0)
return SSL_SUCCESS;
InitDecodedCert(&cert, der, sz, NULL);
ret = ParseCertRelative(&cert, CERT_TYPE, NO_VERIFY, cm);
if (ret != 0) {
CYASSL_MSG("ParseCert failed");
return ret;
}
else {
ret = CheckCertCRL(cm->crl, &cert);
if (ret != 0) {
CYASSL_MSG("CheckCertCRL failed");
}
}
FreeDecodedCert(&cert);
if (ret == 0)
return SSL_SUCCESS; /* convert */
return ret;
}
int CyaSSL_CertManagerSetCRL_Cb(CYASSL_CERT_MANAGER* cm, CbMissingCRL cb)
{
CYASSL_ENTER("CyaSSL_CertManagerSetCRL_Cb");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->cbMissingCRL = cb;
return SSL_SUCCESS;
}
int CyaSSL_CertManagerLoadCRL(CYASSL_CERT_MANAGER* cm, const char* path,
int type, int monitor)
{
CYASSL_ENTER("CyaSSL_CertManagerLoadCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crl == NULL) {
if (CyaSSL_CertManagerEnableCRL(cm, 0) != SSL_SUCCESS) {
CYASSL_MSG("Enable CRL failed");
return SSL_FATAL_ERROR;
}
}
return LoadCRL(cm->crl, path, type, monitor);
}
int CyaSSL_EnableCRL(CYASSL* ssl, int options)
{
CYASSL_ENTER("CyaSSL_EnableCRL");
if (ssl)
return CyaSSL_CertManagerEnableCRL(ssl->ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int CyaSSL_DisableCRL(CYASSL* ssl)
{
CYASSL_ENTER("CyaSSL_DisableCRL");
if (ssl)
return CyaSSL_CertManagerDisableCRL(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int CyaSSL_LoadCRL(CYASSL* ssl, const char* path, int type, int monitor)
{
CYASSL_ENTER("CyaSSL_LoadCRL");
if (ssl)
return CyaSSL_CertManagerLoadCRL(ssl->ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
int CyaSSL_SetCRL_Cb(CYASSL* ssl, CbMissingCRL cb)
{
CYASSL_ENTER("CyaSSL_SetCRL_Cb");
if (ssl)
return CyaSSL_CertManagerSetCRL_Cb(ssl->ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
int CyaSSL_CTX_EnableCRL(CYASSL_CTX* ctx, int options)
{
CYASSL_ENTER("CyaSSL_CTX_EnableCRL");
if (ctx)
return CyaSSL_CertManagerEnableCRL(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int CyaSSL_CTX_DisableCRL(CYASSL_CTX* ctx)
{
CYASSL_ENTER("CyaSSL_CTX_DisableCRL");
if (ctx)
return CyaSSL_CertManagerDisableCRL(ctx->cm);
else
return BAD_FUNC_ARG;
}
int CyaSSL_CTX_LoadCRL(CYASSL_CTX* ctx, const char* path, int type, int monitor)
{
CYASSL_ENTER("CyaSSL_CTX_LoadCRL");
if (ctx)
return CyaSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
int CyaSSL_CTX_SetCRL_Cb(CYASSL_CTX* ctx, CbMissingCRL cb)
{
CYASSL_ENTER("CyaSSL_CTX_SetCRL_Cb");
if (ctx)
return CyaSSL_CertManagerSetCRL_Cb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#endif /* HAVE_CRL */
#ifdef CYASSL_DER_LOAD
/* Add format parameter to allow DER load of CA files */
int CyaSSL_CTX_der_load_verify_locations(CYASSL_CTX* ctx, const char* file,
int format)
{
CYASSL_ENTER("CyaSSL_CTX_der_load_verify_locations");
if (ctx == NULL || file == NULL)
return SSL_FAILURE;
if (ProcessFile(ctx, file, format, CA_TYPE, NULL, 0, NULL) == SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
#endif /* CYASSL_DER_LOAD */
#ifdef CYASSL_CERT_GEN
/* load pem cert from file into der buffer, return der size or error */
int CyaSSL_PemCertToDer(const char* fileName, unsigned char* derBuf, int derSz)
{
byte staticBuffer[FILE_BUFFER_SIZE];
byte* fileBuf = staticBuffer;
int dynamic = 0;
int ret;
int ecc = 0;
long sz = 0;
XFILE file = XFOPEN(fileName, "rb");
EncryptedInfo info;
buffer converted;
CYASSL_ENTER("CyaSSL_PemCertToDer");
converted.buffer = 0;
if (file == XBADFILE) return SSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
fileBuf = (byte*) XMALLOC(sz, 0, DYNAMIC_TYPE_FILE);
if (fileBuf == NULL) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
dynamic = 1;
}
else if (sz < 0) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
if ( (ret = (int)XFREAD(fileBuf, sz, 1, file)) < 0)
ret = SSL_BAD_FILE;
else
ret = PemToDer(fileBuf, sz, CA_TYPE, &converted, 0, &info, &ecc);
if (ret == 0) {
if (converted.length < (word32)derSz) {
XMEMCPY(derBuf, converted.buffer, converted.length);
ret = converted.length;
}
else
ret = BUFFER_E;
}
XFREE(converted.buffer, 0, DYNAMIC_TYPE_CA);
if (dynamic)
XFREE(fileBuf, 0, DYNAMIC_TYPE_FILE);
XFCLOSE(file);
return ret;
}
#endif /* CYASSL_CERT_GEN */
int CyaSSL_CTX_use_certificate_file(CYASSL_CTX* ctx, const char* file,
int format)
{
CYASSL_ENTER("CyaSSL_CTX_use_certificate_file");
if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 0, NULL) == SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
int CyaSSL_CTX_use_PrivateKey_file(CYASSL_CTX* ctx, const char* file,int format)
{
CYASSL_ENTER("CyaSSL_CTX_use_PrivateKey_file");
if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE, NULL, 0, NULL)
== SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
int CyaSSL_CTX_use_certificate_chain_file(CYASSL_CTX* ctx, const char* file)
{
/* procces up to MAX_CHAIN_DEPTH plus subject cert */
CYASSL_ENTER("CyaSSL_CTX_use_certificate_chain_file");
if (ProcessFile(ctx, file, SSL_FILETYPE_PEM,CERT_TYPE,NULL,1, NULL)
== SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
#ifdef OPENSSL_EXTRA
/* put SSL type in extra for now, not very common */
int CyaSSL_use_certificate_file(CYASSL* ssl, const char* file, int format)
{
CYASSL_ENTER("CyaSSL_use_certificate_file");
if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 0, NULL)
== SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
int CyaSSL_use_PrivateKey_file(CYASSL* ssl, const char* file, int format)
{
CYASSL_ENTER("CyaSSL_use_PrivateKey_file");
if (ProcessFile(ssl->ctx, file, format, PRIVATEKEY_TYPE, ssl, 0, NULL)
== SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
int CyaSSL_use_certificate_chain_file(CYASSL* ssl, const char* file)
{
/* procces up to MAX_CHAIN_DEPTH plus subject cert */
CYASSL_ENTER("CyaSSL_use_certificate_chain_file");
if (ProcessFile(ssl->ctx, file, SSL_FILETYPE_PEM, CERT_TYPE, ssl, 1, NULL)
== SSL_SUCCESS)
return SSL_SUCCESS;
return SSL_FAILURE;
}
/* server wrapper for ctx or ssl Diffie-Hellman parameters */
static int CyaSSL_SetTmpDH_buffer_wrapper(CYASSL_CTX* ctx, CYASSL* ssl,
const unsigned char* buf, long sz, int format)
{
buffer der;
int ret;
int weOwnDer = 0;
byte p[MAX_DH_SIZE];
byte g[MAX_DH_SIZE];
word32 pSz = sizeof(p);
word32 gSz = sizeof(g);
der.buffer = (byte*)buf;
der.length = (word32)sz;
if (format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM)
return SSL_BAD_FILETYPE;
if (format == SSL_FILETYPE_PEM) {
der.buffer = NULL;
ret = PemToDer(buf, sz, DH_PARAM_TYPE, &der, ctx->heap, NULL,NULL);
if (ret < 0) {
XFREE(der.buffer, ctx->heap, DYNAMIC_TYPE_KEY);
return ret;
}
weOwnDer = 1;
}
if (DhParamsLoad(der.buffer, der.length, p, &pSz, g, &gSz) < 0)
ret = SSL_BAD_FILETYPE;
else {
if (ssl)
ret = CyaSSL_SetTmpDH(ssl, p, pSz, g, gSz);
else
ret = CyaSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz);
}
if (weOwnDer)
XFREE(der.buffer, ctx->heap, DYNAMIC_TYPE_KEY);
return ret;
}
/* server Diffie-Hellman parameters, SSL_SUCCESS on ok */
int CyaSSL_SetTmpDH_buffer(CYASSL* ssl, const unsigned char* buf, long sz,
int format)
{
return CyaSSL_SetTmpDH_buffer_wrapper(ssl->ctx, ssl, buf, sz, format);
}
/* server ctx Diffie-Hellman parameters, SSL_SUCCESS on ok */
int CyaSSL_CTX_SetTmpDH_buffer(CYASSL_CTX* ctx, const unsigned char* buf,
long sz, int format)
{
return CyaSSL_SetTmpDH_buffer_wrapper(ctx, NULL, buf, sz, format);
}
#ifdef HAVE_ECC
/* Set Temp CTX EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */
int CyaSSL_CTX_SetTmpEC_DHE_Sz(CYASSL_CTX* ctx, word16 sz)
{
if (ctx == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ctx->eccTempKeySz = sz;
return SSL_SUCCESS;
}
/* Set Temp SSL EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */
int CyaSSL_SetTmpEC_DHE_Sz(CYASSL* ssl, word16 sz)
{
if (ssl == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ssl->eccTempKeySz = sz;
return SSL_SUCCESS;
}
#endif /* HAVE_ECC */
#if !defined(NO_FILESYSTEM)
/* server Diffie-Hellman parameters */
static int CyaSSL_SetTmpDH_file_wrapper(CYASSL_CTX* ctx, CYASSL* ssl,
const char* fname, int format)
{
byte staticBuffer[FILE_BUFFER_SIZE];
byte* myBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file = XFOPEN(fname, "rb");
if (file == XBADFILE) return SSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
CYASSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
dynamic = 1;
}
else if (sz < 0) {
XFCLOSE(file);
return SSL_BAD_FILE;
}
if ( (ret = (int)XFREAD(myBuffer, sz, 1, file)) < 0)
ret = SSL_BAD_FILE;
else {
if (ssl)
ret = CyaSSL_SetTmpDH_buffer(ssl, myBuffer, sz, format);
else
ret = CyaSSL_CTX_SetTmpDH_buffer(ctx, myBuffer, sz, format);
}
XFCLOSE(file);
if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
return ret;
}
/* server Diffie-Hellman parameters */
int CyaSSL_SetTmpDH_file(CYASSL* ssl, const char* fname, int format)
{
return CyaSSL_SetTmpDH_file_wrapper(ssl->ctx, ssl, fname, format);
}
/* server Diffie-Hellman parameters */
int CyaSSL_CTX_SetTmpDH_file(CYASSL_CTX* ctx, const char* fname, int format)
{
return CyaSSL_SetTmpDH_file_wrapper(ctx, NULL, fname, format);
}
#endif /* !NO_FILESYSTEM */
#endif /* OPENSSL_EXTRA */
#ifdef HAVE_NTRU
int CyaSSL_CTX_use_NTRUPrivateKey_file(CYASSL_CTX* ctx, const char* file)
{
CYASSL_ENTER("CyaSSL_CTX_use_NTRUPrivateKey_file");
if (ProcessFile(ctx, file, SSL_FILETYPE_RAW, PRIVATEKEY_TYPE, NULL, 0, NULL)
== SSL_SUCCESS) {
ctx->haveNTRU = 1;
return SSL_SUCCESS;
}
return SSL_FAILURE;
}
#endif /* HAVE_NTRU */
#if defined(OPENSSL_EXTRA)
int CyaSSL_CTX_use_RSAPrivateKey_file(CYASSL_CTX* ctx,const char* file,
int format)
{
CYASSL_ENTER("SSL_CTX_use_RSAPrivateKey_file");
return CyaSSL_CTX_use_PrivateKey_file(ctx, file, format);
}
int CyaSSL_use_RSAPrivateKey_file(CYASSL* ssl, const char* file, int format)
{
CYASSL_ENTER("CyaSSL_use_RSAPrivateKey_file");
return CyaSSL_use_PrivateKey_file(ssl, file, format);
}
#endif /* OPENSSL_EXTRA */
#endif /* NO_FILESYSTEM */
void CyaSSL_CTX_set_verify(CYASSL_CTX* ctx, int mode, VerifyCallback vc)
{
CYASSL_ENTER("CyaSSL_CTX_set_verify");
if (mode & SSL_VERIFY_PEER) {
ctx->verifyPeer = 1;
ctx->verifyNone = 0; /* in case perviously set */
}
if (mode == SSL_VERIFY_NONE) {
ctx->verifyNone = 1;
ctx->verifyPeer = 0; /* in case previously set */
}
if (mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)
ctx->failNoCert = 1;
ctx->verifyCallback = vc;
}
void CyaSSL_set_verify(CYASSL* ssl, int mode, VerifyCallback vc)
{
CYASSL_ENTER("CyaSSL_set_verify");
if (mode & SSL_VERIFY_PEER) {
ssl->options.verifyPeer = 1;
ssl->options.verifyNone = 0; /* in case perviously set */
}
if (mode == SSL_VERIFY_NONE) {
ssl->options.verifyNone = 1;
ssl->options.verifyPeer = 0; /* in case previously set */
}
if (mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)
ssl->options.failNoCert = 1;
ssl->verifyCallback = vc;
}
/* store user ctx for verify callback */
void CyaSSL_SetCertCbCtx(CYASSL* ssl, void* ctx)
{
CYASSL_ENTER("CyaSSL_SetCertCbCtx");
if (ssl)
ssl->verifyCbCtx = ctx;
}
/* store context CA Cache addition callback */
void CyaSSL_CTX_SetCACb(CYASSL_CTX* ctx, CallbackCACache cb)
{
if (ctx && ctx->cm)
ctx->cm->caCacheCallback = cb;
}
#if defined(PERSIST_CERT_CACHE)
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int CyaSSL_CTX_save_cert_cache(CYASSL_CTX* ctx, const char* fname)
{
CYASSL_ENTER("CyaSSL_CTX_save_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_SaveCertCache(ctx->cm, fname);
}
/* Persist cert cache from file */
int CyaSSL_CTX_restore_cert_cache(CYASSL_CTX* ctx, const char* fname)
{
CYASSL_ENTER("CyaSSL_CTX_restore_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_RestoreCertCache(ctx->cm, fname);
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int CyaSSL_CTX_memsave_cert_cache(CYASSL_CTX* ctx, void* mem, int sz, int* used)
{
CYASSL_ENTER("CyaSSL_CTX_memsave_cert_cache");
if (ctx == NULL || mem == NULL || used == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemSaveCertCache(ctx->cm, mem, sz, used);
}
/* Restore cert cache from memory */
int CyaSSL_CTX_memrestore_cert_cache(CYASSL_CTX* ctx, const void* mem, int sz)
{
CYASSL_ENTER("CyaSSL_CTX_memrestore_cert_cache");
if (ctx == NULL || mem == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemRestoreCertCache(ctx->cm, mem, sz);
}
/* get how big the the cert cache save buffer needs to be */
int CyaSSL_CTX_get_cert_cache_memsize(CYASSL_CTX* ctx)
{
CYASSL_ENTER("CyaSSL_CTX_get_cert_cache_memsize");
if (ctx == NULL)
return BAD_FUNC_ARG;
return CM_GetCertCacheMemSize(ctx->cm);
}
#endif /* PERSISTE_CERT_CACHE */
#endif /* !NO_CERTS */
#ifndef NO_SESSION_CACHE
CYASSL_SESSION* CyaSSL_get_session(CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_session");
if (ssl)
return GetSession(ssl, 0);
return NULL;
}
int CyaSSL_set_session(CYASSL* ssl, CYASSL_SESSION* session)
{
CYASSL_ENTER("SSL_set_session");
if (session)
return SetSession(ssl, session);
return SSL_FAILURE;
}
#ifndef NO_CLIENT_CACHE
/* Associate client session with serverID, find existing or store for saving
if newSession flag on, don't reuse existing session
SSL_SUCCESS on ok */
int CyaSSL_SetServerID(CYASSL* ssl, const byte* id, int len, int newSession)
{
CYASSL_SESSION* session = NULL;
CYASSL_ENTER("CyaSSL_SetServerID");
if (ssl == NULL || id == NULL || len <= 0)
return BAD_FUNC_ARG;
if (newSession == 0) {
session = GetSessionClient(ssl, id, len);
if (session) {
if (SetSession(ssl, session) != SSL_SUCCESS) {
CYASSL_MSG("SetSession failed");
session = NULL;
}
}
}
if (session == NULL) {
CYASSL_MSG("Valid ServerID not cached already");
ssl->session.idLen = (word16)min(SERVER_ID_LEN, (word32)len);
XMEMCPY(ssl->session.serverID, id, ssl->session.idLen);
}
return SSL_SUCCESS;
}
#endif /* NO_CLIENT_CACHE */
#if defined(PERSIST_SESSION_CACHE)
/* Session Cache Header information */
typedef struct {
int version; /* cache layout version id */
int rows; /* session rows */
int columns; /* session columns */
int sessionSz; /* sizeof CYASSL_SESSION */
} cache_header_t;
/* current persistence layout is:
1) cache_header_t
2) SessionCache
3) ClientCache
update CYASSL_CACHE_VERSION if change layout for the following
PERSISTENT_SESSION_CACHE functions
*/
/* get how big the the session cache save buffer needs to be */
int CyaSSL_get_session_cache_memsize(void)
{
int sz = (int)(sizeof(SessionCache) + sizeof(cache_header_t));
#ifndef NO_CLIENT_CACHE
sz += (int)(sizeof(ClientCache));
#endif
return sz;
}
/* Persist session cache to memory */
int CyaSSL_memsave_session_cache(void* mem, int sz)
{
int i;
cache_header_t cache_header;
SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header));
#ifndef NO_CLIENT_CACHE
ClientRow* clRow;
#endif
CYASSL_ENTER("CyaSSL_memsave_session_cache");
if (sz < CyaSSL_get_session_cache_memsize()) {
CYASSL_MSG("Memory buffer too small");
return BUFFER_E;
}
cache_header.version = CYASSL_CACHE_VERSION;
cache_header.rows = SESSION_ROWS;
cache_header.columns = SESSIONS_PER_ROW;
cache_header.sessionSz = (int)sizeof(CYASSL_SESSION);
XMEMCPY(mem, &cache_header, sizeof(cache_header));
if (LockMutex(&session_mutex) != 0) {
CYASSL_MSG("Session cache mutex lock failed");
return BAD_MUTEX_E;
}
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(row++, SessionCache + i, sizeof(SessionRow));
#ifndef NO_CLIENT_CACHE
clRow = (ClientRow*)row;
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(clRow++, ClientCache + i, sizeof(ClientRow));
#endif
UnLockMutex(&session_mutex);
CYASSL_LEAVE("CyaSSL_memsave_session_cache", SSL_SUCCESS);
return SSL_SUCCESS;
}
/* Restore the persistant session cache from memory */
int CyaSSL_memrestore_session_cache(const void* mem, int sz)
{
int i;
cache_header_t cache_header;
SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header));
#ifndef NO_CLIENT_CACHE
ClientRow* clRow;
#endif
CYASSL_ENTER("CyaSSL_memrestore_session_cache");
if (sz < CyaSSL_get_session_cache_memsize()) {
CYASSL_MSG("Memory buffer too small");
return BUFFER_E;
}
XMEMCPY(&cache_header, mem, sizeof(cache_header));
if (cache_header.version != CYASSL_CACHE_VERSION ||
cache_header.rows != SESSION_ROWS ||
cache_header.columns != SESSIONS_PER_ROW ||
cache_header.sessionSz != (int)sizeof(CYASSL_SESSION)) {
CYASSL_MSG("Session cache header match failed");
return CACHE_MATCH_ERROR;
}
if (LockMutex(&session_mutex) != 0) {
CYASSL_MSG("Session cache mutex lock failed");
return BAD_MUTEX_E;
}
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(SessionCache + i, row++, sizeof(SessionRow));
#ifndef NO_CLIENT_CACHE
clRow = (ClientRow*)row;
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(ClientCache + i, clRow++, sizeof(ClientRow));
#endif
UnLockMutex(&session_mutex);
CYASSL_LEAVE("CyaSSL_memrestore_session_cache", SSL_SUCCESS);
return SSL_SUCCESS;
}
#if !defined(NO_FILESYSTEM)
/* Persist session cache to file */
/* doesn't use memsave because of additional memory use */
int CyaSSL_save_session_cache(const char *fname)
{
XFILE file;
int ret;
int rc = SSL_SUCCESS;
int i;
cache_header_t cache_header;
CYASSL_ENTER("CyaSSL_save_session_cache");
file = XFOPEN(fname, "w+b");
if (file == XBADFILE) {
CYASSL_MSG("Couldn't open session cache save file");
return SSL_BAD_FILE;
}
cache_header.version = CYASSL_CACHE_VERSION;
cache_header.rows = SESSION_ROWS;
cache_header.columns = SESSIONS_PER_ROW;
cache_header.sessionSz = (int)sizeof(CYASSL_SESSION);
/* cache header */
ret = (int)XFWRITE(&cache_header, sizeof cache_header, 1, file);
if (ret != 1) {
CYASSL_MSG("Session cache header file write failed");
XFCLOSE(file);
return FWRITE_ERROR;
}
if (LockMutex(&session_mutex) != 0) {
CYASSL_MSG("Session cache mutex lock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
/* session cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFWRITE(SessionCache + i, sizeof(SessionRow), 1, file);
if (ret != 1) {
CYASSL_MSG("Session cache member file write failed");
rc = FWRITE_ERROR;
break;
}
}
#ifndef NO_CLIENT_CACHE
/* client cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFWRITE(ClientCache + i, sizeof(ClientRow), 1, file);
if (ret != 1) {
CYASSL_MSG("Client cache member file write failed");
rc = FWRITE_ERROR;
break;
}
}
#endif /* NO_CLIENT_CACHE */
UnLockMutex(&session_mutex);
XFCLOSE(file);
CYASSL_LEAVE("CyaSSL_save_session_cache", rc);
return rc;
}
/* Restore the persistant session cache from file */
/* doesn't use memstore because of additional memory use */
int CyaSSL_restore_session_cache(const char *fname)
{
XFILE file;
int rc = SSL_SUCCESS;
int ret;
int i;
cache_header_t cache_header;
CYASSL_ENTER("CyaSSL_restore_session_cache");
file = XFOPEN(fname, "rb");
if (file == XBADFILE) {
CYASSL_MSG("Couldn't open session cache save file");
return SSL_BAD_FILE;
}
/* cache header */
ret = (int)XFREAD(&cache_header, sizeof cache_header, 1, file);
if (ret != 1) {
CYASSL_MSG("Session cache header file read failed");
XFCLOSE(file);
return FREAD_ERROR;
}
if (cache_header.version != CYASSL_CACHE_VERSION ||
cache_header.rows != SESSION_ROWS ||
cache_header.columns != SESSIONS_PER_ROW ||
cache_header.sessionSz != (int)sizeof(CYASSL_SESSION)) {
CYASSL_MSG("Session cache header match failed");
XFCLOSE(file);
return CACHE_MATCH_ERROR;
}
if (LockMutex(&session_mutex) != 0) {
CYASSL_MSG("Session cache mutex lock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
/* session cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFREAD(SessionCache + i, sizeof(SessionRow), 1, file);
if (ret != 1) {
CYASSL_MSG("Session cache member file read failed");
XMEMSET(SessionCache, 0, sizeof SessionCache);
rc = FREAD_ERROR;
break;
}
}
#ifndef NO_CLIENT_CACHE
/* client cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFREAD(ClientCache + i, sizeof(ClientRow), 1, file);
if (ret != 1) {
CYASSL_MSG("Client cache member file read failed");
XMEMSET(ClientCache, 0, sizeof ClientCache);
rc = FREAD_ERROR;
break;
}
}
#endif /* NO_CLIENT_CACHE */
UnLockMutex(&session_mutex);
XFCLOSE(file);
CYASSL_LEAVE("CyaSSL_restore_session_cache", rc);
return rc;
}
#endif /* !NO_FILESYSTEM */
#endif /* PERSIST_SESSION_CACHE */
#endif /* NO_SESSION_CACHE */
void CyaSSL_load_error_strings(void) /* compatibility only */
{}
int CyaSSL_library_init(void)
{
CYASSL_ENTER("SSL_library_init");
if (CyaSSL_Init() == SSL_SUCCESS)
return SSL_SUCCESS;
else
return SSL_FATAL_ERROR;
}
#ifndef NO_SESSION_CACHE
/* on by default if built in but allow user to turn off */
long CyaSSL_CTX_set_session_cache_mode(CYASSL_CTX* ctx, long mode)
{
CYASSL_ENTER("SSL_CTX_set_session_cache_mode");
if (mode == SSL_SESS_CACHE_OFF)
ctx->sessionCacheOff = 1;
if (mode == SSL_SESS_CACHE_NO_AUTO_CLEAR)
ctx->sessionCacheFlushOff = 1;
return SSL_SUCCESS;
}
#endif /* NO_SESSION_CACHE */
#if !defined(NO_CERTS)
#if defined(PERSIST_CERT_CACHE)
#define CYASSL_CACHE_CERT_VERSION 1
typedef struct {
int version; /* cache cert layout version id */
int rows; /* hash table rows, CA_TABLE_SIZE */
int columns[CA_TABLE_SIZE]; /* columns per row on list */
int signerSz; /* sizeof Signer object */
} CertCacheHeader;
/* current cert persistance layout is:
1) CertCacheHeader
2) caTable
update CYASSL_CERT_CACHE_VERSION if change layout for the following
PERSIST_CERT_CACHE functions
*/
/* Return memory needed to persist this signer, have lock */
static INLINE int GetSignerMemory(Signer* signer)
{
int sz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID)
+ sizeof(signer->nameLen) + sizeof(signer->subjectNameHash);
#if !defined(NO_SKID)
sz += (int)sizeof(signer->subjectKeyIdHash);
#endif
/* add dynamic bytes needed */
sz += signer->pubKeySize;
sz += signer->nameLen;
return sz;
}
/* Return memory needed to persist this row, have lock */
static INLINE int GetCertCacheRowMemory(Signer* row)
{
int sz = 0;
while (row) {
sz += GetSignerMemory(row);
row = row->next;
}
return sz;
}
/* get the size of persist cert cache, have lock */
static INLINE int GetCertCacheMemSize(CYASSL_CERT_MANAGER* cm)
{
int sz;
int i;
sz = sizeof(CertCacheHeader);
for (i = 0; i < CA_TABLE_SIZE; i++)
sz += GetCertCacheRowMemory(cm->caTable[i]);
return sz;
}
/* Store cert cache header columns with number of items per list, have lock */
static INLINE void SetCertHeaderColumns(CYASSL_CERT_MANAGER* cm, int* columns)
{
int i;
Signer* row;
for (i = 0; i < CA_TABLE_SIZE; i++) {
int count = 0;
row = cm->caTable[i];
while (row) {
++count;
row = row->next;
}
columns[i] = count;
}
}
/* Restore whole cert row from memory, have lock, return bytes consumed,
< 0 on error, have lock */
static INLINE int RestoreCertRow(CYASSL_CERT_MANAGER* cm, byte* current,
int row, int listSz, const byte* end)
{
int idx = 0;
if (listSz < 0) {
CYASSL_MSG("Row header corrupted, negative value");
return PARSE_ERROR;
}
while (listSz) {
Signer* signer;
byte* start = current + idx; /* for end checks on this signer */
int minSz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) +
sizeof(signer->nameLen) + sizeof(signer->subjectNameHash);
#ifndef NO_SKID
minSz += (int)sizeof(signer->subjectKeyIdHash);
#endif
if (start + minSz > end) {
CYASSL_MSG("Would overread restore buffer");
return BUFFER_E;
}
signer = MakeSigner(cm->heap);
if (signer == NULL)
return MEMORY_E;
/* pubKeySize */
XMEMCPY(&signer->pubKeySize, current + idx, sizeof(signer->pubKeySize));
idx += (int)sizeof(signer->pubKeySize);
/* keyOID */
XMEMCPY(&signer->keyOID, current + idx, sizeof(signer->keyOID));
idx += (int)sizeof(signer->keyOID);
/* pulicKey */
if (start + minSz + signer->pubKeySize > end) {
CYASSL_MSG("Would overread restore buffer");
FreeSigner(signer, cm->heap);
return BUFFER_E;
}
signer->publicKey = (byte*)XMALLOC(signer->pubKeySize, cm->heap,
DYNAMIC_TYPE_KEY);
if (signer->publicKey == NULL) {
FreeSigner(signer, cm->heap);
return MEMORY_E;
}
XMEMCPY(signer->publicKey, current + idx, signer->pubKeySize);
idx += signer->pubKeySize;
/* nameLen */
XMEMCPY(&signer->nameLen, current + idx, sizeof(signer->nameLen));
idx += (int)sizeof(signer->nameLen);
/* name */
if (start + minSz + signer->pubKeySize + signer->nameLen > end) {
CYASSL_MSG("Would overread restore buffer");
FreeSigner(signer, cm->heap);
return BUFFER_E;
}
signer->name = (char*)XMALLOC(signer->nameLen, cm->heap,
DYNAMIC_TYPE_SUBJECT_CN);
if (signer->name == NULL) {
FreeSigner(signer, cm->heap);
return MEMORY_E;
}
XMEMCPY(signer->name, current + idx, signer->nameLen);
idx += signer->nameLen;
/* subjectNameHash */
XMEMCPY(signer->subjectNameHash, current + idx, SIGNER_DIGEST_SIZE);
idx += SIGNER_DIGEST_SIZE;
#ifndef NO_SKID
/* subjectKeyIdHash */
XMEMCPY(signer->subjectKeyIdHash, current + idx,SIGNER_DIGEST_SIZE);
idx += SIGNER_DIGEST_SIZE;
#endif
signer->next = cm->caTable[row];
cm->caTable[row] = signer;
--listSz;
}
return idx;
}
/* Store whole cert row into memory, have lock, return bytes added */
static INLINE int StoreCertRow(CYASSL_CERT_MANAGER* cm, byte* current, int row)
{
int added = 0;
Signer* list = cm->caTable[row];
while (list) {
XMEMCPY(current + added, &list->pubKeySize, sizeof(list->pubKeySize));
added += (int)sizeof(list->pubKeySize);
XMEMCPY(current + added, &list->keyOID, sizeof(list->keyOID));
added += (int)sizeof(list->keyOID);
XMEMCPY(current + added, list->publicKey, list->pubKeySize);
added += list->pubKeySize;
XMEMCPY(current + added, &list->nameLen, sizeof(list->nameLen));
added += (int)sizeof(list->nameLen);
XMEMCPY(current + added, list->name, list->nameLen);
added += list->nameLen;
XMEMCPY(current + added, list->subjectNameHash, SIGNER_DIGEST_SIZE);
added += SIGNER_DIGEST_SIZE;
#ifndef NO_SKID
XMEMCPY(current + added, list->subjectKeyIdHash,SIGNER_DIGEST_SIZE);
added += SIGNER_DIGEST_SIZE;
#endif
list = list->next;
}
return added;
}
/* Persist cert cache to memory, have lock */
static INLINE int DoMemSaveCertCache(CYASSL_CERT_MANAGER* cm, void* mem, int sz)
{
int realSz;
int ret = SSL_SUCCESS;
int i;
CYASSL_ENTER("DoMemSaveCertCache");
realSz = GetCertCacheMemSize(cm);
if (realSz > sz) {
CYASSL_MSG("Mem output buffer too small");
ret = BUFFER_E;
}
else {
byte* current;
CertCacheHeader hdr;
hdr.version = CYASSL_CACHE_CERT_VERSION;
hdr.rows = CA_TABLE_SIZE;
SetCertHeaderColumns(cm, hdr.columns);
hdr.signerSz = (int)sizeof(Signer);
XMEMCPY(mem, &hdr, sizeof(CertCacheHeader));
current = (byte*)mem + sizeof(CertCacheHeader);
for (i = 0; i < CA_TABLE_SIZE; ++i)
current += StoreCertRow(cm, current, i);
}
return ret;
}
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int CM_SaveCertCache(CYASSL_CERT_MANAGER* cm, const char* fname)
{
XFILE file;
int rc = SSL_SUCCESS;
int memSz;
byte* mem;
CYASSL_ENTER("CM_SaveCertCache");
file = XFOPEN(fname, "w+b");
if (file == XBADFILE) {
CYASSL_MSG("Couldn't open cert cache save file");
return SSL_BAD_FILE;
}
if (LockMutex(&cm->caLock) != 0) {
CYASSL_MSG("LockMutex on caLock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
memSz = GetCertCacheMemSize(cm);
mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
CYASSL_MSG("Alloc for tmp buffer failed");
rc = MEMORY_E;
} else {
rc = DoMemSaveCertCache(cm, mem, memSz);
if (rc == SSL_SUCCESS) {
int ret = (int)XFWRITE(mem, memSz, 1, file);
if (ret != 1) {
CYASSL_MSG("Cert cache file write failed");
rc = FWRITE_ERROR;
}
}
XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
UnLockMutex(&cm->caLock);
XFCLOSE(file);
return rc;
}
/* Restore cert cache from file */
int CM_RestoreCertCache(CYASSL_CERT_MANAGER* cm, const char* fname)
{
XFILE file;
int rc = SSL_SUCCESS;
int ret;
int memSz;
byte* mem;
CYASSL_ENTER("CM_RestoreCertCache");
file = XFOPEN(fname, "rb");
if (file == XBADFILE) {
CYASSL_MSG("Couldn't open cert cache save file");
return SSL_BAD_FILE;
}
XFSEEK(file, 0, XSEEK_END);
memSz = (int)XFTELL(file);
XREWIND(file);
if (memSz <= 0) {
CYASSL_MSG("Bad file size");
XFCLOSE(file);
return SSL_BAD_FILE;
}
mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
CYASSL_MSG("Alloc for tmp buffer failed");
XFCLOSE(file);
return MEMORY_E;
}
ret = (int)XFREAD(mem, memSz, 1, file);
if (ret != 1) {
CYASSL_MSG("Cert file read error");
rc = FREAD_ERROR;
} else {
rc = CM_MemRestoreCertCache(cm, mem, memSz);
if (rc != SSL_SUCCESS) {
CYASSL_MSG("Mem restore cert cache failed");
}
}
XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFCLOSE(file);
return rc;
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int CM_MemSaveCertCache(CYASSL_CERT_MANAGER* cm, void* mem, int sz, int* used)
{
int ret = SSL_SUCCESS;
CYASSL_ENTER("CM_MemSaveCertCache");
if (LockMutex(&cm->caLock) != 0) {
CYASSL_MSG("LockMutex on caLock failed");
return BAD_MUTEX_E;
}
ret = DoMemSaveCertCache(cm, mem, sz);
if (ret == SSL_SUCCESS)
*used = GetCertCacheMemSize(cm);
UnLockMutex(&cm->caLock);
return ret;
}
/* Restore cert cache from memory */
int CM_MemRestoreCertCache(CYASSL_CERT_MANAGER* cm, const void* mem, int sz)
{
int ret = SSL_SUCCESS;
int i;
CertCacheHeader* hdr = (CertCacheHeader*)mem;
byte* current = (byte*)mem + sizeof(CertCacheHeader);
byte* end = (byte*)mem + sz; /* don't go over */
CYASSL_ENTER("CM_MemRestoreCertCache");
if (current > end) {
CYASSL_MSG("Cert Cache Memory buffer too small");
return BUFFER_E;
}
if (hdr->version != CYASSL_CACHE_CERT_VERSION ||
hdr->rows != CA_TABLE_SIZE ||
hdr->signerSz != (int)sizeof(Signer)) {
CYASSL_MSG("Cert Cache Memory header mismatch");
return CACHE_MATCH_ERROR;
}
if (LockMutex(&cm->caLock) != 0) {
CYASSL_MSG("LockMutex on caLock failed");
return BAD_MUTEX_E;
}
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap);
for (i = 0; i < CA_TABLE_SIZE; ++i) {
int added = RestoreCertRow(cm, current, i, hdr->columns[i], end);
if (added < 0) {
CYASSL_MSG("RestoreCertRow error");
ret = added;
break;
}
current += added;
}
UnLockMutex(&cm->caLock);
return ret;
}
/* get how big the the cert cache save buffer needs to be */
int CM_GetCertCacheMemSize(CYASSL_CERT_MANAGER* cm)
{
int sz;
CYASSL_ENTER("CM_GetCertCacheMemSize");
if (LockMutex(&cm->caLock) != 0) {
CYASSL_MSG("LockMutex on caLock failed");
return BAD_MUTEX_E;
}
sz = GetCertCacheMemSize(cm);
UnLockMutex(&cm->caLock);
return sz;
}
#endif /* PERSIST_CERT_CACHE */
#endif /* NO_CERTS */
int CyaSSL_CTX_set_cipher_list(CYASSL_CTX* ctx, const char* list)
{
CYASSL_ENTER("CyaSSL_CTX_set_cipher_list");
if (SetCipherList(&ctx->suites, list))
return SSL_SUCCESS;
else
return SSL_FAILURE;
}
int CyaSSL_set_cipher_list(CYASSL* ssl, const char* list)
{
CYASSL_ENTER("CyaSSL_set_cipher_list");
if (SetCipherList(ssl->suites, list)) {
byte haveRSA = 1;
byte havePSK = 0;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
InitSuites(ssl->suites, ssl->version, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveStaticECC,
ssl->options.side);
return SSL_SUCCESS;
}
else
return SSL_FAILURE;
}
#ifndef CYASSL_LEANPSK
#ifdef CYASSL_DTLS
int CyaSSL_dtls_get_current_timeout(CYASSL* ssl)
{
(void)ssl;
return ssl->dtls_timeout;
}
/* user may need to alter init dtls recv timeout, SSL_SUCCESS on ok */
int CyaSSL_dtls_set_timeout_init(CYASSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout > ssl->dtls_timeout_max) {
CYASSL_MSG("Can't set dtls timeout init greater than dtls timeout max");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_init = timeout;
ssl->dtls_timeout = timeout;
return SSL_SUCCESS;
}
/* user may need to alter max dtls recv timeout, SSL_SUCCESS on ok */
int CyaSSL_dtls_set_timeout_max(CYASSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout < ssl->dtls_timeout_init) {
CYASSL_MSG("Can't set dtls timeout max less than dtls timeout init");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_max = timeout;
return SSL_SUCCESS;
}
int CyaSSL_dtls_got_timeout(CYASSL* ssl)
{
int result = SSL_SUCCESS;
DtlsMsgListDelete(ssl->dtls_msg_list, ssl->heap);
ssl->dtls_msg_list = NULL;
if (DtlsPoolTimeout(ssl) < 0 || DtlsPoolSend(ssl) < 0) {
result = SSL_FATAL_ERROR;
}
return result;
}
#endif /* DTLS */
#endif /* LEANPSK */
/* client only parts */
#ifndef NO_CYASSL_CLIENT
#ifndef NO_OLD_TLS
CYASSL_METHOD* CyaSSLv3_client_method(void)
{
CYASSL_METHOD* method =
(CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0,
DYNAMIC_TYPE_METHOD);
CYASSL_ENTER("SSLv3_client_method");
if (method)
InitSSL_Method(method, MakeSSLv3());
return method;
}
#endif
#ifdef CYASSL_DTLS
CYASSL_METHOD* CyaDTLSv1_client_method(void)
{
CYASSL_METHOD* method =
(CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0,
DYNAMIC_TYPE_METHOD);
CYASSL_ENTER("DTLSv1_client_method");
if (method)
InitSSL_Method(method, MakeDTLSv1());
return method;
}
CYASSL_METHOD* CyaDTLSv1_2_client_method(void)
{
CYASSL_METHOD* method =
(CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0,
DYNAMIC_TYPE_METHOD);
CYASSL_ENTER("DTLSv1_2_client_method");
if (method)
InitSSL_Method(method, MakeDTLSv1_2());
return method;
}
#endif
/* please see note at top of README if you get an error from connect */
int CyaSSL_connect(CYASSL* ssl)
{
int neededState;
CYASSL_ENTER("SSL_connect()");
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
if (ssl->options.side != CYASSL_CLIENT_END) {
CYASSL_ERROR(ssl->error = SIDE_ERROR);
return SSL_FATAL_ERROR;
}
#ifdef CYASSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
if (DtlsPoolInit(ssl) != 0) {
ssl->error = MEMORY_ERROR;
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
#endif
if (ssl->buffers.outputBuffer.length > 0) {
if ( (ssl->error = SendBuffered(ssl)) == 0) {
ssl->options.connectState++;
CYASSL_MSG("connect state: Advanced from buffered send");
}
else {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
switch (ssl->options.connectState) {
case CONNECT_BEGIN :
/* always send client hello first */
if ( (ssl->error = SendClientHello(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.connectState = CLIENT_HELLO_SENT;
CYASSL_MSG("connect state: CLIENT_HELLO_SENT");
case CLIENT_HELLO_SENT :
neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE :
SERVER_HELLODONE_COMPLETE;
#ifdef CYASSL_DTLS
/* In DTLS, when resuming, we can go straight to FINISHED,
* or do a cookie exchange and then skip to FINISHED, assume
* we need the cookie exchange first. */
if (ssl->options.dtls)
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
#endif
/* get response */
while (ssl->options.serverState < neededState) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
else if (neededState == SERVER_FINISHED_COMPLETE)
if (!ssl->options.resuming) {
if (!ssl->options.dtls)
neededState = SERVER_HELLODONE_COMPLETE;
else
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
}
}
ssl->options.connectState = HELLO_AGAIN;
CYASSL_MSG("connect state: HELLO_AGAIN");
case HELLO_AGAIN :
if (ssl->options.certOnly)
return SSL_SUCCESS;
#ifdef CYASSL_DTLS
if (ssl->options.dtls) {
/* re-init hashes, exclude first hello and verify request */
#ifndef NO_OLD_TLS
InitMd5(&ssl->hashMd5);
InitSha(&ssl->hashSha);
#endif
if (IsAtLeastTLSv1_2(ssl)) {
#ifndef NO_SHA256
InitSha256(&ssl->hashSha256);
#endif
#ifdef CYASSL_SHA384
InitSha384(&ssl->hashSha384);
#endif
}
if ( (ssl->error = SendClientHello(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
#endif
ssl->options.connectState = HELLO_AGAIN_REPLY;
CYASSL_MSG("connect state: HELLO_AGAIN_REPLY");
case HELLO_AGAIN_REPLY :
#ifdef CYASSL_DTLS
if (ssl->options.dtls) {
neededState = ssl->options.resuming ?
SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE;
/* get response */
while (ssl->options.serverState < neededState) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
else if (neededState == SERVER_FINISHED_COMPLETE)
if (!ssl->options.resuming)
neededState = SERVER_HELLODONE_COMPLETE;
}
}
#endif
ssl->options.connectState = FIRST_REPLY_DONE;
CYASSL_MSG("connect state: FIRST_REPLY_DONE");
case FIRST_REPLY_DONE :
#ifndef NO_CERTS
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificate(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
CYASSL_MSG("sent: certificate");
}
#endif
ssl->options.connectState = FIRST_REPLY_FIRST;
CYASSL_MSG("connect state: FIRST_REPLY_FIRST");
case FIRST_REPLY_FIRST :
if (!ssl->options.resuming) {
if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
CYASSL_MSG("sent: client key exchange");
}
ssl->options.connectState = FIRST_REPLY_SECOND;
CYASSL_MSG("connect state: FIRST_REPLY_SECOND");
case FIRST_REPLY_SECOND :
#ifndef NO_CERTS
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificateVerify(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
CYASSL_MSG("sent: certificate verify");
}
#endif
ssl->options.connectState = FIRST_REPLY_THIRD;
CYASSL_MSG("connect state: FIRST_REPLY_THIRD");
case FIRST_REPLY_THIRD :
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
CYASSL_MSG("sent: change cipher spec");
ssl->options.connectState = FIRST_REPLY_FOURTH;
CYASSL_MSG("connect state: FIRST_REPLY_FOURTH");
case FIRST_REPLY_FOURTH :
if ( (ssl->error = SendFinished(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
CYASSL_MSG("sent: finished");
ssl->options.connectState = FINISHED_DONE;
CYASSL_MSG("connect state: FINISHED_DONE");
case FINISHED_DONE :
/* get response */
while (ssl->options.serverState < SERVER_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.connectState = SECOND_REPLY_DONE;
CYASSL_MSG("connect state: SECOND_REPLY_DONE");
case SECOND_REPLY_DONE:
FreeHandshakeResources(ssl);
CYASSL_LEAVE("SSL_connect()", SSL_SUCCESS);
return SSL_SUCCESS;
default:
CYASSL_MSG("Unknown connect state ERROR");
return SSL_FATAL_ERROR; /* unknown connect state */
}
}
#endif /* NO_CYASSL_CLIENT */
/* server only parts */
#ifndef NO_CYASSL_SERVER
#ifndef NO_OLD_TLS
CYASSL_METHOD* CyaSSLv3_server_method(void)
{
CYASSL_METHOD* method =
(CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0,
DYNAMIC_TYPE_METHOD);
CYASSL_ENTER("SSLv3_server_method");
if (method) {
InitSSL_Method(method, MakeSSLv3());
method->side = CYASSL_SERVER_END;
}
return method;
}
#endif
#ifdef CYASSL_DTLS
CYASSL_METHOD* CyaDTLSv1_server_method(void)
{
CYASSL_METHOD* method =
(CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0,
DYNAMIC_TYPE_METHOD);
CYASSL_ENTER("DTLSv1_server_method");
if (method) {
InitSSL_Method(method, MakeDTLSv1());
method->side = CYASSL_SERVER_END;
}
return method;
}
CYASSL_METHOD* CyaDTLSv1_2_server_method(void)
{
CYASSL_METHOD* method =
(CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0,
DYNAMIC_TYPE_METHOD);
CYASSL_ENTER("DTLSv1_2_server_method");
if (method) {
InitSSL_Method(method, MakeDTLSv1_2());
method->side = CYASSL_SERVER_END;
}
return method;
}
#endif
int CyaSSL_accept(CYASSL* ssl)
{
byte havePSK = 0;
CYASSL_ENTER("SSL_accept()");
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
(void)havePSK;
if (ssl->options.side != CYASSL_SERVER_END) {
CYASSL_ERROR(ssl->error = SIDE_ERROR);
return SSL_FATAL_ERROR;
}
#ifndef NO_CERTS
/* in case used set_accept_state after init */
if (!havePSK && (ssl->buffers.certificate.buffer == NULL ||
ssl->buffers.key.buffer == NULL)) {
CYASSL_MSG("accept error: don't have server cert and key");
ssl->error = NO_PRIVATE_KEY;
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
#endif
#ifdef HAVE_ECC
/* in case used set_accept_state after init */
if (ssl->eccTempKeyPresent == 0) {
if (ecc_make_key(ssl->rng, ssl->eccTempKeySz,
ssl->eccTempKey) != 0) {
ssl->error = ECC_MAKEKEY_ERROR;
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->eccTempKeyPresent = 1;
}
#endif
#ifdef CYASSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
if (DtlsPoolInit(ssl) != 0) {
ssl->error = MEMORY_ERROR;
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
#endif
if (ssl->buffers.outputBuffer.length > 0) {
if ( (ssl->error = SendBuffered(ssl)) == 0) {
ssl->options.acceptState++;
CYASSL_MSG("accept state: Advanced from buffered send");
}
else {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
switch (ssl->options.acceptState) {
case ACCEPT_BEGIN :
/* get response */
while (ssl->options.clientState < CLIENT_HELLO_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE;
CYASSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE");
case ACCEPT_CLIENT_HELLO_DONE :
#ifdef CYASSL_DTLS
if (ssl->options.dtls)
if ( (ssl->error = SendHelloVerifyRequest(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = HELLO_VERIFY_SENT;
CYASSL_MSG("accept state HELLO_VERIFY_SENT");
case HELLO_VERIFY_SENT:
#ifdef CYASSL_DTLS
if (ssl->options.dtls) {
ssl->options.clientState = NULL_STATE; /* get again */
/* re-init hashes, exclude first hello and verify request */
#ifndef NO_OLD_TLS
InitMd5(&ssl->hashMd5);
InitSha(&ssl->hashSha);
#endif
if (IsAtLeastTLSv1_2(ssl)) {
#ifndef NO_SHA256
InitSha256(&ssl->hashSha256);
#endif
#ifdef CYASSL_SHA384
InitSha384(&ssl->hashSha384);
#endif
}
while (ssl->options.clientState < CLIENT_HELLO_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
#endif
ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE;
CYASSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE");
case ACCEPT_FIRST_REPLY_DONE :
if ( (ssl->error = SendServerHello(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_SENT;
CYASSL_MSG("accept state SERVER_HELLO_SENT");
case SERVER_HELLO_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificate(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_SENT;
CYASSL_MSG("accept state CERT_SENT");
case CERT_SENT :
if (!ssl->options.resuming)
if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = KEY_EXCHANGE_SENT;
CYASSL_MSG("accept state KEY_EXCHANGE_SENT");
case KEY_EXCHANGE_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming)
if (ssl->options.verifyPeer)
if ( (ssl->error = SendCertificateRequest(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_REQ_SENT;
CYASSL_MSG("accept state CERT_REQ_SENT");
case CERT_REQ_SENT :
if (!ssl->options.resuming)
if ( (ssl->error = SendServerHelloDone(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_DONE;
CYASSL_MSG("accept state SERVER_HELLO_DONE");
case SERVER_HELLO_DONE :
if (!ssl->options.resuming) {
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
}
ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE;
CYASSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE");
case ACCEPT_SECOND_REPLY_DONE :
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = CHANGE_CIPHER_SENT;
CYASSL_MSG("accept state CHANGE_CIPHER_SENT");
case CHANGE_CIPHER_SENT :
if ( (ssl->error = SendFinished(ssl)) != 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_FINISHED_DONE;
CYASSL_MSG("accept state ACCEPT_FINISHED_DONE");
case ACCEPT_FINISHED_DONE :
if (ssl->options.resuming)
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
CYASSL_ERROR(ssl->error);
return SSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE;
CYASSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE");
case ACCEPT_THIRD_REPLY_DONE :
FreeHandshakeResources(ssl);
CYASSL_LEAVE("SSL_accept()", SSL_SUCCESS);
return SSL_SUCCESS;
default :
CYASSL_MSG("Unknown accept state ERROR");
return SSL_FATAL_ERROR;
}
}
#endif /* NO_CYASSL_SERVER */
int CyaSSL_Cleanup(void)
{
int ret = SSL_SUCCESS;
int release = 0;
CYASSL_ENTER("CyaSSL_Cleanup");
if (initRefCount == 0)
return ret; /* possibly no init yet, but not failure either way */
if (LockMutex(&count_mutex) != 0) {
CYASSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
release = initRefCount-- == 1;
if (initRefCount < 0)
initRefCount = 0;
UnLockMutex(&count_mutex);
if (!release)
return ret;
#ifndef NO_SESSION_CACHE
if (FreeMutex(&session_mutex) != 0)
ret = BAD_MUTEX_E;
#endif
if (FreeMutex(&count_mutex) != 0)
ret = BAD_MUTEX_E;
#if defined(HAVE_ECC) && defined(FP_ECC)
ecc_fp_free();
#endif
return ret;
}
#ifndef NO_SESSION_CACHE
#ifndef NO_MD5
/* some session IDs aren't random afterall, let's make them random */
static INLINE word32 HashSession(const byte* sessionID, word32 len)
{
byte digest[MD5_DIGEST_SIZE];
Md5 md5;
InitMd5(&md5);
Md5Update(&md5, sessionID, len);
Md5Final(&md5, digest);
return MakeWordFromHash(digest);
}
#elif !defined(NO_SHA)
static INLINE word32 HashSession(const byte* sessionID, word32 len)
{
byte digest[SHA_DIGEST_SIZE];
Sha sha;
InitSha(&sha);
ShaUpdate(&sha, sessionID, len);
ShaFinal(&sha, digest);
return MakeWordFromHash(digest);
}
#elif !defined(NO_SHA256)
static INLINE word32 HashSession(const byte* sessionID, word32 len)
{
byte digest[SHA256_DIGEST_SIZE];
Sha256 sha256;
InitSha256(&sha256);
Sha256Update(&sha256, sessionID, len);
Sha256Final(&sha256, digest);
return MakeWordFromHash(digest);
}
#else
#error "We need a digest to hash the session IDs"
#endif /* NO_MD5 */
void CyaSSL_flush_sessions(CYASSL_CTX* ctx, long tm)
{
/* static table now, no flusing needed */
(void)ctx;
(void)tm;
}
/* set ssl session timeout in seconds */
int CyaSSL_set_timeout(CYASSL* ssl, unsigned int to)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->timeout = to;
return SSL_SUCCESS;
}
/* set ctx session timeout in seconds */
int CyaSSL_CTX_set_timeout(CYASSL_CTX* ctx, unsigned int to)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->timeout = to;
return SSL_SUCCESS;
}
#ifndef NO_CLIENT_CACHE
/* Get Session from Client cache based on id/len, return NULL on failure */
CYASSL_SESSION* GetSessionClient(CYASSL* ssl, const byte* id, int len)
{
CYASSL_SESSION* ret = NULL;
word32 row;
int idx;
int count;
CYASSL_ENTER("GetSessionClient");
if (ssl->options.side == CYASSL_SERVER_END)
return NULL;
len = min(SERVER_ID_LEN, (word32)len);
row = HashSession(id, len) % SESSION_ROWS;
if (LockMutex(&session_mutex) != 0) {
CYASSL_MSG("Lock session mutex failed");
return NULL;
}
/* start from most recently used */
count = min((word32)ClientCache[row].totalCount, SESSIONS_PER_ROW);
idx = ClientCache[row].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
CYASSL_SESSION* current;
ClientSession clSess;
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
CYASSL_MSG("Bad idx");
break;
}
clSess = ClientCache[row].Clients[idx];
current = &SessionCache[clSess.serverRow].Sessions[clSess.serverIdx];
if (XMEMCMP(current->serverID, id, len) == 0) {
CYASSL_MSG("Found a serverid match for client");
if (LowResTimer() < (current->bornOn + current->timeout)) {
CYASSL_MSG("Session valid");
ret = current;
break;
} else {
CYASSL_MSG("Session timed out"); /* could have more for id */
}
} else {
CYASSL_MSG("ServerID not a match from client table");
}
}
UnLockMutex(&session_mutex);
return ret;
}
#endif /* NO_CLIENT_CACHE */
CYASSL_SESSION* GetSession(CYASSL* ssl, byte* masterSecret)
{
CYASSL_SESSION* ret = 0;
const byte* id = NULL;
word32 row;
int idx;
int count;
if (ssl->options.sessionCacheOff)
return NULL;
if (ssl->options.haveSessionId == 0)
return NULL;
if (ssl->arrays)
id = ssl->arrays->sessionID;
else
id = ssl->session.sessionID;
row = HashSession(id, ID_LEN) % SESSION_ROWS;
if (LockMutex(&session_mutex) != 0)
return 0;
/* start from most recently used */
count = min((word32)SessionCache[row].totalCount, SESSIONS_PER_ROW);
idx = SessionCache[row].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
CYASSL_SESSION* current;
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
CYASSL_MSG("Bad idx");
break;
}
current = &SessionCache[row].Sessions[idx];
if (XMEMCMP(current->sessionID, id, ID_LEN) == 0) {
CYASSL_MSG("Found a session match");
if (LowResTimer() < (current->bornOn + current->timeout)) {
CYASSL_MSG("Session valid");
ret = current;
if (masterSecret)
XMEMCPY(masterSecret, current->masterSecret, SECRET_LEN);
} else {
CYASSL_MSG("Session timed out");
}
break; /* no more sessionIDs whether valid or not that match */
} else {
CYASSL_MSG("SessionID not a match at this idx");
}
}
UnLockMutex(&session_mutex);
return ret;
}
int SetSession(CYASSL* ssl, CYASSL_SESSION* session)
{
if (ssl->options.sessionCacheOff)
return SSL_FAILURE;
if (LowResTimer() < (session->bornOn + session->timeout)) {
ssl->session = *session;
ssl->options.resuming = 1;
#ifdef SESSION_CERTS
ssl->version = session->version;
ssl->options.cipherSuite0 = session->cipherSuite0;
ssl->options.cipherSuite = session->cipherSuite;
#endif
return SSL_SUCCESS;
}
return SSL_FAILURE; /* session timed out */
}
int AddSession(CYASSL* ssl)
{
word32 row, idx;
if (ssl->options.sessionCacheOff)
return 0;
if (ssl->options.haveSessionId == 0)
return 0;
row = HashSession(ssl->arrays->sessionID, ID_LEN) % SESSION_ROWS;
if (LockMutex(&session_mutex) != 0)
return BAD_MUTEX_E;
idx = SessionCache[row].nextIdx++;
#ifdef SESSION_INDEX
ssl->sessionIndex = (row << SESSIDX_ROW_SHIFT) | idx;
#endif
XMEMCPY(SessionCache[row].Sessions[idx].masterSecret,
ssl->arrays->masterSecret, SECRET_LEN);
XMEMCPY(SessionCache[row].Sessions[idx].sessionID, ssl->arrays->sessionID,
ID_LEN);
SessionCache[row].Sessions[idx].timeout = ssl->timeout;
SessionCache[row].Sessions[idx].bornOn = LowResTimer();
#ifdef SESSION_CERTS
SessionCache[row].Sessions[idx].chain.count = ssl->session.chain.count;
XMEMCPY(SessionCache[row].Sessions[idx].chain.certs,
ssl->session.chain.certs, sizeof(x509_buffer) * MAX_CHAIN_DEPTH);
SessionCache[row].Sessions[idx].version = ssl->version;
SessionCache[row].Sessions[idx].cipherSuite0 = ssl->options.cipherSuite0;
SessionCache[row].Sessions[idx].cipherSuite = ssl->options.cipherSuite;
#endif /* SESSION_CERTS */
SessionCache[row].totalCount++;
if (SessionCache[row].nextIdx == SESSIONS_PER_ROW)
SessionCache[row].nextIdx = 0;
#ifndef NO_CLIENT_CACHE
if (ssl->options.side == CYASSL_CLIENT_END && ssl->session.idLen) {
word32 clientRow, clientIdx;
CYASSL_MSG("Adding client cache entry");
SessionCache[row].Sessions[idx].idLen = ssl->session.idLen;
XMEMCPY(SessionCache[row].Sessions[idx].serverID, ssl->session.serverID,
ssl->session.idLen);
clientRow = HashSession(ssl->session.serverID, ssl->session.idLen)
% SESSION_ROWS;
clientIdx = ClientCache[clientRow].nextIdx++;
ClientCache[clientRow].Clients[clientIdx].serverRow = (word16)row;
ClientCache[clientRow].Clients[clientIdx].serverIdx = (word16)idx;
ClientCache[clientRow].totalCount++;
if (ClientCache[clientRow].nextIdx == SESSIONS_PER_ROW)
ClientCache[clientRow].nextIdx = 0;
}
else
SessionCache[row].Sessions[idx].idLen = 0;
#endif /* NO_CLIENT_CACHE */
if (UnLockMutex(&session_mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
#ifdef SESSION_INDEX
int CyaSSL_GetSessionIndex(CYASSL* ssl)
{
CYASSL_ENTER("CyaSSL_GetSessionIndex");
CYASSL_LEAVE("CyaSSL_GetSessionIndex", ssl->sessionIndex);
return ssl->sessionIndex;
}
int CyaSSL_GetSessionAtIndex(int idx, CYASSL_SESSION* session)
{
int row, col, result = SSL_FAILURE;
CYASSL_ENTER("CyaSSL_GetSessionAtIndex");
row = idx >> SESSIDX_ROW_SHIFT;
col = idx & SESSIDX_IDX_MASK;
if (LockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
if (row < SESSION_ROWS &&
col < (int)min(SessionCache[row].totalCount, SESSIONS_PER_ROW)) {
XMEMCPY(session,
&SessionCache[row].Sessions[col], sizeof(CYASSL_SESSION));
result = SSL_SUCCESS;
}
if (UnLockMutex(&session_mutex) != 0)
result = BAD_MUTEX_E;
CYASSL_LEAVE("CyaSSL_GetSessionAtIndex", result);
return result;
}
#endif /* SESSION_INDEX */
#if defined(SESSION_INDEX) && defined(SESSION_CERTS)
CYASSL_X509_CHAIN* CyaSSL_SESSION_get_peer_chain(CYASSL_SESSION* session)
{
CYASSL_X509_CHAIN* chain = NULL;
CYASSL_ENTER("CyaSSL_SESSION_get_peer_chain");
if (session)
chain = &session->chain;
CYASSL_LEAVE("CyaSSL_SESSION_get_peer_chain", chain ? 1 : 0);
return chain;
}
#endif /* SESSION_INDEX && SESSION_CERTS */
#ifdef SESSION_STATS
CYASSL_API
void PrintSessionStats(void)
{
word32 totalSessionsSeen = 0;
word32 totalSessionsNow = 0;
word32 rowNow;
int i;
double E; /* expected freq */
double chiSquare = 0;
for (i = 0; i < SESSION_ROWS; i++) {
totalSessionsSeen += SessionCache[i].totalCount;
if (SessionCache[i].totalCount >= SESSIONS_PER_ROW)
rowNow = SESSIONS_PER_ROW;
else if (SessionCache[i].nextIdx == 0)
rowNow = 0;
else
rowNow = SessionCache[i].nextIdx;
totalSessionsNow += rowNow;
}
printf("Total Sessions Seen = %d\n", totalSessionsSeen);
printf("Total Sessions Now = %d\n", totalSessionsNow);
E = (double)totalSessionsSeen / SESSION_ROWS;
for (i = 0; i < SESSION_ROWS; i++) {
double diff = SessionCache[i].totalCount - E;
diff *= diff; /* square */
diff /= E; /* normalize */
chiSquare += diff;
}
printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare,
SESSION_ROWS - 1);
if (SESSION_ROWS == 11)
printf(" .05 p value = 18.3, chi-square should be less\n");
else if (SESSION_ROWS == 211)
printf(".05 p value = 244.8, chi-square should be less\n");
else if (SESSION_ROWS == 5981)
printf(".05 p value = 6161.0, chi-square should be less\n");
else if (SESSION_ROWS == 3)
printf(".05 p value = 6.0, chi-square should be less\n");
else if (SESSION_ROWS == 2861)
printf(".05 p value = 2985.5, chi-square should be less\n");
printf("\n");
}
#endif /* SESSION_STATS */
#else /* NO_SESSION_CACHE */
/* No session cache version */
CYASSL_SESSION* GetSession(CYASSL* ssl, byte* masterSecret)
{
(void)ssl;
(void)masterSecret;
return NULL;
}
#endif /* NO_SESSION_CACHE */
/* call before SSL_connect, if verifying will add name check to
date check and signature check */
int CyaSSL_check_domain_name(CYASSL* ssl, const char* dn)
{
CYASSL_ENTER("CyaSSL_check_domain_name");
if (ssl->buffers.domainName.buffer)
XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN);
ssl->buffers.domainName.length = (word32)XSTRLEN(dn) + 1;
ssl->buffers.domainName.buffer = (byte*) XMALLOC(
ssl->buffers.domainName.length, ssl->heap, DYNAMIC_TYPE_DOMAIN);
if (ssl->buffers.domainName.buffer) {
XSTRNCPY((char*)ssl->buffers.domainName.buffer, dn,
ssl->buffers.domainName.length);
return SSL_SUCCESS;
}
else {
ssl->error = MEMORY_ERROR;
return SSL_FAILURE;
}
}
/* turn on CyaSSL zlib compression
returns SSL_SUCCESS for success, else error (not built in)
*/
int CyaSSL_set_compression(CYASSL* ssl)
{
CYASSL_ENTER("CyaSSL_set_compression");
(void)ssl;
#ifdef HAVE_LIBZ
ssl->options.usingCompression = 1;
return SSL_SUCCESS;
#else
return NOT_COMPILED_IN;
#endif
}
#ifndef USE_WINDOWS_API
#ifndef NO_WRITEV
/* simulate writev semantics, doesn't actually do block at a time though
because of SSL_write behavior and because front adds may be small */
int CyaSSL_writev(CYASSL* ssl, const struct iovec* iov, int iovcnt)
{
byte tmp[FILE_BUFFER_SIZE];
byte* myBuffer = tmp;
int sending = 0;
int newBuffer = 0;
int idx = 0;
int i;
int ret;
CYASSL_ENTER("CyaSSL_writev");
for (i = 0; i < iovcnt; i++)
sending += (int)iov[i].iov_len;
if (sending > (int)sizeof(tmp)) {
byte* tmp2 = (byte*) XMALLOC(sending, ssl->heap,
DYNAMIC_TYPE_WRITEV);
if (!tmp2)
return MEMORY_ERROR;
myBuffer = tmp2;
newBuffer = 1;
}
for (i = 0; i < iovcnt; i++) {
XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len);
idx += (int)iov[i].iov_len;
}
ret = CyaSSL_write(ssl, myBuffer, sending);
if (newBuffer) XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV);
return ret;
}
#endif
#endif
#ifdef CYASSL_CALLBACKS
typedef struct itimerval Itimerval;
/* don't keep calling simple functions while setting up timer and singals
if no inlining these are the next best */
#define AddTimes(a, b, c) \
do { \
c.tv_sec = a.tv_sec + b.tv_sec; \
c.tv_usec = a.tv_usec + b.tv_usec; \
if (c.tv_usec >= 1000000) { \
c.tv_sec++; \
c.tv_usec -= 1000000; \
} \
} while (0)
#define SubtractTimes(a, b, c) \
do { \
c.tv_sec = a.tv_sec - b.tv_sec; \
c.tv_usec = a.tv_usec - b.tv_usec; \
if (c.tv_usec < 0) { \
c.tv_sec--; \
c.tv_usec += 1000000; \
} \
} while (0)
#define CmpTimes(a, b, cmp) \
((a.tv_sec == b.tv_sec) ? \
(a.tv_usec cmp b.tv_usec) : \
(a.tv_sec cmp b.tv_sec)) \
/* do nothing handler */
static void myHandler(int signo)
{
(void)signo;
return;
}
static int CyaSSL_ex_wrapper(CYASSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, Timeval timeout)
{
int ret = SSL_FATAL_ERROR;
int oldTimerOn = 0; /* was timer already on */
Timeval startTime;
Timeval endTime;
Timeval totalTime;
Itimerval myTimeout;
Itimerval oldTimeout; /* if old timer adjust from total time to reset */
struct sigaction act, oact;
#define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; }
if (hsCb) {
ssl->hsInfoOn = 1;
InitHandShakeInfo(&ssl->handShakeInfo);
}
if (toCb) {
ssl->toInfoOn = 1;
InitTimeoutInfo(&ssl->timeoutInfo);
if (gettimeofday(&startTime, 0) < 0)
ERR_OUT(GETTIME_ERROR);
/* use setitimer to simulate getitimer, init 0 myTimeout */
myTimeout.it_interval.tv_sec = 0;
myTimeout.it_interval.tv_usec = 0;
myTimeout.it_value.tv_sec = 0;
myTimeout.it_value.tv_usec = 0;
if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0)
ERR_OUT(SETITIMER_ERROR);
if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) {
oldTimerOn = 1;
/* is old timer going to expire before ours */
if (CmpTimes(oldTimeout.it_value, timeout, <)) {
timeout.tv_sec = oldTimeout.it_value.tv_sec;
timeout.tv_usec = oldTimeout.it_value.tv_usec;
}
}
myTimeout.it_value.tv_sec = timeout.tv_sec;
myTimeout.it_value.tv_usec = timeout.tv_usec;
/* set up signal handler, don't restart socket send/recv */
act.sa_handler = myHandler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
#ifdef SA_INTERRUPT
act.sa_flags |= SA_INTERRUPT;
#endif
if (sigaction(SIGALRM, &act, &oact) < 0)
ERR_OUT(SIGACT_ERROR);
if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0)
ERR_OUT(SETITIMER_ERROR);
}
/* do main work */
#ifndef NO_CYASSL_CLIENT
if (ssl->options.side == CYASSL_CLIENT_END)
ret = CyaSSL_connect(ssl);
#endif
#ifndef NO_CYASSL_SERVER
if (ssl->options.side == CYASSL_SERVER_END)
ret = CyaSSL_accept(ssl);
#endif
/* do callbacks */
if (toCb) {
if (oldTimerOn) {
gettimeofday(&endTime, 0);
SubtractTimes(endTime, startTime, totalTime);
/* adjust old timer for elapsed time */
if (CmpTimes(totalTime, oldTimeout.it_value, <))
SubtractTimes(oldTimeout.it_value, totalTime,
oldTimeout.it_value);
else {
/* reset value to interval, may be off */
oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec;
oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec;
}
/* keep iter the same whether there or not */
}
/* restore old handler */
if (sigaction(SIGALRM, &oact, 0) < 0)
ret = SIGACT_ERROR; /* more pressing error, stomp */
else
/* use old settings which may turn off (expired or not there) */
if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0)
ret = SETITIMER_ERROR;
/* if we had a timeout call callback */
if (ssl->timeoutInfo.timeoutName[0]) {
ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec;
ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec;
(toCb)(&ssl->timeoutInfo);
}
/* clean up */
FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap);
ssl->toInfoOn = 0;
}
if (hsCb) {
FinishHandShakeInfo(&ssl->handShakeInfo, ssl);
(hsCb)(&ssl->handShakeInfo);
ssl->hsInfoOn = 0;
}
return ret;
}
#ifndef NO_CYASSL_CLIENT
int CyaSSL_connect_ex(CYASSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, Timeval timeout)
{
CYASSL_ENTER("CyaSSL_connect_ex");
return CyaSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#ifndef NO_CYASSL_SERVER
int CyaSSL_accept_ex(CYASSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb,Timeval timeout)
{
CYASSL_ENTER("CyaSSL_accept_ex");
return CyaSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#endif /* CYASSL_CALLBACKS */
#ifndef NO_PSK
void CyaSSL_CTX_set_psk_client_callback(CYASSL_CTX* ctx,
psk_client_callback cb)
{
CYASSL_ENTER("SSL_CTX_set_psk_client_callback");
ctx->havePSK = 1;
ctx->client_psk_cb = cb;
}
void CyaSSL_set_psk_client_callback(CYASSL* ssl, psk_client_callback cb)
{
byte haveRSA = 1;
CYASSL_ENTER("SSL_set_psk_client_callback");
ssl->options.havePSK = 1;
ssl->options.client_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
InitSuites(ssl->suites, ssl->version, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveStaticECC,
ssl->options.side);
}
void CyaSSL_CTX_set_psk_server_callback(CYASSL_CTX* ctx,
psk_server_callback cb)
{
CYASSL_ENTER("SSL_CTX_set_psk_server_callback");
ctx->havePSK = 1;
ctx->server_psk_cb = cb;
}
void CyaSSL_set_psk_server_callback(CYASSL* ssl, psk_server_callback cb)
{
byte haveRSA = 1;
CYASSL_ENTER("SSL_set_psk_server_callback");
ssl->options.havePSK = 1;
ssl->options.server_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
InitSuites(ssl->suites, ssl->version, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveStaticECC,
ssl->options.side);
}
const char* CyaSSL_get_psk_identity_hint(const CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->server_hint;
}
const char* CyaSSL_get_psk_identity(const CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_psk_identity");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->client_identity;
}
int CyaSSL_CTX_use_psk_identity_hint(CYASSL_CTX* ctx, const char* hint)
{
CYASSL_ENTER("SSL_CTX_use_psk_identity_hint");
if (hint == 0)
ctx->server_hint[0] = 0;
else {
XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN);
ctx->server_hint[MAX_PSK_ID_LEN - 1] = '\0';
}
return SSL_SUCCESS;
}
int CyaSSL_use_psk_identity_hint(CYASSL* ssl, const char* hint)
{
CYASSL_ENTER("SSL_use_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return SSL_FAILURE;
if (hint == 0)
ssl->arrays->server_hint[0] = 0;
else {
XSTRNCPY(ssl->arrays->server_hint, hint, MAX_PSK_ID_LEN);
ssl->arrays->server_hint[MAX_PSK_ID_LEN - 1] = '\0';
}
return SSL_SUCCESS;
}
#endif /* NO_PSK */
#ifndef NO_CERTS
/* used to be defined on NO_FILESYSTEM only, but are generally useful */
/* CyaSSL extension allows DER files to be loaded from buffers as well */
int CyaSSL_CTX_load_verify_buffer(CYASSL_CTX* ctx, const unsigned char* in,
long sz, int format)
{
CYASSL_ENTER("CyaSSL_CTX_load_verify_buffer");
if (format == SSL_FILETYPE_PEM)
return ProcessChainBuffer(ctx, in, sz, format, CA_TYPE, NULL);
else
return ProcessBuffer(ctx, in, sz, format, CA_TYPE, NULL,NULL,0);
}
int CyaSSL_CTX_use_certificate_buffer(CYASSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
CYASSL_ENTER("CyaSSL_CTX_use_certificate_buffer");
return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 0);
}
int CyaSSL_CTX_use_PrivateKey_buffer(CYASSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
CYASSL_ENTER("CyaSSL_CTX_use_PrivateKey_buffer");
return ProcessBuffer(ctx, in, sz, format, PRIVATEKEY_TYPE, NULL,NULL,0);
}
int CyaSSL_CTX_use_certificate_chain_buffer(CYASSL_CTX* ctx,
const unsigned char* in, long sz)
{
CYASSL_ENTER("CyaSSL_CTX_use_certificate_chain_buffer");
return ProcessBuffer(ctx, in, sz, SSL_FILETYPE_PEM, CERT_TYPE, NULL,
NULL, 1);
}
int CyaSSL_use_certificate_buffer(CYASSL* ssl,
const unsigned char* in, long sz, int format)
{
CYASSL_ENTER("CyaSSL_use_certificate_buffer");
return ProcessBuffer(ssl->ctx, in, sz, format,CERT_TYPE,ssl,NULL,0);
}
int CyaSSL_use_PrivateKey_buffer(CYASSL* ssl,
const unsigned char* in, long sz, int format)
{
CYASSL_ENTER("CyaSSL_use_PrivateKey_buffer");
return ProcessBuffer(ssl->ctx, in, sz, format, PRIVATEKEY_TYPE,
ssl, NULL, 0);
}
int CyaSSL_use_certificate_chain_buffer(CYASSL* ssl,
const unsigned char* in, long sz)
{
CYASSL_ENTER("CyaSSL_use_certificate_chain_buffer");
return ProcessBuffer(ssl->ctx, in, sz, SSL_FILETYPE_PEM, CERT_TYPE,
ssl, NULL, 1);
}
/* unload any certs or keys that SSL owns, leave CTX as is
SSL_SUCCESS on ok */
int CyaSSL_UnloadCertsKeys(CYASSL* ssl)
{
if (ssl == NULL) {
CYASSL_MSG("Null function arg");
return BAD_FUNC_ARG;
}
if (ssl->buffers.weOwnCert) {
CYASSL_MSG("Unloading cert");
XFREE(ssl->buffers.certificate.buffer, ssl->heap,DYNAMIC_TYPE_CERT);
ssl->buffers.weOwnCert = 0;
ssl->buffers.certificate.length = 0;
ssl->buffers.certificate.buffer = NULL;
}
if (ssl->buffers.weOwnKey) {
CYASSL_MSG("Unloading key");
XFREE(ssl->buffers.key.buffer, ssl->heap, DYNAMIC_TYPE_KEY);
ssl->buffers.weOwnKey = 0;
ssl->buffers.key.length = 0;
ssl->buffers.key.buffer = NULL;
}
return SSL_SUCCESS;
}
int CyaSSL_CTX_UnloadCAs(CYASSL_CTX* ctx)
{
CYASSL_ENTER("CyaSSL_CTX_UnloadCAs");
if (ctx == NULL)
return BAD_FUNC_ARG;
return CyaSSL_CertManagerUnloadCAs(ctx->cm);
}
/* old NO_FILESYSTEM end */
#endif /* !NO_CERTS */
#if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS)
int CyaSSL_add_all_algorithms(void)
{
CYASSL_ENTER("CyaSSL_add_all_algorithms");
CyaSSL_Init();
return SSL_SUCCESS;
}
long CyaSSL_CTX_sess_set_cache_size(CYASSL_CTX* ctx, long sz)
{
/* cache size fixed at compile time in CyaSSL */
(void)ctx;
(void)sz;
return 0;
}
void CyaSSL_CTX_set_quiet_shutdown(CYASSL_CTX* ctx, int mode)
{
CYASSL_ENTER("CyaSSL_CTX_set_quiet_shutdown");
if (mode)
ctx->quietShutdown = 1;
}
void CyaSSL_set_quiet_shutdown(CYASSL* ssl, int mode)
{
CYASSL_ENTER("CyaSSL_CTX_set_quiet_shutdown");
if (mode)
ssl->options.quietShutdown = 1;
}
void CyaSSL_set_bio(CYASSL* ssl, CYASSL_BIO* rd, CYASSL_BIO* wr)
{
CYASSL_ENTER("SSL_set_bio");
CyaSSL_set_rfd(ssl, rd->fd);
CyaSSL_set_wfd(ssl, wr->fd);
ssl->biord = rd;
ssl->biowr = wr;
}
void CyaSSL_CTX_set_client_CA_list(CYASSL_CTX* ctx,
STACK_OF(CYASSL_X509_NAME)* names)
{
(void)ctx;
(void)names;
}
STACK_OF(CYASSL_X509_NAME)* CyaSSL_load_client_CA_file(const char* fname)
{
(void)fname;
return 0;
}
int CyaSSL_CTX_set_default_verify_paths(CYASSL_CTX* ctx)
{
/* TODO:, not needed in goahead */
(void)ctx;
return SSL_NOT_IMPLEMENTED;
}
/* keyblock size in bytes or -1 */
int CyaSSL_get_keyblock_size(CYASSL* ssl)
{
if (ssl == NULL)
return SSL_FATAL_ERROR;
return 2 * (ssl->specs.key_size + ssl->specs.iv_size +
ssl->specs.hash_size);
}
/* store keys returns SSL_SUCCESS or -1 on error */
int CyaSSL_get_keys(CYASSL* ssl, unsigned char** ms, unsigned int* msLen,
unsigned char** sr, unsigned int* srLen,
unsigned char** cr, unsigned int* crLen)
{
if (ssl == NULL || ssl->arrays == NULL)
return SSL_FATAL_ERROR;
*ms = ssl->arrays->masterSecret;
*sr = ssl->arrays->serverRandom;
*cr = ssl->arrays->clientRandom;
*msLen = SECRET_LEN;
*srLen = RAN_LEN;
*crLen = RAN_LEN;
return SSL_SUCCESS;
}
void CyaSSL_set_accept_state(CYASSL* ssl)
{
byte haveRSA = 1;
byte havePSK = 0;
CYASSL_ENTER("SSL_set_accept_state");
ssl->options.side = CYASSL_SERVER_END;
/* reset suites in case user switched */
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
InitSuites(ssl->suites, ssl->version, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveStaticECC,
ssl->options.side);
}
#endif
/* return true if connection established */
int CyaSSL_is_init_finished(CYASSL* ssl)
{
if (ssl == NULL)
return 0;
if (ssl->options.handShakeState == HANDSHAKE_DONE)
return 1;
return 0;
}
#if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS)
void CyaSSL_CTX_set_tmp_rsa_callback(CYASSL_CTX* ctx,
CYASSL_RSA*(*f)(CYASSL*, int, int))
{
/* CyaSSL verifies all these internally */
(void)ctx;
(void)f;
}
void CyaSSL_set_shutdown(CYASSL* ssl, int opt)
{
(void)ssl;
(void)opt;
}
long CyaSSL_CTX_set_options(CYASSL_CTX* ctx, long opt)
{
/* goahead calls with 0, do nothing */
CYASSL_ENTER("SSL_CTX_set_options");
(void)ctx;
return opt;
}
int CyaSSL_set_rfd(CYASSL* ssl, int rfd)
{
CYASSL_ENTER("SSL_set_rfd");
ssl->rfd = rfd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
return SSL_SUCCESS;
}
int CyaSSL_set_wfd(CYASSL* ssl, int wfd)
{
CYASSL_ENTER("SSL_set_wfd");
ssl->wfd = wfd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
return SSL_SUCCESS;
}
CYASSL_RSA* CyaSSL_RSA_generate_key(int len, unsigned long bits,
void(*f)(int, int, void*), void* data)
{
/* no tmp key needed, actual generation not supported */
CYASSL_ENTER("RSA_generate_key");
(void)len;
(void)bits;
(void)f;
(void)data;
return NULL;
}
CYASSL_X509* CyaSSL_X509_STORE_CTX_get_current_cert(
CYASSL_X509_STORE_CTX* ctx)
{
(void)ctx;
return 0;
}
int CyaSSL_X509_STORE_CTX_get_error(CYASSL_X509_STORE_CTX* ctx)
{
if (ctx != NULL)
return ctx->error;
return 0;
}
int CyaSSL_X509_STORE_CTX_get_error_depth(CYASSL_X509_STORE_CTX* ctx)
{
(void)ctx;
return 0;
}
CYASSL_BIO_METHOD* CyaSSL_BIO_f_buffer(void)
{
static CYASSL_BIO_METHOD meth;
CYASSL_ENTER("BIO_f_buffer");
meth.type = BIO_BUFFER;
return &meth;
}
long CyaSSL_BIO_set_write_buffer_size(CYASSL_BIO* bio, long size)
{
/* CyaSSL has internal buffer, compatibility only */
CYASSL_ENTER("BIO_set_write_buffer_size");
(void)bio;
return size;
}
CYASSL_BIO_METHOD* CyaSSL_BIO_f_ssl(void)
{
static CYASSL_BIO_METHOD meth;
CYASSL_ENTER("BIO_f_ssl");
meth.type = BIO_SSL;
return &meth;
}
CYASSL_BIO* CyaSSL_BIO_new_socket(int sfd, int closeF)
{
CYASSL_BIO* bio = (CYASSL_BIO*) XMALLOC(sizeof(CYASSL_BIO), 0,
DYNAMIC_TYPE_OPENSSL);
CYASSL_ENTER("BIO_new_socket");
if (bio) {
bio->type = BIO_SOCKET;
bio->close = (byte)closeF;
bio->eof = 0;
bio->ssl = 0;
bio->fd = sfd;
bio->prev = 0;
bio->next = 0;
bio->mem = NULL;
bio->memLen = 0;
}
return bio;
}
int CyaSSL_BIO_eof(CYASSL_BIO* b)
{
CYASSL_ENTER("BIO_eof");
if (b->eof)
return 1;
return 0;
}
long CyaSSL_BIO_set_ssl(CYASSL_BIO* b, CYASSL* ssl, int closeF)
{
CYASSL_ENTER("BIO_set_ssl");
b->ssl = ssl;
b->close = (byte)closeF;
/* add to ssl for bio free if SSL_free called before/instead of free_all? */
return 0;
}
CYASSL_BIO* CyaSSL_BIO_new(CYASSL_BIO_METHOD* method)
{
CYASSL_BIO* bio = (CYASSL_BIO*) XMALLOC(sizeof(CYASSL_BIO), 0,
DYNAMIC_TYPE_OPENSSL);
CYASSL_ENTER("BIO_new");
if (bio) {
bio->type = method->type;
bio->close = 0;
bio->eof = 0;
bio->ssl = NULL;
bio->mem = NULL;
bio->memLen = 0;
bio->fd = 0;
bio->prev = NULL;
bio->next = NULL;
}
return bio;
}
int CyaSSL_BIO_get_mem_data(CYASSL_BIO* bio, const byte** p)
{
if (bio == NULL || p == NULL)
return SSL_FATAL_ERROR;
*p = bio->mem;
return bio->memLen;
}
CYASSL_BIO* CyaSSL_BIO_new_mem_buf(void* buf, int len)
{
CYASSL_BIO* bio = NULL;
if (buf == NULL)
return bio;
bio = CyaSSL_BIO_new(CyaSSL_BIO_s_mem());
if (bio == NULL)
return bio;
bio->memLen = len;
bio->mem = (byte*)XMALLOC(len, 0, DYNAMIC_TYPE_OPENSSL);
if (bio->mem == NULL) {
XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
XMEMCPY(bio->mem, buf, len);
return bio;
}
#ifdef USE_WINDOWS_API
#define CloseSocket(s) closesocket(s)
#elif defined(CYASSL_MDK_ARM)
#define CloseSocket(s) closesocket(s)
extern int closesocket(int) ;
#else
#define CloseSocket(s) close(s)
#endif
int CyaSSL_BIO_free(CYASSL_BIO* bio)
{
/* unchain?, doesn't matter in goahead since from free all */
CYASSL_ENTER("BIO_free");
if (bio) {
if (bio->close) {
if (bio->ssl)
CyaSSL_free(bio->ssl);
if (bio->fd)
CloseSocket(bio->fd);
}
if (bio->mem)
XFREE(bio->mem, 0, DYNAMIC_TYPE_OPENSSL);
XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL);
}
return 0;
}
int CyaSSL_BIO_free_all(CYASSL_BIO* bio)
{
CYASSL_ENTER("BIO_free_all");
while (bio) {
CYASSL_BIO* next = bio->next;
CyaSSL_BIO_free(bio);
bio = next;
}
return 0;
}
int CyaSSL_BIO_read(CYASSL_BIO* bio, void* buf, int len)
{
int ret;
CYASSL* ssl = 0;
CYASSL_BIO* front = bio;
CYASSL_ENTER("BIO_read");
/* already got eof, again is error */
if (front->eof)
return SSL_FATAL_ERROR;
while(bio && ((ssl = bio->ssl) == 0) )
bio = bio->next;
if (ssl == 0) return BAD_FUNC_ARG;
ret = CyaSSL_read(ssl, buf, len);
if (ret == 0)
front->eof = 1;
else if (ret < 0) {
int err = CyaSSL_get_error(ssl, 0);
if ( !(err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) )
front->eof = 1;
}
return ret;
}
int CyaSSL_BIO_write(CYASSL_BIO* bio, const void* data, int len)
{
int ret;
CYASSL* ssl = 0;
CYASSL_BIO* front = bio;
CYASSL_ENTER("BIO_write");
/* already got eof, again is error */
if (front->eof)
return SSL_FATAL_ERROR;
while(bio && ((ssl = bio->ssl) == 0) )
bio = bio->next;
if (ssl == 0) return BAD_FUNC_ARG;
ret = CyaSSL_write(ssl, data, len);
if (ret == 0)
front->eof = 1;
else if (ret < 0) {
int err = CyaSSL_get_error(ssl, 0);
if ( !(err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) )
front->eof = 1;
}
return ret;
}
CYASSL_BIO* CyaSSL_BIO_push(CYASSL_BIO* top, CYASSL_BIO* append)
{
CYASSL_ENTER("BIO_push");
top->next = append;
append->prev = top;
return top;
}
int CyaSSL_BIO_flush(CYASSL_BIO* bio)
{
/* for CyaSSL no flushing needed */
CYASSL_ENTER("BIO_flush");
(void)bio;
return 1;
}
#endif /* OPENSSL_EXTRA || GOAHEAD_WS */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
void CyaSSL_CTX_set_default_passwd_cb_userdata(CYASSL_CTX* ctx,
void* userdata)
{
CYASSL_ENTER("SSL_CTX_set_default_passwd_cb_userdata");
ctx->userdata = userdata;
}
void CyaSSL_CTX_set_default_passwd_cb(CYASSL_CTX* ctx, pem_password_cb cb)
{
CYASSL_ENTER("SSL_CTX_set_default_passwd_cb");
ctx->passwd_cb = cb;
}
int CyaSSL_num_locks(void)
{
return 0;
}
void CyaSSL_set_locking_callback(void (*f)(int, int, const char*, int))
{
(void)f;
}
void CyaSSL_set_id_callback(unsigned long (*f)(void))
{
(void)f;
}
unsigned long CyaSSL_ERR_get_error(void)
{
/* TODO: */
return 0;
}
int CyaSSL_EVP_BytesToKey(const CYASSL_EVP_CIPHER* type,
const CYASSL_EVP_MD* md, const byte* salt,
const byte* data, int sz, int count, byte* key, byte* iv)
{
int keyLen = 0;
int ivLen = 0;
Md5 myMD;
byte digest[MD5_DIGEST_SIZE];
int j;
int keyLeft;
int ivLeft;
int keyOutput = 0;
CYASSL_ENTER("EVP_BytesToKey");
InitMd5(&myMD);
/* only support MD5 for now */
if (XSTRNCMP(md, "MD5", 3) != 0) return 0;
/* only support CBC DES and AES for now */
if (XSTRNCMP(type, "DES-CBC", 7) == 0) {
keyLen = DES_KEY_SIZE;
ivLen = DES_IV_SIZE;
}
else if (XSTRNCMP(type, "DES-EDE3-CBC", 12) == 0) {
keyLen = DES3_KEY_SIZE;
ivLen = DES_IV_SIZE;
}
else if (XSTRNCMP(type, "AES-128-CBC", 11) == 0) {
keyLen = AES_128_KEY_SIZE;
ivLen = AES_IV_SIZE;
}
else if (XSTRNCMP(type, "AES-192-CBC", 11) == 0) {
keyLen = AES_192_KEY_SIZE;
ivLen = AES_IV_SIZE;
}
else if (XSTRNCMP(type, "AES-256-CBC", 11) == 0) {
keyLen = AES_256_KEY_SIZE;
ivLen = AES_IV_SIZE;
}
else
return 0;
keyLeft = keyLen;
ivLeft = ivLen;
while (keyOutput < (keyLen + ivLen)) {
int digestLeft = MD5_DIGEST_SIZE;
/* D_(i - 1) */
if (keyOutput) /* first time D_0 is empty */
Md5Update(&myMD, digest, MD5_DIGEST_SIZE);
/* data */
Md5Update(&myMD, data, sz);
/* salt */
if (salt)
Md5Update(&myMD, salt, EVP_SALT_SIZE);
Md5Final(&myMD, digest);
/* count */
for (j = 1; j < count; j++) {
Md5Update(&myMD, digest, MD5_DIGEST_SIZE);
Md5Final(&myMD, digest);
}
if (keyLeft) {
int store = min(keyLeft, MD5_DIGEST_SIZE);
XMEMCPY(&key[keyLen - keyLeft], digest, store);
keyOutput += store;
keyLeft -= store;
digestLeft -= store;
}
if (ivLeft && digestLeft) {
int store = min(ivLeft, digestLeft);
XMEMCPY(&iv[ivLen - ivLeft], &digest[MD5_DIGEST_SIZE -
digestLeft], store);
keyOutput += store;
ivLeft -= store;
}
}
if (keyOutput != (keyLen + ivLen))
return 0;
return keyOutput;
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#ifdef OPENSSL_EXTRA
unsigned long CyaSSLeay(void)
{
return SSLEAY_VERSION_NUMBER;
}
const char* CyaSSLeay_version(int type)
{
static const char* version = "SSLeay CyaSSL compatibility";
(void)type;
return version;
}
void CyaSSL_MD5_Init(CYASSL_MD5_CTX* md5)
{
typedef char md5_test[sizeof(MD5_CTX) >= sizeof(Md5) ? 1 : -1];
(void)sizeof(md5_test);
CYASSL_ENTER("MD5_Init");
InitMd5((Md5*)md5);
}
void CyaSSL_MD5_Update(CYASSL_MD5_CTX* md5, const void* input,
unsigned long sz)
{
CYASSL_ENTER("CyaSSL_MD5_Update");
Md5Update((Md5*)md5, (const byte*)input, (word32)sz);
}
void CyaSSL_MD5_Final(byte* input, CYASSL_MD5_CTX* md5)
{
CYASSL_ENTER("MD5_Final");
Md5Final((Md5*)md5, input);
}
void CyaSSL_SHA_Init(CYASSL_SHA_CTX* sha)
{
typedef char sha_test[sizeof(SHA_CTX) >= sizeof(Sha) ? 1 : -1];
(void)sizeof(sha_test);
CYASSL_ENTER("SHA_Init");
InitSha((Sha*)sha);
}
void CyaSSL_SHA_Update(CYASSL_SHA_CTX* sha, const void* input,
unsigned long sz)
{
CYASSL_ENTER("SHA_Update");
ShaUpdate((Sha*)sha, (const byte*)input, (word32)sz);
}
void CyaSSL_SHA_Final(byte* input, CYASSL_SHA_CTX* sha)
{
CYASSL_ENTER("SHA_Final");
ShaFinal((Sha*)sha, input);
}
void CyaSSL_SHA1_Init(CYASSL_SHA_CTX* sha)
{
CYASSL_ENTER("SHA1_Init");
SHA_Init(sha);
}
void CyaSSL_SHA1_Update(CYASSL_SHA_CTX* sha, const void* input,
unsigned long sz)
{
CYASSL_ENTER("SHA1_Update");
SHA_Update(sha, input, sz);
}
void CyaSSL_SHA1_Final(byte* input, CYASSL_SHA_CTX* sha)
{
CYASSL_ENTER("SHA1_Final");
SHA_Final(input, sha);
}
void CyaSSL_SHA256_Init(CYASSL_SHA256_CTX* sha256)
{
typedef char sha_test[sizeof(SHA256_CTX) >= sizeof(Sha256) ? 1 : -1];
(void)sizeof(sha_test);
CYASSL_ENTER("SHA256_Init");
InitSha256((Sha256*)sha256);
}
void CyaSSL_SHA256_Update(CYASSL_SHA256_CTX* sha, const void* input,
unsigned long sz)
{
CYASSL_ENTER("SHA256_Update");
Sha256Update((Sha256*)sha, (const byte*)input, (word32)sz);
}
void CyaSSL_SHA256_Final(byte* input, CYASSL_SHA256_CTX* sha)
{
CYASSL_ENTER("SHA256_Final");
Sha256Final((Sha256*)sha, input);
}
#ifdef CYASSL_SHA384
void CyaSSL_SHA384_Init(CYASSL_SHA384_CTX* sha)
{
typedef char sha_test[sizeof(SHA384_CTX) >= sizeof(Sha384) ? 1 : -1];
(void)sizeof(sha_test);
CYASSL_ENTER("SHA384_Init");
InitSha384((Sha384*)sha);
}
void CyaSSL_SHA384_Update(CYASSL_SHA384_CTX* sha, const void* input,
unsigned long sz)
{
CYASSL_ENTER("SHA384_Update");
Sha384Update((Sha384*)sha, (const byte*)input, (word32)sz);
}
void CyaSSL_SHA384_Final(byte* input, CYASSL_SHA384_CTX* sha)
{
CYASSL_ENTER("SHA384_Final");
Sha384Final((Sha384*)sha, input);
}
#endif /* CYASSL_SHA384 */
#ifdef CYASSL_SHA512
void CyaSSL_SHA512_Init(CYASSL_SHA512_CTX* sha)
{
typedef char sha_test[sizeof(SHA512_CTX) >= sizeof(Sha512) ? 1 : -1];
(void)sizeof(sha_test);
CYASSL_ENTER("SHA512_Init");
InitSha512((Sha512*)sha);
}
void CyaSSL_SHA512_Update(CYASSL_SHA512_CTX* sha, const void* input,
unsigned long sz)
{
CYASSL_ENTER("SHA512_Update");
Sha512Update((Sha512*)sha, (const byte*)input, (word32)sz);
}
void CyaSSL_SHA512_Final(byte* input, CYASSL_SHA512_CTX* sha)
{
CYASSL_ENTER("SHA512_Final");
Sha512Final((Sha512*)sha, input);
}
#endif /* CYASSL_SHA512 */
const CYASSL_EVP_MD* CyaSSL_EVP_md5(void)
{
static const char* type = "MD5";
CYASSL_ENTER("EVP_md5");
return type;
}
const CYASSL_EVP_MD* CyaSSL_EVP_sha1(void)
{
static const char* type = "SHA";
CYASSL_ENTER("EVP_sha1");
return type;
}
const CYASSL_EVP_MD* CyaSSL_EVP_sha256(void)
{
static const char* type = "SHA256";
CYASSL_ENTER("EVP_sha256");
return type;
}
#ifdef CYASSL_SHA384
const CYASSL_EVP_MD* CyaSSL_EVP_sha384(void)
{
static const char* type = "SHA384";
CYASSL_ENTER("EVP_sha384");
return type;
}
#endif /* CYASSL_SHA384 */
#ifdef CYASSL_SHA512
const CYASSL_EVP_MD* CyaSSL_EVP_sha512(void)
{
static const char* type = "SHA512";
CYASSL_ENTER("EVP_sha512");
return type;
}
#endif /* CYASSL_SHA512 */
void CyaSSL_EVP_MD_CTX_init(CYASSL_EVP_MD_CTX* ctx)
{
CYASSL_ENTER("EVP_CIPHER_MD_CTX_init");
(void)ctx;
/* do nothing */
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_128_cbc(void)
{
static const char* type = "AES128-CBC";
CYASSL_ENTER("CyaSSL_EVP_aes_128_cbc");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_192_cbc(void)
{
static const char* type = "AES192-CBC";
CYASSL_ENTER("CyaSSL_EVP_aes_192_cbc");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_256_cbc(void)
{
static const char* type = "AES256-CBC";
CYASSL_ENTER("CyaSSL_EVP_aes_256_cbc");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_128_ctr(void)
{
static const char* type = "AES128-CTR";
CYASSL_ENTER("CyaSSL_EVP_aes_128_ctr");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_192_ctr(void)
{
static const char* type = "AES192-CTR";
CYASSL_ENTER("CyaSSL_EVP_aes_192_ctr");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_256_ctr(void)
{
static const char* type = "AES256-CTR";
CYASSL_ENTER("CyaSSL_EVP_aes_256_ctr");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_des_cbc(void)
{
static const char* type = "DES-CBC";
CYASSL_ENTER("CyaSSL_EVP_des_cbc");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_des_ede3_cbc(void)
{
static const char* type = "DES-EDE3-CBC";
CYASSL_ENTER("CyaSSL_EVP_des_ede3_cbc");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_rc4(void)
{
static const char* type = "ARC4";
CYASSL_ENTER("CyaSSL_EVP_rc4");
return type;
}
const CYASSL_EVP_CIPHER* CyaSSL_EVP_enc_null(void)
{
static const char* type = "NULL";
CYASSL_ENTER("CyaSSL_EVP_enc_null");
return type;
}
int CyaSSL_EVP_MD_CTX_cleanup(CYASSL_EVP_MD_CTX* ctx)
{
CYASSL_ENTER("EVP_MD_CTX_cleanup");
(void)ctx;
return 0;
}
void CyaSSL_EVP_CIPHER_CTX_init(CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_ENTER("EVP_CIPHER_CTX_init");
if (ctx) {
ctx->cipherType = 0xff; /* no init */
ctx->keyLen = 0;
ctx->enc = 1; /* start in encrypt mode */
}
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_CIPHER_CTX_cleanup(CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_ENTER("EVP_CIPHER_CTX_cleanup");
if (ctx) {
ctx->cipherType = 0xff; /* no more init */
ctx->keyLen = 0;
}
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_CipherInit(CYASSL_EVP_CIPHER_CTX* ctx,
const CYASSL_EVP_CIPHER* type, byte* key,
byte* iv, int enc)
{
CYASSL_ENTER("CyaSSL_EVP_CipherInit");
if (ctx == NULL) {
CYASSL_MSG("no ctx");
return 0; /* failure */
}
if (type == NULL && ctx->cipherType == 0xff) {
CYASSL_MSG("no type set");
return 0; /* failure */
}
if (ctx->cipherType == AES_128_CBC_TYPE || (type &&
XSTRNCMP(type, "AES128-CBC", 10) == 0)) {
CYASSL_MSG("AES-128-CBC");
ctx->cipherType = AES_128_CBC_TYPE;
ctx->keyLen = 16;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
if (iv && key == NULL)
AesSetIV(&ctx->cipher.aes, iv);
}
else if (ctx->cipherType == AES_192_CBC_TYPE || (type &&
XSTRNCMP(type, "AES192-CBC", 10) == 0)) {
CYASSL_MSG("AES-192-CBC");
ctx->cipherType = AES_192_CBC_TYPE;
ctx->keyLen = 24;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
if (iv && key == NULL)
AesSetIV(&ctx->cipher.aes, iv);
}
else if (ctx->cipherType == AES_256_CBC_TYPE || (type &&
XSTRNCMP(type, "AES256-CBC", 10) == 0)) {
CYASSL_MSG("AES-256-CBC");
ctx->cipherType = AES_256_CBC_TYPE;
ctx->keyLen = 32;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
if (iv && key == NULL)
AesSetIV(&ctx->cipher.aes, iv);
}
#ifdef CYASSL_AES_COUNTER
else if (ctx->cipherType == AES_128_CTR_TYPE || (type &&
XSTRNCMP(type, "AES128-CTR", 10) == 0)) {
CYASSL_MSG("AES-128-CTR");
ctx->cipherType = AES_128_CTR_TYPE;
ctx->keyLen = 16;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
AES_ENCRYPTION);
if (iv && key == NULL)
AesSetIV(&ctx->cipher.aes, iv);
}
else if (ctx->cipherType == AES_192_CTR_TYPE || (type &&
XSTRNCMP(type, "AES192-CTR", 10) == 0)) {
CYASSL_MSG("AES-192-CTR");
ctx->cipherType = AES_192_CTR_TYPE;
ctx->keyLen = 24;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
AES_ENCRYPTION);
if (iv && key == NULL)
AesSetIV(&ctx->cipher.aes, iv);
}
else if (ctx->cipherType == AES_256_CTR_TYPE || (type &&
XSTRNCMP(type, "AES256-CTR", 10) == 0)) {
CYASSL_MSG("AES-256-CTR");
ctx->cipherType = AES_256_CTR_TYPE;
ctx->keyLen = 32;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
AES_ENCRYPTION);
if (iv && key == NULL)
AesSetIV(&ctx->cipher.aes, iv);
}
#endif /* CYASSL_AES_CTR */
else if (ctx->cipherType == DES_CBC_TYPE || (type &&
XSTRNCMP(type, "DES-CBC", 7) == 0)) {
CYASSL_MSG("DES-CBC");
ctx->cipherType = DES_CBC_TYPE;
ctx->keyLen = 8;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
Des_SetKey(&ctx->cipher.des, key, iv,
ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION);
if (iv && key == NULL)
Des_SetIV(&ctx->cipher.des, iv);
}
else if (ctx->cipherType == DES_EDE3_CBC_TYPE || (type &&
XSTRNCMP(type, "DES-EDE3-CBC", 11) == 0)) {
CYASSL_MSG("DES-EDE3-CBC");
ctx->cipherType = DES_EDE3_CBC_TYPE;
ctx->keyLen = 24;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key)
Des3_SetKey(&ctx->cipher.des3, key, iv,
ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION);
if (iv && key == NULL)
Des3_SetIV(&ctx->cipher.des3, iv);
}
else if (ctx->cipherType == ARC4_TYPE || (type &&
XSTRNCMP(type, "ARC4", 4) == 0)) {
CYASSL_MSG("ARC4");
ctx->cipherType = ARC4_TYPE;
if (ctx->keyLen == 0) /* user may have already set */
ctx->keyLen = 16; /* default to 128 */
if (key)
Arc4SetKey(&ctx->cipher.arc4, key, ctx->keyLen);
}
else if (ctx->cipherType == NULL_CIPHER_TYPE || (type &&
XSTRNCMP(type, "NULL", 4) == 0)) {
CYASSL_MSG("NULL cipher");
ctx->cipherType = NULL_CIPHER_TYPE;
ctx->keyLen = 0;
}
else
return 0; /* failure */
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_CIPHER_CTX_key_length(CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_ENTER("CyaSSL_EVP_CIPHER_CTX_key_length");
if (ctx)
return ctx->keyLen;
return 0; /* failure */
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_CIPHER_CTX_set_key_length(CYASSL_EVP_CIPHER_CTX* ctx,
int keylen)
{
CYASSL_ENTER("CyaSSL_EVP_CIPHER_CTX_set_key_length");
if (ctx)
ctx->keyLen = keylen;
else
return 0; /* failure */
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_Cipher(CYASSL_EVP_CIPHER_CTX* ctx, byte* dst, byte* src,
word32 len)
{
int ret = 0;
CYASSL_ENTER("CyaSSL_EVP_Cipher");
if (ctx == NULL || dst == NULL || src == NULL) {
CYASSL_MSG("Bad function argument");
return 0; /* failure */
}
if (ctx->cipherType == 0xff) {
CYASSL_MSG("no init");
return 0; /* failure */
}
switch (ctx->cipherType) {
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
CYASSL_MSG("AES CBC");
if (ctx->enc)
ret = AesCbcEncrypt(&ctx->cipher.aes, dst, src, len);
else
ret = AesCbcDecrypt(&ctx->cipher.aes, dst, src, len);
break;
#ifdef CYASSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
CYASSL_MSG("AES CTR");
AesCtrEncrypt(&ctx->cipher.aes, dst, src, len);
break;
#endif
case DES_CBC_TYPE :
if (ctx->enc)
Des_CbcEncrypt(&ctx->cipher.des, dst, src, len);
else
Des_CbcDecrypt(&ctx->cipher.des, dst, src, len);
break;
case DES_EDE3_CBC_TYPE :
if (ctx->enc)
Des3_CbcEncrypt(&ctx->cipher.des3, dst, src, len);
else
Des3_CbcDecrypt(&ctx->cipher.des3, dst, src, len);
break;
case ARC4_TYPE :
Arc4Process(&ctx->cipher.arc4, dst, src, len);
break;
case NULL_CIPHER_TYPE :
XMEMCPY(dst, src, len);
break;
default: {
CYASSL_MSG("bad type");
return 0; /* failure */
}
}
if (ret != 0) {
CYASSL_MSG("CyaSSL_EVP_Cipher failure");
return 0; /* failuer */
}
CYASSL_MSG("CyaSSL_EVP_Cipher success");
return SSL_SUCCESS; /* success */
}
/* store for external read of iv, SSL_SUCCESS on success */
int CyaSSL_StoreExternalIV(CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_ENTER("CyaSSL_StoreExternalIV");
if (ctx == NULL) {
CYASSL_MSG("Bad function argument");
return SSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
CYASSL_MSG("AES CBC");
memcpy(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#ifdef CYASSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
CYASSL_MSG("AES CTR");
memcpy(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#endif
case DES_CBC_TYPE :
CYASSL_MSG("DES CBC");
memcpy(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
CYASSL_MSG("DES EDE3 CBC");
memcpy(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE);
break;
case ARC4_TYPE :
CYASSL_MSG("ARC4");
break;
case NULL_CIPHER_TYPE :
CYASSL_MSG("NULL");
break;
default: {
CYASSL_MSG("bad type");
return SSL_FATAL_ERROR;
}
}
return SSL_SUCCESS;
}
/* set internal IV from external, SSL_SUCCESS on success */
int CyaSSL_SetInternalIV(CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_ENTER("CyaSSL_SetInternalIV");
if (ctx == NULL) {
CYASSL_MSG("Bad function argument");
return SSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
CYASSL_MSG("AES CBC");
memcpy(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#ifdef CYASSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
CYASSL_MSG("AES CTR");
memcpy(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
case DES_CBC_TYPE :
CYASSL_MSG("DES CBC");
memcpy(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
CYASSL_MSG("DES EDE3 CBC");
memcpy(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE);
break;
case ARC4_TYPE :
CYASSL_MSG("ARC4");
break;
case NULL_CIPHER_TYPE :
CYASSL_MSG("NULL");
break;
default: {
CYASSL_MSG("bad type");
return SSL_FATAL_ERROR;
}
}
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_DigestInit(CYASSL_EVP_MD_CTX* ctx, const CYASSL_EVP_MD* type)
{
CYASSL_ENTER("EVP_DigestInit");
if (XSTRNCMP(type, "MD5", 3) == 0) {
ctx->macType = MD5;
CyaSSL_MD5_Init((MD5_CTX*)&ctx->hash);
}
else if (XSTRNCMP(type, "SHA256", 6) == 0) {
ctx->macType = SHA256;
CyaSSL_SHA256_Init((SHA256_CTX*)&ctx->hash);
}
#ifdef CYASSL_SHA384
else if (XSTRNCMP(type, "SHA384", 6) == 0) {
ctx->macType = SHA384;
CyaSSL_SHA384_Init((SHA384_CTX*)&ctx->hash);
}
#endif
#ifdef CYASSL_SHA512
else if (XSTRNCMP(type, "SHA512", 6) == 0) {
ctx->macType = SHA512;
CyaSSL_SHA512_Init((SHA512_CTX*)&ctx->hash);
}
#endif
/* has to be last since would pick or 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
ctx->macType = SHA;
CyaSSL_SHA_Init((SHA_CTX*)&ctx->hash);
}
else
return BAD_FUNC_ARG;
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_DigestUpdate(CYASSL_EVP_MD_CTX* ctx, const void* data,
unsigned long sz)
{
CYASSL_ENTER("EVP_DigestUpdate");
if (ctx->macType == MD5)
CyaSSL_MD5_Update((MD5_CTX*)&ctx->hash, data, (unsigned long)sz);
else if (ctx->macType == SHA)
CyaSSL_SHA_Update((SHA_CTX*)&ctx->hash, data, (unsigned long)sz);
else if (ctx->macType == SHA256)
CyaSSL_SHA256_Update((SHA256_CTX*)&ctx->hash, data,
(unsigned long)sz);
#ifdef CYASSL_SHA384
else if (ctx->macType == SHA384)
CyaSSL_SHA384_Update((SHA384_CTX*)&ctx->hash, data,
(unsigned long)sz);
#endif
#ifdef CYASSL_SHA512
else if (ctx->macType == SHA512)
CyaSSL_SHA512_Update((SHA512_CTX*)&ctx->hash, data,
(unsigned long)sz);
#endif
else
return BAD_FUNC_ARG;
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_DigestFinal(CYASSL_EVP_MD_CTX* ctx, unsigned char* md,
unsigned int* s)
{
CYASSL_ENTER("EVP_DigestFinal");
if (ctx->macType == MD5) {
CyaSSL_MD5_Final(md, (MD5_CTX*)&ctx->hash);
if (s) *s = MD5_DIGEST_SIZE;
}
else if (ctx->macType == SHA) {
CyaSSL_SHA_Final(md, (SHA_CTX*)&ctx->hash);
if (s) *s = SHA_DIGEST_SIZE;
}
else if (ctx->macType == SHA256) {
CyaSSL_SHA256_Final(md, (SHA256_CTX*)&ctx->hash);
if (s) *s = SHA256_DIGEST_SIZE;
}
#ifdef CYASSL_SHA384
else if (ctx->macType == SHA384) {
CyaSSL_SHA384_Final(md, (SHA384_CTX*)&ctx->hash);
if (s) *s = SHA384_DIGEST_SIZE;
}
#endif
#ifdef CYASSL_SHA512
else if (ctx->macType == SHA512) {
CyaSSL_SHA512_Final(md, (SHA512_CTX*)&ctx->hash);
if (s) *s = SHA512_DIGEST_SIZE;
}
#endif
else
return BAD_FUNC_ARG;
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_EVP_DigestFinal_ex(CYASSL_EVP_MD_CTX* ctx, unsigned char* md,
unsigned int* s)
{
CYASSL_ENTER("EVP_DigestFinal_ex");
return EVP_DigestFinal(ctx, md, s);
}
unsigned char* CyaSSL_HMAC(const CYASSL_EVP_MD* evp_md, const void* key,
int key_len, const unsigned char* d, int n,
unsigned char* md, unsigned int* md_len)
{
Hmac hmac;
CYASSL_ENTER("HMAC");
if (!md) return 0; /* no static buffer support */
if (XSTRNCMP(evp_md, "MD5", 3) == 0) {
HmacSetKey(&hmac, MD5, (const byte*)key, key_len);
if (md_len) *md_len = MD5_DIGEST_SIZE;
}
else if (XSTRNCMP(evp_md, "SHA", 3) == 0) {
HmacSetKey(&hmac, SHA, (const byte*)key, key_len);
if (md_len) *md_len = SHA_DIGEST_SIZE;
}
else
return 0;
HmacUpdate(&hmac, d, n);
HmacFinal(&hmac, md);
return md;
}
void CyaSSL_ERR_clear_error(void)
{
/* TODO: */
}
int CyaSSL_RAND_status(void)
{
return SSL_SUCCESS; /* CTaoCrypt provides enough seed internally */
}
void CyaSSL_RAND_add(const void* add, int len, double entropy)
{
(void)add;
(void)len;
(void)entropy;
/* CyaSSL seeds/adds internally, use explicit RNG if you want
to take control */
}
/* SSL_SUCCESS on ok */
int CyaSSL_DES_key_sched(CYASSL_const_DES_cblock* key,
CYASSL_DES_key_schedule* schedule)
{
CYASSL_ENTER("DES_key_sched");
XMEMCPY(schedule, key, sizeof(const_DES_cblock));
return SSL_SUCCESS;
}
void CyaSSL_DES_cbc_encrypt(const unsigned char* input,
unsigned char* output, long length,
CYASSL_DES_key_schedule* schedule, CYASSL_DES_cblock* ivec,
int enc)
{
Des myDes;
CYASSL_ENTER("DES_cbc_encrypt");
Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc);
if (enc)
Des_CbcEncrypt(&myDes, output, input, (word32)length);
else
Des_CbcDecrypt(&myDes, output, input, (word32)length);
}
/* correctly sets ivec for next call */
void CyaSSL_DES_ncbc_encrypt(const unsigned char* input,
unsigned char* output, long length,
CYASSL_DES_key_schedule* schedule, CYASSL_DES_cblock* ivec,
int enc)
{
Des myDes;
CYASSL_ENTER("DES_ncbc_encrypt");
Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc);
if (enc)
Des_CbcEncrypt(&myDes, output, input, (word32)length);
else
Des_CbcDecrypt(&myDes, output, input, (word32)length);
XMEMCPY(ivec, output + length - sizeof(DES_cblock), sizeof(DES_cblock));
}
void CyaSSL_ERR_free_strings(void)
{
/* handled internally */
}
void CyaSSL_ERR_remove_state(unsigned long state)
{
/* TODO: GetErrors().Remove(); */
(void)state;
}
void CyaSSL_EVP_cleanup(void)
{
/* nothing to do here */
}
void CyaSSL_cleanup_all_ex_data(void)
{
/* nothing to do here */
}
long CyaSSL_CTX_set_mode(CYASSL_CTX* ctx, long mode)
{
/* SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is CyaSSL default mode */
CYASSL_ENTER("SSL_CTX_set_mode");
if (mode == SSL_MODE_ENABLE_PARTIAL_WRITE)
ctx->partialWrite = 1;
return mode;
}
long CyaSSL_CTX_get_mode(CYASSL_CTX* ctx)
{
/* TODO: */
(void)ctx;
return 0;
}
void CyaSSL_CTX_set_default_read_ahead(CYASSL_CTX* ctx, int m)
{
/* TODO: maybe? */
(void)ctx;
(void)m;
}
int CyaSSL_CTX_set_session_id_context(CYASSL_CTX* ctx,
const unsigned char* sid_ctx,
unsigned int sid_ctx_len)
{
/* No application specific context needed for cyaSSL */
(void)ctx;
(void)sid_ctx;
(void)sid_ctx_len;
return SSL_SUCCESS;
}
long CyaSSL_CTX_sess_get_cache_size(CYASSL_CTX* ctx)
{
/* TODO: maybe? */
(void)ctx;
return (~0);
}
unsigned long CyaSSL_ERR_get_error_line_data(const char** file, int* line,
const char** data, int *flags)
{
/* Not implemented */
(void)file;
(void)line;
(void)data;
(void)flags;
return 0;
}
#endif /* OPENSSL_EXTRA */
#if defined(KEEP_PEER_CERT)
CYASSL_X509* CyaSSL_get_peer_certificate(CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_peer_certificate");
if (ssl->peerCert.issuer.sz)
return &ssl->peerCert;
else
return 0;
}
#endif /* KEEP_PEER_CERT */
#if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS)
void CyaSSL_FreeX509(CYASSL_X509* x509)
{
CYASSL_ENTER("CyaSSL_FreeX509");
FreeX509(x509);
}
/* return the next, if any, altname from the peer cert */
char* CyaSSL_X509_get_next_altname(CYASSL_X509* cert)
{
char* ret = NULL;
CYASSL_ENTER("CyaSSL_X509_get_next_altname");
/* don't have any to work with */
if (cert == NULL || cert->altNames == NULL)
return NULL;
/* already went through them */
if (cert->altNamesNext == NULL)
return NULL;
ret = cert->altNamesNext->name;
cert->altNamesNext = cert->altNamesNext->next;
return ret;
}
CYASSL_X509_NAME* CyaSSL_X509_get_issuer_name(CYASSL_X509* cert)
{
CYASSL_ENTER("X509_get_issuer_name");
return &cert->issuer;
}
CYASSL_X509_NAME* CyaSSL_X509_get_subject_name(CYASSL_X509* cert)
{
CYASSL_ENTER("X509_get_subject_name");
return &cert->subject;
}
/* copy name into in buffer, at most sz bytes, if buffer is null will
malloc buffer, call responsible for freeing */
char* CyaSSL_X509_NAME_oneline(CYASSL_X509_NAME* name, char* in, int sz)
{
int copySz = min(sz, name->sz);
CYASSL_ENTER("CyaSSL_X509_NAME_oneline");
if (!name->sz) return in;
if (!in) {
in = (char*)XMALLOC(name->sz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in ) return in;
copySz = name->sz;
}
if (copySz == 0)
return in;
XMEMCPY(in, name->name, copySz - 1);
in[copySz - 1] = 0;
return in;
}
int CyaSSL_X509_NAME_entry_count(CYASSL_X509_NAME* name)
{
int count = 0;
CYASSL_ENTER("CyaSSL_X509_NAME_entry_count");
if (name != NULL)
count = name->fullName.entryCount;
CYASSL_LEAVE("CyaSSL_X509_NAME_entry_count", count);
return count;
}
int CyaSSL_X509_NAME_get_text_by_NID(CYASSL_X509_NAME* name,
int nid, char* buf, int len)
{
char *text = NULL;
int textSz = 0;
CYASSL_ENTER("CyaSSL_X509_NAME_get_text_by_NID");
switch (nid) {
case ASN_COMMON_NAME:
text = name->fullName.fullName + name->fullName.cnIdx;
textSz = name->fullName.cnLen;
break;
case ASN_SUR_NAME:
text = name->fullName.fullName + name->fullName.snIdx;
textSz = name->fullName.snLen;
break;
case ASN_SERIAL_NUMBER:
text = name->fullName.fullName + name->fullName.serialIdx;
textSz = name->fullName.serialLen;
break;
case ASN_COUNTRY_NAME:
text = name->fullName.fullName + name->fullName.cIdx;
textSz = name->fullName.cLen;
break;
case ASN_LOCALITY_NAME:
text = name->fullName.fullName + name->fullName.lIdx;
textSz = name->fullName.lLen;
break;
case ASN_STATE_NAME:
text = name->fullName.fullName + name->fullName.stIdx;
textSz = name->fullName.stLen;
break;
case ASN_ORG_NAME:
text = name->fullName.fullName + name->fullName.oIdx;
textSz = name->fullName.oLen;
break;
case ASN_ORGUNIT_NAME:
text = name->fullName.fullName + name->fullName.ouIdx;
textSz = name->fullName.ouLen;
break;
default:
break;
}
if (buf != NULL) {
textSz = min(textSz, len);
XMEMCPY(buf, text, textSz);
buf[textSz] = '\0';
}
CYASSL_LEAVE("CyaSSL_X509_NAME_get_text_by_NID", textSz);
return textSz;
}
int CyaSSL_X509_get_signature_type(CYASSL_X509* x509)
{
int type = 0;
CYASSL_ENTER("CyaSSL_X509_get_signature_type");
if (x509 != NULL)
type = x509->sigOID;
return type;
}
int CyaSSL_X509_get_signature(CYASSL_X509* x509,
unsigned char* buf, int* bufSz)
{
CYASSL_ENTER("CyaSSL_X509_get_signature");
if (x509 == NULL || bufSz == NULL || *bufSz < (int)x509->sig.length)
return SSL_FATAL_ERROR;
if (buf != NULL)
XMEMCPY(buf, x509->sig.buffer, x509->sig.length);
*bufSz = x509->sig.length;
return SSL_SUCCESS;
}
/* write X509 serial number in unsigned binary to buffer
buffer needs to be at least EXTERNAL_SERIAL_SIZE (32) for all cases
return SSL_SUCCESS on success */
int CyaSSL_X509_get_serial_number(CYASSL_X509* x509, byte* in, int* inOutSz)
{
CYASSL_ENTER("CyaSSL_X509_get_serial_number");
if (x509 == NULL || in == NULL ||
inOutSz == NULL || *inOutSz < x509->serialSz)
return BAD_FUNC_ARG;
XMEMCPY(in, x509->serial, x509->serialSz);
*inOutSz = x509->serialSz;
return SSL_SUCCESS;
}
const byte* CyaSSL_X509_get_der(CYASSL_X509* x509, int* outSz)
{
CYASSL_ENTER("CyaSSL_X509_get_der");
if (x509 == NULL || outSz == NULL)
return NULL;
*outSz = (int)x509->derCert.length;
return x509->derCert.buffer;
}
int CyaSSL_X509_version(CYASSL_X509* x509)
{
CYASSL_ENTER("CyaSSL_X509_version");
if (x509 == NULL)
return 0;
return x509->version;
}
const byte* CyaSSL_X509_notBefore(CYASSL_X509* x509)
{
CYASSL_ENTER("CyaSSL_X509_notBefore");
if (x509 == NULL)
return NULL;
return x509->notBefore;
}
const byte* CyaSSL_X509_notAfter(CYASSL_X509* x509)
{
CYASSL_ENTER("CyaSSL_X509_notAfter");
if (x509 == NULL)
return NULL;
return x509->notAfter;
}
#ifdef CYASSL_SEP
/* copy oid into in buffer, at most *inOutSz bytes, if buffer is null will
malloc buffer, call responsible for freeing. Actual size returned in
*inOutSz. Requires inOutSz be non-null */
byte* CyaSSL_X509_get_device_type(CYASSL_X509* x509, byte* in, int *inOutSz)
{
int copySz;
CYASSL_ENTER("CyaSSL_X509_get_dev_type");
if (inOutSz == NULL) return NULL;
if (!x509->deviceTypeSz) return in;
copySz = min(*inOutSz, x509->deviceTypeSz);
if (!in) {
in = (byte*)XMALLOC(x509->deviceTypeSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->deviceTypeSz;
}
XMEMCPY(in, x509->deviceType, copySz);
*inOutSz = copySz;
return in;
}
byte* CyaSSL_X509_get_hw_type(CYASSL_X509* x509, byte* in, int* inOutSz)
{
int copySz;
CYASSL_ENTER("CyaSSL_X509_get_hw_type");
if (inOutSz == NULL) return NULL;
if (!x509->hwTypeSz) return in;
copySz = min(*inOutSz, x509->hwTypeSz);
if (!in) {
in = (byte*)XMALLOC(x509->hwTypeSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->hwTypeSz;
}
XMEMCPY(in, x509->hwType, copySz);
*inOutSz = copySz;
return in;
}
byte* CyaSSL_X509_get_hw_serial_number(CYASSL_X509* x509,byte* in,int* inOutSz)
{
int copySz;
CYASSL_ENTER("CyaSSL_X509_get_hw_serial_number");
if (inOutSz == NULL) return NULL;
if (!x509->hwTypeSz) return in;
copySz = min(*inOutSz, x509->hwSerialNumSz);
if (!in) {
in = (byte*)XMALLOC(x509->hwSerialNumSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->hwSerialNumSz;
}
XMEMCPY(in, x509->hwSerialNum, copySz);
*inOutSz = copySz;
return in;
}
#endif /* CYASSL_SEP */
CYASSL_X509* CyaSSL_X509_d2i(CYASSL_X509** x509, const byte* in, int len)
{
CYASSL_X509 *newX509 = NULL;
CYASSL_ENTER("CyaSSL_X509_d2i");
if (in != NULL && len != 0) {
DecodedCert cert;
InitDecodedCert(&cert, (byte*)in, len, NULL);
if (ParseCertRelative(&cert, CERT_TYPE, 0, NULL) == 0) {
newX509 = (CYASSL_X509*)XMALLOC(sizeof(CYASSL_X509),
NULL, DYNAMIC_TYPE_X509);
if (newX509 != NULL) {
InitX509(newX509, 1);
if (CopyDecodedToX509(newX509, &cert) != 0) {
XFREE(newX509, NULL, DYNAMIC_TYPE_X509);
newX509 = NULL;
}
}
}
FreeDecodedCert(&cert);
}
if (x509 != NULL)
*x509 = newX509;
return newX509;
}
CYASSL_X509* CyaSSL_X509_d2i_fp(CYASSL_X509** x509, XFILE file)
{
CYASSL_X509* newX509 = NULL;
CYASSL_ENTER("CyaSSL_X509_d2i_fp");
if (file != XBADFILE) {
byte* fileBuffer = NULL;
long sz = 0;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer != NULL) {
if ((int)XFREAD(fileBuffer, sz, 1, file) > 0) {
newX509 = CyaSSL_X509_d2i(NULL, fileBuffer, (int)sz);
}
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
}
}
if (x509 != NULL)
*x509 = newX509;
return newX509;
}
CYASSL_X509* CyaSSL_X509_load_certificate_file(const char* fname, int format)
{
byte staticBuffer[FILE_BUFFER_SIZE];
byte* fileBuffer = staticBuffer;
int dynamic = 0;
long sz = 0;
XFILE file;
CYASSL_X509* x509 = NULL;
buffer der;
CYASSL_ENTER("CyaSSL_X509_load_certificate");
/* Check the inputs */
if ((fname == NULL) ||
(format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM))
return NULL;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return NULL;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer == NULL) {
XFCLOSE(file);
return NULL;
}
dynamic = 1;
}
if ((int)XFREAD(fileBuffer, sz, 1, file) < 0) {
XFCLOSE(file);
if (dynamic) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
return NULL;
}
XFCLOSE(file);
der.buffer = NULL;
der.length = 0;
if (format == SSL_FILETYPE_PEM) {
EncryptedInfo info;
int ecc = 0;
info.set = 0;
info.ctx = NULL;
info.consumed = 0;
if (PemToDer(fileBuffer, sz, CERT_TYPE, &der, NULL, &info, &ecc) != 0)
{
/* Only time this should fail, and leave `der` with a buffer
is when the Base64 Decode fails. Release `der.buffer` in
that case. */
if (der.buffer != NULL) {
XFREE(der.buffer, NULL, DYNAMIC_TYPE_CERT);
der.buffer = NULL;
}
}
}
else {
der.buffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_CERT);
if (der.buffer != NULL) {
XMEMCPY(der.buffer, fileBuffer, sz);
der.length = (word32)sz;
}
}
if (dynamic) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
/* At this point we want `der` to have the certificate in DER format */
/* ready to be decoded. */
if (der.buffer != NULL) {
DecodedCert cert;
InitDecodedCert(&cert, der.buffer, der.length, NULL);
if (ParseCertRelative(&cert, CERT_TYPE, 0, NULL) == 0) {
x509 = (CYASSL_X509*)XMALLOC(sizeof(CYASSL_X509),
NULL, DYNAMIC_TYPE_X509);
if (x509 != NULL) {
InitX509(x509, 1);
if (CopyDecodedToX509(x509, &cert) != 0) {
XFREE(x509, NULL, DYNAMIC_TYPE_X509);
x509 = NULL;
}
}
}
FreeDecodedCert(&cert);
XFREE(der.buffer, NULL, DYNAMIC_TYPE_CERT);
}
return x509;
}
#endif /* KEEP_PEER_CERT || SESSION_CERTS */
#ifdef OPENSSL_EXTRA
int CyaSSL_set_ex_data(CYASSL* ssl, int idx, void* data)
{
#ifdef FORTRESS
if (ssl != NULL && idx < MAX_EX_DATA)
{
ssl->ex_data[idx] = data;
return SSL_SUCCESS;
}
#else
(void)ssl;
(void)idx;
(void)data;
#endif
return SSL_FAILURE;
}
int CyaSSL_set_session_id_context(CYASSL* ssl, const unsigned char* id,
unsigned int len)
{
(void)ssl;
(void)id;
(void)len;
return 0;
}
void CyaSSL_set_connect_state(CYASSL* ssl)
{
(void)ssl;
/* client by default */
}
#endif
int CyaSSL_get_shutdown(const CYASSL* ssl)
{
return (ssl->options.isClosed ||
ssl->options.connReset ||
ssl->options.sentNotify);
}
int CyaSSL_session_reused(CYASSL* ssl)
{
return ssl->options.resuming;
}
#ifdef OPENSSL_EXTRA
void CyaSSL_SESSION_free(CYASSL_SESSION* session)
{
(void)session;
}
#endif
const char* CyaSSL_get_version(CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_version");
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return "SSLv3";
case TLSv1_MINOR :
return "TLSv1";
case TLSv1_1_MINOR :
return "TLSv1.1";
case TLSv1_2_MINOR :
return "TLSv1.2";
default:
return "unknown";
}
}
else if (ssl->version.major == DTLS_MAJOR) {
switch (ssl->version.minor) {
case DTLS_MINOR :
return "DTLS";
case DTLSv1_2_MINOR :
return "DTLSv1.2";
default:
return "unknown";
}
}
return "unknown";
}
int CyaSSL_get_current_cipher_suite(CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_current_cipher_suite");
if (ssl)
return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite;
return 0;
}
CYASSL_CIPHER* CyaSSL_get_current_cipher(CYASSL* ssl)
{
CYASSL_ENTER("SSL_get_current_cipher");
if (ssl)
return &ssl->cipher;
else
return NULL;
}
const char* CyaSSL_CIPHER_get_name(const CYASSL_CIPHER* cipher)
{
(void)cipher;
CYASSL_ENTER("SSL_CIPHER_get_name");
#ifndef NO_ERROR_STRINGS
if (cipher) {
#ifdef HAVE_ECC
if (cipher->ssl->options.cipherSuite0 == ECC_BYTE) {
/* ECC suites */
switch (cipher->ssl->options.cipherSuite) {
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 :
return "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256";
#endif
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 :
return "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256";
#ifndef NO_RSA
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 :
return "TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256";
#endif
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 :
return "TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256";
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 :
return "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384";
#endif
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 :
return "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384";
#ifndef NO_RSA
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 :
return "TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384";
#endif
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 :
return "TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384";
#ifndef NO_SHA
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA :
return "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA";
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA :
return "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA";
#endif
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA :
return "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA";
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA :
return "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA";
#ifndef NO_RC4
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_RC4_128_SHA :
return "TLS_ECDHE_RSA_WITH_RC4_128_SHA";
#endif
case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA :
return "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA";
#endif
#ifndef NO_DES3
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA :
return "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA";
#endif
case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA :
return "TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA";
#endif
#ifndef NO_RSA
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA :
return "TLS_ECDH_RSA_WITH_AES_128_CBC_SHA";
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA :
return "TLS_ECDH_RSA_WITH_AES_256_CBC_SHA";
#endif
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA :
return "TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA";
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA :
return "TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA";
#ifndef NO_RC4
#ifndef NO_RSA
case TLS_ECDH_RSA_WITH_RC4_128_SHA :
return "TLS_ECDH_RSA_WITH_RC4_128_SHA";
#endif
case TLS_ECDH_ECDSA_WITH_RC4_128_SHA :
return "TLS_ECDH_ECDSA_WITH_RC4_128_SHA";
#endif
#ifndef NO_DES3
#ifndef NO_RSA
case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA :
return "TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA";
#endif
case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA :
return "TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA";
#endif
#endif /* NO_SHA */
#ifdef HAVE_AESGCM
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 :
return "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256";
case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 :
return "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384";
#endif
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 :
return "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256";
case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 :
return "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384";
#ifndef NO_RSA
case TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 :
return "TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256";
case TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 :
return "TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384";
#endif
case TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 :
return "TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256";
case TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 :
return "TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384";
#endif
#ifdef HAVE_AESCCM
#ifndef NO_RSA
case TLS_RSA_WITH_AES_128_CCM_8 :
return "TLS_RSA_WITH_AES_128_CCM_8";
case TLS_RSA_WITH_AES_256_CCM_8 :
return "TLS_RSA_WITH_AES_256_CCM_8";
#endif
case TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8:
return "TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8";
case TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 :
return "TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8";
#endif
default:
return "NONE";
}
}
#endif /* ECC */
if (cipher->ssl->options.cipherSuite0 != ECC_BYTE) {
/* normal suites */
switch (cipher->ssl->options.cipherSuite) {
#ifndef NO_RSA
#ifndef NO_RC4
#ifndef NO_SHA
case SSL_RSA_WITH_RC4_128_SHA :
return "SSL_RSA_WITH_RC4_128_SHA";
#endif
#ifndef NO_MD5
case SSL_RSA_WITH_RC4_128_MD5 :
return "SSL_RSA_WITH_RC4_128_MD5";
#endif
#endif
#ifndef NO_SHA
#ifndef NO_DES3
case SSL_RSA_WITH_3DES_EDE_CBC_SHA :
return "SSL_RSA_WITH_3DES_EDE_CBC_SHA";
#endif
case TLS_RSA_WITH_AES_128_CBC_SHA :
return "TLS_RSA_WITH_AES_128_CBC_SHA";
case TLS_RSA_WITH_AES_256_CBC_SHA :
return "TLS_RSA_WITH_AES_256_CBC_SHA";
#endif
case TLS_RSA_WITH_AES_128_CBC_SHA256 :
return "TLS_RSA_WITH_AES_128_CBC_SHA256";
case TLS_RSA_WITH_AES_256_CBC_SHA256 :
return "TLS_RSA_WITH_AES_256_CBC_SHA256";
#ifdef HAVE_BLAKE2
case TLS_RSA_WITH_AES_128_CBC_B2B256:
return "TLS_RSA_WITH_AES_128_CBC_B2B256";
case TLS_RSA_WITH_AES_256_CBC_B2B256:
return "TLS_RSA_WITH_AES_256_CBC_B2B256";
#endif
#ifndef NO_SHA
case TLS_RSA_WITH_NULL_SHA :
return "TLS_RSA_WITH_NULL_SHA";
#endif
case TLS_RSA_WITH_NULL_SHA256 :
return "TLS_RSA_WITH_NULL_SHA256";
#endif /* NO_RSA */
#ifndef NO_PSK
case TLS_PSK_WITH_AES_128_CBC_SHA256 :
return "TLS_PSK_WITH_AES_128_CBC_SHA256";
#ifndef NO_SHA
case TLS_PSK_WITH_AES_128_CBC_SHA :
return "TLS_PSK_WITH_AES_128_CBC_SHA";
case TLS_PSK_WITH_AES_256_CBC_SHA :
return "TLS_PSK_WITH_AES_256_CBC_SHA";
#endif
#ifndef NO_SHA256
#ifdef HAVE_AESCCM
case TLS_PSK_WITH_AES_128_CCM_8 :
return "TLS_PSK_WITH_AES_128_CCM_8";
case TLS_PSK_WITH_AES_256_CCM_8 :
return "TLS_PSK_WITH_AES_256_CCM_8";
#endif
case TLS_PSK_WITH_NULL_SHA256 :
return "TLS_PSK_WITH_NULL_SHA256";
#endif
#ifndef NO_SHA
case TLS_PSK_WITH_NULL_SHA :
return "TLS_PSK_WITH_NULL_SHA";
#endif
#endif /* NO_PSK */
#ifndef NO_RSA
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 :
return "TLS_DHE_RSA_WITH_AES_128_CBC_SHA256";
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 :
return "TLS_DHE_RSA_WITH_AES_256_CBC_SHA256";
#ifndef NO_SHA
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA :
return "TLS_DHE_RSA_WITH_AES_128_CBC_SHA";
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA :
return "TLS_DHE_RSA_WITH_AES_256_CBC_SHA";
#endif
#ifndef NO_HC128
#ifndef NO_MD5
case TLS_RSA_WITH_HC_128_MD5 :
return "TLS_RSA_WITH_HC_128_MD5";
#endif
#ifndef NO_SHA
case TLS_RSA_WITH_HC_128_SHA :
return "TLS_RSA_WITH_HC_128_SHA";
#endif
#ifdef HAVE_BLAKE2
case TLS_RSA_WITH_HC_128_B2B256:
return "TLS_RSA_WITH_HC_128_B2B256";
#endif
#endif /* NO_HC128 */
#ifndef NO_SHA
#ifndef NO_RABBIT
case TLS_RSA_WITH_RABBIT_SHA :
return "TLS_RSA_WITH_RABBIT_SHA";
#endif
#ifdef HAVE_NTRU
#ifndef NO_RC4
case TLS_NTRU_RSA_WITH_RC4_128_SHA :
return "TLS_NTRU_RSA_WITH_RC4_128_SHA";
#endif
#ifndef NO_DES3
case TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA :
return "TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA";
#endif
case TLS_NTRU_RSA_WITH_AES_128_CBC_SHA :
return "TLS_NTRU_RSA_WITH_AES_128_CBC_SHA";
case TLS_NTRU_RSA_WITH_AES_256_CBC_SHA :
return "TLS_NTRU_RSA_WITH_AES_256_CBC_SHA";
#endif /* HAVE_NTRU */
#endif /* NO_SHA */
case TLS_RSA_WITH_AES_128_GCM_SHA256 :
return "TLS_RSA_WITH_AES_128_GCM_SHA256";
case TLS_RSA_WITH_AES_256_GCM_SHA384 :
return "TLS_RSA_WITH_AES_256_GCM_SHA384";
case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 :
return "TLS_DHE_RSA_WITH_AES_128_GCM_SHA256";
case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 :
return "TLS_DHE_RSA_WITH_AES_256_GCM_SHA384";
#ifndef NO_SHA
case TLS_RSA_WITH_CAMELLIA_128_CBC_SHA :
return "TLS_RSA_WITH_CAMELLIA_128_CBC_SHA";
case TLS_RSA_WITH_CAMELLIA_256_CBC_SHA :
return "TLS_RSA_WITH_CAMELLIA_256_CBC_SHA";
#endif
case TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 :
return "TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256";
case TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 :
return "TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256";
#ifndef NO_SHA
case TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA :
return "TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA";
case TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA :
return "TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA";
#endif
case TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 :
return "TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256";
case TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 :
return "TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256";
#endif /* NO_RSA */
default:
return "NONE";
} /* switch */
} /* normal / ECC */
}
#endif /* NO_ERROR_STRINGS */
return "NONE";
}
const char* CyaSSL_get_cipher(CYASSL* ssl)
{
CYASSL_ENTER("CyaSSL_get_cipher");
return CyaSSL_CIPHER_get_name(CyaSSL_get_current_cipher(ssl));
}
#ifdef OPENSSL_EXTRA
/* XXX shuld be NO_DH */
#ifndef NO_CERTS
/* server ctx Diffie-Hellman parameters, SSL_SUCCESS on ok */
int CyaSSL_CTX_SetTmpDH(CYASSL_CTX* ctx, const unsigned char* p, int pSz,
const unsigned char* g, int gSz)
{
CYASSL_ENTER("CyaSSL_CTX_SetTmpDH");
if (ctx == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG;
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_DH);
XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_DH);
ctx->serverDH_P.buffer = (byte*)XMALLOC(pSz, ctx->heap,DYNAMIC_TYPE_DH);
if (ctx->serverDH_P.buffer == NULL)
return MEMORY_E;
ctx->serverDH_G.buffer = (byte*)XMALLOC(gSz, ctx->heap,DYNAMIC_TYPE_DH);
if (ctx->serverDH_G.buffer == NULL) {
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_DH);
return MEMORY_E;
}
ctx->serverDH_P.length = pSz;
ctx->serverDH_G.length = gSz;
XMEMCPY(ctx->serverDH_P.buffer, p, pSz);
XMEMCPY(ctx->serverDH_G.buffer, g, gSz);
ctx->haveDH = 1;
CYASSL_LEAVE("CyaSSL_CTX_SetTmpDH", 0);
return SSL_SUCCESS;
}
#endif /* !NO_CERTS */
char* CyaSSL_CIPHER_description(CYASSL_CIPHER* cipher, char* in, int len)
{
(void)cipher;
(void)in;
(void)len;
return 0;
}
CYASSL_SESSION* CyaSSL_get1_session(CYASSL* ssl) /* what's ref count */
{
(void)ssl;
return 0;
}
void CyaSSL_X509_free(CYASSL_X509* buf)
{
(void)buf;
}
/* was do nothing */
/*
void OPENSSL_free(void* buf)
{
(void)buf;
}
*/
int CyaSSL_OCSP_parse_url(char* url, char** host, char** port, char** path,
int* ssl)
{
(void)url;
(void)host;
(void)port;
(void)path;
(void)ssl;
return 0;
}
CYASSL_METHOD* CyaSSLv2_client_method(void)
{
return 0;
}
CYASSL_METHOD* CyaSSLv2_server_method(void)
{
return 0;
}
#ifndef NO_MD4
void CyaSSL_MD4_Init(CYASSL_MD4_CTX* md4)
{
/* make sure we have a big enough buffer */
typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1];
(void) sizeof(ok);
CYASSL_ENTER("MD4_Init");
InitMd4((Md4*)md4);
}
void CyaSSL_MD4_Update(CYASSL_MD4_CTX* md4, const void* data,
unsigned long len)
{
CYASSL_ENTER("MD4_Update");
Md4Update((Md4*)md4, (const byte*)data, (word32)len);
}
void CyaSSL_MD4_Final(unsigned char* digest, CYASSL_MD4_CTX* md4)
{
CYASSL_ENTER("MD4_Final");
Md4Final((Md4*)md4, digest);
}
#endif /* NO_MD4 */
CYASSL_BIO* CyaSSL_BIO_pop(CYASSL_BIO* top)
{
(void)top;
return 0;
}
int CyaSSL_BIO_pending(CYASSL_BIO* bio)
{
(void)bio;
return 0;
}
CYASSL_BIO_METHOD* CyaSSL_BIO_s_mem(void)
{
static CYASSL_BIO_METHOD meth;
CYASSL_ENTER("BIO_s_mem");
meth.type = BIO_MEMORY;
return &meth;
}
CYASSL_BIO_METHOD* CyaSSL_BIO_f_base64(void)
{
return 0;
}
void CyaSSL_BIO_set_flags(CYASSL_BIO* bio, int flags)
{
(void)bio;
(void)flags;
}
void CyaSSL_RAND_screen(void)
{
}
const char* CyaSSL_RAND_file_name(char* fname, unsigned long len)
{
(void)fname;
(void)len;
return 0;
}
int CyaSSL_RAND_write_file(const char* fname)
{
(void)fname;
return 0;
}
int CyaSSL_RAND_load_file(const char* fname, long len)
{
(void)fname;
/* CTaoCrypt provides enough entropy internally or will report error */
if (len == -1)
return 1024;
else
return (int)len;
}
int CyaSSL_RAND_egd(const char* path)
{
(void)path;
return 0;
}
CYASSL_COMP_METHOD* CyaSSL_COMP_zlib(void)
{
return 0;
}
CYASSL_COMP_METHOD* CyaSSL_COMP_rle(void)
{
return 0;
}
int CyaSSL_COMP_add_compression_method(int method, void* data)
{
(void)method;
(void)data;
return 0;
}
int CyaSSL_get_ex_new_index(long idx, void* data, void* cb1, void* cb2,
void* cb3)
{
(void)idx;
(void)data;
(void)cb1;
(void)cb2;
(void)cb3;
return 0;
}
void CyaSSL_set_dynlock_create_callback(CYASSL_dynlock_value* (*f)(
const char*, int))
{
(void)f;
}
void CyaSSL_set_dynlock_lock_callback(
void (*f)(int, CYASSL_dynlock_value*, const char*, int))
{
(void)f;
}
void CyaSSL_set_dynlock_destroy_callback(
void (*f)(CYASSL_dynlock_value*, const char*, int))
{
(void)f;
}
const char* CyaSSL_X509_verify_cert_error_string(long err)
{
(void)err;
return 0;
}
int CyaSSL_X509_LOOKUP_add_dir(CYASSL_X509_LOOKUP* lookup, const char* dir,
long len)
{
(void)lookup;
(void)dir;
(void)len;
return 0;
}
int CyaSSL_X509_LOOKUP_load_file(CYASSL_X509_LOOKUP* lookup,
const char* file, long len)
{
(void)lookup;
(void)file;
(void)len;
return 0;
}
CYASSL_X509_LOOKUP_METHOD* CyaSSL_X509_LOOKUP_hash_dir(void)
{
return 0;
}
CYASSL_X509_LOOKUP_METHOD* CyaSSL_X509_LOOKUP_file(void)
{
return 0;
}
CYASSL_X509_LOOKUP* CyaSSL_X509_STORE_add_lookup(CYASSL_X509_STORE* store,
CYASSL_X509_LOOKUP_METHOD* m)
{
(void)store;
(void)m;
return 0;
}
int CyaSSL_X509_STORE_add_cert(CYASSL_X509_STORE* store, CYASSL_X509* x509)
{
int result = SSL_FATAL_ERROR;
CYASSL_ENTER("CyaSSL_X509_STORE_add_cert");
if (store != NULL && store->cm != NULL && x509 != NULL) {
buffer derCert;
derCert.buffer = (byte*)XMALLOC(x509->derCert.length,
NULL, DYNAMIC_TYPE_CERT);
if (derCert.buffer != NULL) {
derCert.length = x509->derCert.length;
// AddCA() frees the buffer.
XMEMCPY(derCert.buffer,
x509->derCert.buffer, x509->derCert.length);
result = AddCA(store->cm, derCert, CYASSL_USER_CA, 1);
if (result != SSL_SUCCESS) result = SSL_FATAL_ERROR;
}
}
CYASSL_LEAVE("CyaSSL_X509_STORE_add_cert", result);
return result;
}
CYASSL_X509_STORE* CyaSSL_X509_STORE_new(void)
{
CYASSL_X509_STORE* store = NULL;
store = (CYASSL_X509_STORE*)XMALLOC(sizeof(CYASSL_X509_STORE), NULL, 0);
if (store != NULL) {
store->cm = CyaSSL_CertManagerNew();
if (store->cm == NULL) {
XFREE(store, NULL, 0);
store = NULL;
}
}
return store;
}
void CyaSSL_X509_STORE_free(CYASSL_X509_STORE* store)
{
if (store != NULL) {
if (store->cm != NULL)
CyaSSL_CertManagerFree(store->cm);
XFREE(store, NULL, 0);
}
}
int CyaSSL_X509_STORE_set_default_paths(CYASSL_X509_STORE* store)
{
(void)store;
return SSL_SUCCESS;
}
int CyaSSL_X509_STORE_get_by_subject(CYASSL_X509_STORE_CTX* ctx, int idx,
CYASSL_X509_NAME* name, CYASSL_X509_OBJECT* obj)
{
(void)ctx;
(void)idx;
(void)name;
(void)obj;
return 0;
}
CYASSL_X509_STORE_CTX* CyaSSL_X509_STORE_CTX_new(void)
{
CYASSL_X509_STORE_CTX* ctx = (CYASSL_X509_STORE_CTX*)XMALLOC(
sizeof(CYASSL_X509_STORE_CTX), NULL, 0);
if (ctx != NULL)
CyaSSL_X509_STORE_CTX_init(ctx, NULL, NULL, NULL);
return ctx;
}
int CyaSSL_X509_STORE_CTX_init(CYASSL_X509_STORE_CTX* ctx,
CYASSL_X509_STORE* store, CYASSL_X509* x509, STACK_OF(CYASSL_X509)* sk)
{
(void)sk;
if (ctx != NULL) {
ctx->store = store;
ctx->current_cert = x509;
ctx->domain = NULL;
ctx->ex_data = NULL;
ctx->userCtx = NULL;
ctx->error = 0;
ctx->error_depth = 0;
ctx->discardSessionCerts = 0;
return SSL_SUCCESS;
}
return SSL_FATAL_ERROR;
}
void CyaSSL_X509_STORE_CTX_free(CYASSL_X509_STORE_CTX* ctx)
{
if (ctx != NULL) {
if (ctx->store != NULL)
CyaSSL_X509_STORE_free(ctx->store);
if (ctx->current_cert != NULL)
CyaSSL_FreeX509(ctx->current_cert);
XFREE(ctx, NULL, 0);
}
}
void CyaSSL_X509_STORE_CTX_cleanup(CYASSL_X509_STORE_CTX* ctx)
{
(void)ctx;
}
int CyaSSL_X509_verify_cert(CYASSL_X509_STORE_CTX* ctx)
{
if (ctx != NULL && ctx->store != NULL && ctx->store->cm != NULL
&& ctx->current_cert != NULL) {
return CyaSSL_CertManagerVerifyBuffer(ctx->store->cm,
ctx->current_cert->derCert.buffer,
ctx->current_cert->derCert.length,
SSL_FILETYPE_ASN1);
}
return SSL_FATAL_ERROR;
}
CYASSL_ASN1_TIME* CyaSSL_X509_CRL_get_lastUpdate(CYASSL_X509_CRL* crl)
{
(void)crl;
return 0;
}
CYASSL_ASN1_TIME* CyaSSL_X509_CRL_get_nextUpdate(CYASSL_X509_CRL* crl)
{
(void)crl;
return 0;
}
CYASSL_EVP_PKEY* CyaSSL_X509_get_pubkey(CYASSL_X509* x509)
{
CYASSL_EVP_PKEY* key = NULL;
if (x509 != NULL) {
key = (CYASSL_EVP_PKEY*)XMALLOC(
sizeof(CYASSL_EVP_PKEY), NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (key != NULL) {
key->type = x509->pubKeyOID;
key->save_type = 0;
key->pkey.ptr = (char*)XMALLOC(
x509->pubKey.length, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (key->pkey.ptr == NULL) {
XFREE(key, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return NULL;
}
XMEMCPY(key->pkey.ptr,
x509->pubKey.buffer, x509->pubKey.length);
key->pkey_sz = x509->pubKey.length;
}
}
return key;
}
int CyaSSL_X509_CRL_verify(CYASSL_X509_CRL* crl, CYASSL_EVP_PKEY* key)
{
(void)crl;
(void)key;
return 0;
}
void CyaSSL_X509_STORE_CTX_set_error(CYASSL_X509_STORE_CTX* ctx, int err)
{
(void)ctx;
(void)err;
}
void CyaSSL_X509_OBJECT_free_contents(CYASSL_X509_OBJECT* obj)
{
(void)obj;
}
void CyaSSL_EVP_PKEY_free(CYASSL_EVP_PKEY* key)
{
if (key != NULL) {
if (key->pkey.ptr != NULL)
XFREE(key->pkey.ptr, NULL, 0);
XFREE(key, NULL, 0);
}
}
int CyaSSL_X509_cmp_current_time(const CYASSL_ASN1_TIME* asnTime)
{
(void)asnTime;
return 0;
}
int CyaSSL_sk_X509_REVOKED_num(CYASSL_X509_REVOKED* revoked)
{
(void)revoked;
return 0;
}
CYASSL_X509_REVOKED* CyaSSL_X509_CRL_get_REVOKED(CYASSL_X509_CRL* crl)
{
(void)crl;
return 0;
}
CYASSL_X509_REVOKED* CyaSSL_sk_X509_REVOKED_value(
CYASSL_X509_REVOKED* revoked, int value)
{
(void)revoked;
(void)value;
return 0;
}
CYASSL_ASN1_INTEGER* CyaSSL_X509_get_serialNumber(CYASSL_X509* x509)
{
(void)x509;
return 0;
}
int CyaSSL_ASN1_TIME_print(CYASSL_BIO* bio, const CYASSL_ASN1_TIME* asnTime)
{
(void)bio;
(void)asnTime;
return 0;
}
int CyaSSL_ASN1_INTEGER_cmp(const CYASSL_ASN1_INTEGER* a,
const CYASSL_ASN1_INTEGER* b)
{
(void)a;
(void)b;
return 0;
}
long CyaSSL_ASN1_INTEGER_get(const CYASSL_ASN1_INTEGER* i)
{
(void)i;
return 0;
}
void* CyaSSL_X509_STORE_CTX_get_ex_data(CYASSL_X509_STORE_CTX* ctx, int idx)
{
#ifdef FORTRESS
if (ctx != NULL && idx == 0)
return ctx->ex_data;
#else
(void)ctx;
(void)idx;
#endif
return 0;
}
int CyaSSL_get_ex_data_X509_STORE_CTX_idx(void)
{
return 0;
}
void* CyaSSL_get_ex_data(const CYASSL* ssl, int idx)
{
#ifdef FORTRESS
if (ssl != NULL && idx < MAX_EX_DATA)
return ssl->ex_data[idx];
#else
(void)ssl;
(void)idx;
#endif
return 0;
}
void CyaSSL_CTX_set_info_callback(CYASSL_CTX* ctx, void (*f)(void))
{
(void)ctx;
(void)f;
}
unsigned long CyaSSL_ERR_peek_error(void)
{
return 0;
}
int CyaSSL_ERR_GET_REASON(int err)
{
(void)err;
return 0;
}
char* CyaSSL_alert_type_string_long(int alertID)
{
(void)alertID;
return 0;
}
char* CyaSSL_alert_desc_string_long(int alertID)
{
(void)alertID;
return 0;
}
char* CyaSSL_state_string_long(CYASSL* ssl)
{
(void)ssl;
return 0;
}
int CyaSSL_PEM_def_callback(char* name, int num, int w, void* key)
{
(void)name;
(void)num;
(void)w;
(void)key;
return 0;
}
long CyaSSL_CTX_sess_accept(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_connect(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_accept_good(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_connect_good(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_accept_renegotiate(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_connect_renegotiate(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_hits(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_cb_hits(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_cache_full(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_misses(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_timeouts(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long CyaSSL_CTX_sess_number(CYASSL_CTX* ctx)
{
(void)ctx;
return 0;
}
void CyaSSL_DES_set_key_unchecked(CYASSL_const_DES_cblock* myDes,
CYASSL_DES_key_schedule* key)
{
(void)myDes;
(void)key;
}
void CyaSSL_DES_set_odd_parity(CYASSL_DES_cblock* myDes)
{
(void)myDes;
}
void CyaSSL_DES_ecb_encrypt(CYASSL_DES_cblock* desa,
CYASSL_DES_cblock* desb, CYASSL_DES_key_schedule* key, int len)
{
(void)desa;
(void)desb;
(void)key;
(void)len;
}
int CyaSSL_BIO_printf(CYASSL_BIO* bio, const char* format, ...)
{
(void)bio;
(void)format;
return 0;
}
int CyaSSL_ASN1_UTCTIME_print(CYASSL_BIO* bio, const CYASSL_ASN1_UTCTIME* a)
{
(void)bio;
(void)a;
return 0;
}
int CyaSSL_sk_num(CYASSL_X509_REVOKED* rev)
{
(void)rev;
return 0;
}
void* CyaSSL_sk_value(CYASSL_X509_REVOKED* rev, int i)
{
(void)rev;
(void)i;
return 0;
}
/* stunnel 4.28 needs */
void* CyaSSL_CTX_get_ex_data(const CYASSL_CTX* ctx, int d)
{
(void)ctx;
(void)d;
return 0;
}
int CyaSSL_CTX_set_ex_data(CYASSL_CTX* ctx, int d, void* p)
{
(void)ctx;
(void)d;
(void)p;
return SSL_SUCCESS;
}
void CyaSSL_CTX_sess_set_get_cb(CYASSL_CTX* ctx,
CYASSL_SESSION*(*f)(CYASSL*, unsigned char*, int, int*))
{
(void)ctx;
(void)f;
}
void CyaSSL_CTX_sess_set_new_cb(CYASSL_CTX* ctx,
int (*f)(CYASSL*, CYASSL_SESSION*))
{
(void)ctx;
(void)f;
}
void CyaSSL_CTX_sess_set_remove_cb(CYASSL_CTX* ctx, void (*f)(CYASSL_CTX*,
CYASSL_SESSION*))
{
(void)ctx;
(void)f;
}
int CyaSSL_i2d_SSL_SESSION(CYASSL_SESSION* sess, unsigned char** p)
{
(void)sess;
(void)p;
return sizeof(CYASSL_SESSION);
}
CYASSL_SESSION* CyaSSL_d2i_SSL_SESSION(CYASSL_SESSION** sess,
const unsigned char** p, long i)
{
(void)p;
(void)i;
if (sess)
return *sess;
return NULL;
}
long CyaSSL_SESSION_get_timeout(const CYASSL_SESSION* sess)
{
CYASSL_ENTER("CyaSSL_SESSION_get_timeout");
return sess->timeout;
}
long CyaSSL_SESSION_get_time(const CYASSL_SESSION* sess)
{
CYASSL_ENTER("CyaSSL_SESSION_get_time");
return sess->bornOn;
}
int CyaSSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b,
void* c)
{
(void)idx;
(void)arg;
(void)a;
(void)b;
(void)c;
return 0;
}
#endif /* OPENSSL_EXTRA */
#ifdef KEEP_PEER_CERT
char* CyaSSL_X509_get_subjectCN(CYASSL_X509* x509)
{
if (x509 == NULL)
return NULL;
return x509->subjectCN;
}
#endif /* KEEP_PEER_CERT */
#ifdef OPENSSL_EXTRA
#ifdef FORTRESS
int CyaSSL_cmp_peer_cert_to_file(CYASSL* ssl, const char *fname)
{
int ret = SSL_FATAL_ERROR;
CYASSL_ENTER("CyaSSL_cmp_peer_cert_to_file");
if (ssl != NULL && fname != NULL)
{
XFILE file = XBADFILE;
long sz = 0;
byte staticBuffer[FILE_BUFFER_SIZE];
byte* myBuffer = staticBuffer;
CYASSL_CTX* ctx = ssl->ctx;
EncryptedInfo info;
buffer fileDer;
int eccKey = 0;
CYASSL_X509* peer_cert = &ssl->peerCert;
info.set = 0;
info.ctx = ctx;
info.consumed = 0;
fileDer.buffer = 0;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return SSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
CYASSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
}
if ((myBuffer != NULL) &&
(sz > 0) &&
(XFREAD(myBuffer, sz, 1, file) > 0) &&
(PemToDer(myBuffer, sz, CERT_TYPE,
&fileDer, ctx->heap, &info, &eccKey) == 0) &&
(fileDer.length != 0) &&
(fileDer.length == peer_cert->derCert.length) &&
(XMEMCMP(peer_cert->derCert.buffer, fileDer.buffer,
fileDer.length) == 0))
{
ret = 0;
}
XFCLOSE(file);
if (fileDer.buffer)
XFREE(fileDer.buffer, ctx->heap, DYNAMIC_TYPE_CERT);
if (myBuffer && (myBuffer != staticBuffer))
XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
}
return ret;
}
#endif
static RNG globalRNG;
static int initGlobalRNG = 0;
/* SSL_SUCCESS on ok */
int CyaSSL_RAND_seed(const void* seed, int len)
{
CYASSL_MSG("CyaSSL_RAND_seed");
(void)seed;
(void)len;
if (initGlobalRNG == 0) {
if (InitRng(&globalRNG) < 0) {
CYASSL_MSG("CyaSSL Init Global RNG failed");
}
initGlobalRNG = 1;
}
return SSL_SUCCESS;
}
/* SSL_SUCCESS on ok */
int CyaSSL_RAND_bytes(unsigned char* buf, int num)
{
RNG tmpRNG;
RNG* rng = &tmpRNG;
CYASSL_ENTER("RAND_bytes");
if (InitRng(&tmpRNG) != 0) {
CYASSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
CYASSL_MSG("Global RNG no Init");
return 0;
}
rng = &globalRNG;
}
RNG_GenerateBlock(rng, buf, num);
return SSL_SUCCESS;
}
CYASSL_BN_CTX* CyaSSL_BN_CTX_new(void)
{
static int ctx; /* ctaocrypt doesn't now need ctx */
CYASSL_MSG("CyaSSL_BN_CTX_new");
return (CYASSL_BN_CTX*)&ctx;
}
void CyaSSL_BN_CTX_init(CYASSL_BN_CTX* ctx)
{
(void)ctx;
CYASSL_MSG("CyaSSL_BN_CTX_init");
}
void CyaSSL_BN_CTX_free(CYASSL_BN_CTX* ctx)
{
(void)ctx;
CYASSL_MSG("CyaSSL_BN_CTX_free");
/* do free since static ctx that does nothing */
}
static void InitCyaSSL_BigNum(CYASSL_BIGNUM* bn)
{
CYASSL_MSG("InitCyaSSL_BigNum");
if (bn) {
bn->neg = 0;
bn->internal = NULL;
}
}
CYASSL_BIGNUM* CyaSSL_BN_new(void)
{
CYASSL_BIGNUM* external;
mp_int* mpi;
CYASSL_MSG("CyaSSL_BN_new");
mpi = (mp_int*) XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (mpi == NULL) {
CYASSL_MSG("CyaSSL_BN_new malloc mpi failure");
return NULL;
}
external = (CYASSL_BIGNUM*) XMALLOC(sizeof(CYASSL_BIGNUM), NULL,
DYNAMIC_TYPE_BIGINT);
if (external == NULL) {
CYASSL_MSG("CyaSSL_BN_new malloc CYASSL_BIGNUM failure");
XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT);
return NULL;
}
InitCyaSSL_BigNum(external);
external->internal = mpi;
if (mp_init(mpi) != MP_OKAY) {
CyaSSL_BN_free(external);
return NULL;
}
return external;
}
void CyaSSL_BN_free(CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_free");
if (bn) {
if (bn->internal) {
mp_clear((mp_int*)bn->internal);
XFREE(bn->internal, NULL, DYNAMIC_TYPE_BIGINT);
bn->internal = NULL;
}
XFREE(bn, NULL, DYNAMIC_TYPE_BIGINT);
}
}
void CyaSSL_BN_clear_free(CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_clear_free");
CyaSSL_BN_free(bn);
}
/* SSL_SUCCESS on ok */
int CyaSSL_BN_sub(CYASSL_BIGNUM* r, const CYASSL_BIGNUM* a,
const CYASSL_BIGNUM* b)
{
CYASSL_MSG("CyaSSL_BN_sub");
if (r == NULL || a == NULL || b == NULL)
return 0;
if (mp_sub((mp_int*)a->internal,(mp_int*)b->internal,
(mp_int*)r->internal) == MP_OKAY)
return SSL_SUCCESS;
CYASSL_MSG("CyaSSL_BN_sub mp_sub failed");
return 0;
}
/* SSL_SUCCESS on ok */
int CyaSSL_BN_mod(CYASSL_BIGNUM* r, const CYASSL_BIGNUM* a,
const CYASSL_BIGNUM* b, const CYASSL_BN_CTX* c)
{
(void)c;
CYASSL_MSG("CyaSSL_BN_mod");
if (r == NULL || a == NULL || b == NULL)
return 0;
if (mp_mod((mp_int*)a->internal,(mp_int*)b->internal,
(mp_int*)r->internal) == MP_OKAY)
return SSL_SUCCESS;
CYASSL_MSG("CyaSSL_BN_mod mp_mod failed");
return 0;
}
const CYASSL_BIGNUM* CyaSSL_BN_value_one(void)
{
static CYASSL_BIGNUM* bn_one = NULL;
CYASSL_MSG("CyaSSL_BN_value_one");
if (bn_one == NULL) {
bn_one = CyaSSL_BN_new();
if (bn_one)
mp_set_int((mp_int*)bn_one->internal, 1);
}
return bn_one;
}
int CyaSSL_BN_num_bytes(const CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_num_bytes");
if (bn == NULL || bn->internal == NULL)
return 0;
return mp_unsigned_bin_size((mp_int*)bn->internal);
}
int CyaSSL_BN_num_bits(const CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_num_bits");
if (bn == NULL || bn->internal == NULL)
return 0;
return mp_count_bits((mp_int*)bn->internal);
}
int CyaSSL_BN_is_zero(const CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_is_zero");
if (bn == NULL || bn->internal == NULL)
return 0;
return mp_iszero((mp_int*)bn->internal);
}
int CyaSSL_BN_is_one(const CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_is_one");
if (bn == NULL || bn->internal == NULL)
return 0;
if (mp_cmp_d((mp_int*)bn->internal, 1) == 0)
return 1;
return 0;
}
int CyaSSL_BN_is_odd(const CYASSL_BIGNUM* bn)
{
CYASSL_MSG("CyaSSL_BN_is_odd");
if (bn == NULL || bn->internal == NULL)
return 0;
return mp_isodd((mp_int*)bn->internal);
}
int CyaSSL_BN_cmp(const CYASSL_BIGNUM* a, const CYASSL_BIGNUM* b)
{
CYASSL_MSG("CyaSSL_BN_cmp");
if (a == NULL || a->internal == NULL || b == NULL || b->internal ==NULL)
return 0;
return mp_cmp((mp_int*)a->internal, (mp_int*)b->internal);
}
int CyaSSL_BN_bn2bin(const CYASSL_BIGNUM* bn, unsigned char* r)
{
CYASSL_MSG("CyaSSL_BN_bn2bin");
if (bn == NULL || bn->internal == NULL) {
CYASSL_MSG("NULL bn error");
return SSL_FATAL_ERROR;
}
if (r == NULL)
return mp_unsigned_bin_size((mp_int*)bn->internal);
if (mp_to_unsigned_bin((mp_int*)bn->internal, r) != MP_OKAY) {
CYASSL_MSG("mp_to_unsigned_bin error");
return SSL_FATAL_ERROR;
}
return mp_unsigned_bin_size((mp_int*)bn->internal);
}
CYASSL_BIGNUM* CyaSSL_BN_bin2bn(const unsigned char* str, int len,
CYASSL_BIGNUM* ret)
{
CYASSL_MSG("CyaSSL_BN_bin2bn");
if (ret && ret->internal) {
if (mp_read_unsigned_bin((mp_int*)ret->internal, str, len) != 0) {
CYASSL_MSG("mp_read_unsigned_bin failure");
return NULL;
}
}
else {
CYASSL_MSG("CyaSSL_BN_bin2bn wants return bignum");
}
return ret;
}
int CyaSSL_mask_bits(CYASSL_BIGNUM* bn, int n)
{
(void)bn;
(void)n;
CYASSL_MSG("CyaSSL_BN_mask_bits");
return SSL_FATAL_ERROR;
}
/* SSL_SUCCESS on ok */
int CyaSSL_BN_rand(CYASSL_BIGNUM* bn, int bits, int top, int bottom)
{
byte buff[1024];
RNG tmpRNG;
RNG* rng = &tmpRNG;
int len = bits/8;
(void)top;
(void)bottom;
CYASSL_MSG("CyaSSL_BN_rand");
if (bn == NULL || bn->internal == NULL) {
CYASSL_MSG("Bad function arguments");
return 0;
}
if (bits % 8)
len++;
if ( (InitRng(&tmpRNG)) != 0) {
CYASSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
CYASSL_MSG("Global RNG no Init");
return 0;
}
rng = &globalRNG;
}
RNG_GenerateBlock(rng, buff, len);
buff[0] |= 0x80 | 0x40;
buff[len-1] |= 0x01;
if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY) {
CYASSL_MSG("mp read bin failed");
return 0;
}
return SSL_SUCCESS;
}
int CyaSSL_BN_is_bit_set(const CYASSL_BIGNUM* bn, int n)
{
(void)bn;
(void)n;
CYASSL_MSG("CyaSSL_BN_is_bit_set");
return 0;
}
/* SSL_SUCCESS on ok */
int CyaSSL_BN_hex2bn(CYASSL_BIGNUM** bn, const char* str)
{
byte decoded[1024];
word32 decSz = sizeof(decoded);
CYASSL_MSG("CyaSSL_BN_hex2bn");
if (str == NULL) {
CYASSL_MSG("Bad function argument");
return 0;
}
if (Base16_Decode((byte*)str, (int)XSTRLEN(str), decoded, &decSz) < 0) {
CYASSL_MSG("Bad Base16_Decode error");
return 0;
}
if (bn == NULL)
return decSz;
if (*bn == NULL) {
*bn = CyaSSL_BN_new();
if (*bn == NULL) {
CYASSL_MSG("BN new failed");
return 0;
}
}
if (CyaSSL_BN_bin2bn(decoded, decSz, *bn) == NULL) {
CYASSL_MSG("Bad bin2bn error");
return 0;
}
return SSL_SUCCESS;
}
CYASSL_BIGNUM* CyaSSL_BN_dup(const CYASSL_BIGNUM* bn)
{
CYASSL_BIGNUM* ret;
CYASSL_MSG("CyaSSL_BN_dup");
if (bn == NULL || bn->internal == NULL) {
CYASSL_MSG("bn NULL error");
return NULL;
}
ret = CyaSSL_BN_new();
if (ret == NULL) {
CYASSL_MSG("bn new error");
return NULL;
}
if (mp_copy((mp_int*)bn->internal, (mp_int*)ret->internal) != MP_OKAY) {
CYASSL_MSG("mp_copy error");
CyaSSL_BN_free(ret);
return NULL;
}
return ret;
}
CYASSL_BIGNUM* CyaSSL_BN_copy(CYASSL_BIGNUM* r, const CYASSL_BIGNUM* bn)
{
(void)r;
(void)bn;
CYASSL_MSG("CyaSSL_BN_copy");
return NULL;
}
int CyaSSL_BN_set_word(CYASSL_BIGNUM* bn, unsigned long w)
{
(void)bn;
(void)w;
CYASSL_MSG("CyaSSL_BN_set_word");
return SSL_FATAL_ERROR;
}
int CyaSSL_BN_dec2bn(CYASSL_BIGNUM** bn, const char* str)
{
(void)bn;
(void)str;
CYASSL_MSG("CyaSSL_BN_dec2bn");
return SSL_FATAL_ERROR;
}
char* CyaSSL_BN_bn2dec(const CYASSL_BIGNUM* bn)
{
(void)bn;
CYASSL_MSG("CyaSSL_BN_bn2dec");
return NULL;
}
static void InitCyaSSL_DH(CYASSL_DH* dh)
{
if (dh) {
dh->p = NULL;
dh->g = NULL;
dh->pub_key = NULL;
dh->priv_key = NULL;
dh->internal = NULL;
dh->inSet = 0;
dh->exSet = 0;
}
}
CYASSL_DH* CyaSSL_DH_new(void)
{
CYASSL_DH* external;
DhKey* key;
CYASSL_MSG("CyaSSL_DH_new");
key = (DhKey*) XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH);
if (key == NULL) {
CYASSL_MSG("CyaSSL_DH_new malloc DhKey failure");
return NULL;
}
external = (CYASSL_DH*) XMALLOC(sizeof(CYASSL_DH), NULL,
DYNAMIC_TYPE_DH);
if (external == NULL) {
CYASSL_MSG("CyaSSL_DH_new malloc CYASSL_DH failure");
XFREE(key, NULL, DYNAMIC_TYPE_DH);
return NULL;
}
InitCyaSSL_DH(external);
InitDhKey(key);
external->internal = key;
return external;
}
void CyaSSL_DH_free(CYASSL_DH* dh)
{
CYASSL_MSG("CyaSSL_DH_free");
if (dh) {
if (dh->internal) {
FreeDhKey((DhKey*)dh->internal);
XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH);
dh->internal = NULL;
}
CyaSSL_BN_free(dh->priv_key);
CyaSSL_BN_free(dh->pub_key);
CyaSSL_BN_free(dh->g);
CyaSSL_BN_free(dh->p);
InitCyaSSL_DH(dh); /* set back to NULLs for safety */
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
}
}
static int SetDhInternal(CYASSL_DH* dh)
{
unsigned char p[1024];
unsigned char g[1024];
int pSz = sizeof(p);
int gSz = sizeof(g);
CYASSL_ENTER("SetDhInternal");
if (dh == NULL || dh->p == NULL || dh->g == NULL) {
CYASSL_MSG("Bad function arguments");
return SSL_FATAL_ERROR;
}
if (CyaSSL_BN_bn2bin(dh->p, NULL) > pSz) {
CYASSL_MSG("Bad p internal size");
return SSL_FATAL_ERROR;
}
if (CyaSSL_BN_bn2bin(dh->g, NULL) > gSz) {
CYASSL_MSG("Bad g internal size");
return SSL_FATAL_ERROR;
}
pSz = CyaSSL_BN_bn2bin(dh->p, p);
gSz = CyaSSL_BN_bn2bin(dh->g, g);
if (pSz <= 0 || gSz <= 0) {
CYASSL_MSG("Bad BN2bin set");
return SSL_FATAL_ERROR;
}
if (DhSetKey((DhKey*)dh->internal, p, pSz, g, gSz) < 0) {
CYASSL_MSG("Bad DH SetKey");
return SSL_FATAL_ERROR;
}
dh->inSet = 1;
return 0;
}
int CyaSSL_DH_size(CYASSL_DH* dh)
{
CYASSL_MSG("CyaSSL_DH_size");
if (dh == NULL)
return 0;
return CyaSSL_BN_num_bytes(dh->p);
}
/* return SSL_SUCCESS on ok, else 0 */
int CyaSSL_DH_generate_key(CYASSL_DH* dh)
{
unsigned char pub [768];
unsigned char priv[768];
word32 pubSz = sizeof(pub);
word32 privSz = sizeof(priv);
RNG tmpRNG;
RNG* rng = &tmpRNG;
CYASSL_MSG("CyaSSL_DH_generate_key");
if (dh == NULL || dh->p == NULL || dh->g == NULL) {
CYASSL_MSG("Bad function arguments");
return 0;
}
if (dh->inSet == 0) {
if (SetDhInternal(dh) < 0) {
CYASSL_MSG("Bad DH set internal");
return 0;
}
}
if ( (InitRng(&tmpRNG)) != 0) {
CYASSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
CYASSL_MSG("Global RNG no Init");
return 0;
}
rng = &globalRNG;
}
if (DhGenerateKeyPair((DhKey*)dh->internal, rng, priv, &privSz,
pub, &pubSz) < 0) {
CYASSL_MSG("Bad DhGenerateKeyPair");
return 0;
}
if (dh->pub_key)
CyaSSL_BN_free(dh->pub_key);
dh->pub_key = CyaSSL_BN_new();
if (dh->pub_key == NULL) {
CYASSL_MSG("Bad DH new pub");
return 0;
}
if (dh->priv_key)
CyaSSL_BN_free(dh->priv_key);
dh->priv_key = CyaSSL_BN_new();
if (dh->priv_key == NULL) {
CYASSL_MSG("Bad DH new priv");
return 0;
}
if (CyaSSL_BN_bin2bn(pub, pubSz, dh->pub_key) == NULL) {
CYASSL_MSG("Bad DH bn2bin error pub");
return 0;
}
if (CyaSSL_BN_bin2bn(priv, privSz, dh->priv_key) == NULL) {
CYASSL_MSG("Bad DH bn2bin error priv");
return 0;
}
CYASSL_MSG("CyaSSL_generate_key success");
return SSL_SUCCESS;
}
/* return key size on ok, 0 otherwise */
int CyaSSL_DH_compute_key(unsigned char* key, CYASSL_BIGNUM* otherPub,
CYASSL_DH* dh)
{
unsigned char pub [1024];
unsigned char priv[1024];
word32 pubSz = sizeof(pub);
word32 privSz = sizeof(priv);
word32 keySz;
CYASSL_MSG("CyaSSL_DH_compute_key");
if (dh == NULL || dh->priv_key == NULL || otherPub == NULL) {
CYASSL_MSG("Bad function arguments");
return 0;
}
keySz = (word32)DH_size(dh);
if (keySz == 0) {
CYASSL_MSG("Bad DH_size");
return 0;
}
if (CyaSSL_BN_bn2bin(dh->priv_key, NULL) > (int)privSz) {
CYASSL_MSG("Bad priv internal size");
return 0;
}
if (CyaSSL_BN_bn2bin(otherPub, NULL) > (int)pubSz) {
CYASSL_MSG("Bad otherPub size");
return 0;
}
privSz = CyaSSL_BN_bn2bin(dh->priv_key, priv);
pubSz = CyaSSL_BN_bn2bin(otherPub, pub);
if (privSz <= 0 || pubSz <= 0) {
CYASSL_MSG("Bad BN2bin set");
return 0;
}
if (DhAgree((DhKey*)dh->internal, key, &keySz, priv, privSz, pub,
pubSz) < 0) {
CYASSL_MSG("DhAgree failed");
return 0;
}
CYASSL_MSG("CyaSSL_compute_key success");
return (int)keySz;
}
#ifndef NO_DSA
static void InitCyaSSL_DSA(CYASSL_DSA* dsa)
{
if (dsa) {
dsa->p = NULL;
dsa->q = NULL;
dsa->g = NULL;
dsa->pub_key = NULL;
dsa->priv_key = NULL;
dsa->internal = NULL;
dsa->inSet = 0;
dsa->exSet = 0;
}
}
CYASSL_DSA* CyaSSL_DSA_new(void)
{
CYASSL_DSA* external;
DsaKey* key;
CYASSL_MSG("CyaSSL_DSA_new");
key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA);
if (key == NULL) {
CYASSL_MSG("CyaSSL_DSA_new malloc DsaKey failure");
return NULL;
}
external = (CYASSL_DSA*) XMALLOC(sizeof(CYASSL_DSA), NULL,
DYNAMIC_TYPE_DSA);
if (external == NULL) {
CYASSL_MSG("CyaSSL_DSA_new malloc CYASSL_DSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
return NULL;
}
InitCyaSSL_DSA(external);
InitDsaKey(key);
external->internal = key;
return external;
}
void CyaSSL_DSA_free(CYASSL_DSA* dsa)
{
CYASSL_MSG("CyaSSL_DSA_free");
if (dsa) {
if (dsa->internal) {
FreeDsaKey((DsaKey*)dsa->internal);
XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA);
dsa->internal = NULL;
}
CyaSSL_BN_free(dsa->priv_key);
CyaSSL_BN_free(dsa->pub_key);
CyaSSL_BN_free(dsa->g);
CyaSSL_BN_free(dsa->q);
CyaSSL_BN_free(dsa->p);
InitCyaSSL_DSA(dsa); /* set back to NULLs for safety */
XFREE(dsa, NULL, DYNAMIC_TYPE_DSA);
}
}
int CyaSSL_DSA_generate_key(CYASSL_DSA* dsa)
{
(void)dsa;
CYASSL_MSG("CyaSSL_DSA_generate_key");
return 0; /* key gen not needed by server */
}
int CyaSSL_DSA_generate_parameters_ex(CYASSL_DSA* dsa, int bits,
unsigned char* seed, int seedLen, int* counterRet,
unsigned long* hRet, void* cb)
{
(void)dsa;
(void)bits;
(void)seed;
(void)seedLen;
(void)counterRet;
(void)hRet;
(void)cb;
CYASSL_MSG("CyaSSL_DSA_generate_parameters_ex");
return 0; /* key gen not needed by server */
}
#endif /* NO_DSA */
static void InitCyaSSL_Rsa(CYASSL_RSA* rsa)
{
if (rsa) {
rsa->n = NULL;
rsa->e = NULL;
rsa->d = NULL;
rsa->p = NULL;
rsa->q = NULL;
rsa->dmp1 = NULL;
rsa->dmq1 = NULL;
rsa->iqmp = NULL;
rsa->internal = NULL;
rsa->inSet = 0;
rsa->exSet = 0;
}
}
CYASSL_RSA* CyaSSL_RSA_new(void)
{
CYASSL_RSA* external;
RsaKey* key;
CYASSL_MSG("CyaSSL_RSA_new");
key = (RsaKey*) XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA);
if (key == NULL) {
CYASSL_MSG("CyaSSL_RSA_new malloc RsaKey failure");
return NULL;
}
external = (CYASSL_RSA*) XMALLOC(sizeof(CYASSL_RSA), NULL,
DYNAMIC_TYPE_RSA);
if (external == NULL) {
CYASSL_MSG("CyaSSL_RSA_new malloc CYASSL_RSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
InitCyaSSL_Rsa(external);
InitRsaKey(key, NULL);
external->internal = key;
return external;
}
void CyaSSL_RSA_free(CYASSL_RSA* rsa)
{
CYASSL_MSG("CyaSSL_RSA_free");
if (rsa) {
if (rsa->internal) {
FreeRsaKey((RsaKey*)rsa->internal);
XFREE(rsa->internal, NULL, DYNAMIC_TYPE_RSA);
rsa->internal = NULL;
}
CyaSSL_BN_free(rsa->iqmp);
CyaSSL_BN_free(rsa->dmq1);
CyaSSL_BN_free(rsa->dmp1);
CyaSSL_BN_free(rsa->q);
CyaSSL_BN_free(rsa->p);
CyaSSL_BN_free(rsa->d);
CyaSSL_BN_free(rsa->e);
CyaSSL_BN_free(rsa->n);
InitCyaSSL_Rsa(rsa); /* set back to NULLs for safety */
XFREE(rsa, NULL, DYNAMIC_TYPE_RSA);
}
}
static int SetIndividualExternal(CYASSL_BIGNUM** bn, mp_int* mpi)
{
CYASSL_MSG("Entering SetIndividualExternal");
if (mpi == NULL) {
CYASSL_MSG("mpi NULL error");
return SSL_FATAL_ERROR;
}
if (*bn == NULL) {
*bn = CyaSSL_BN_new();
if (*bn == NULL) {
CYASSL_MSG("SetIndividualExternal alloc failed");
return SSL_FATAL_ERROR;
}
}
if (mp_copy(mpi, (mp_int*)((*bn)->internal)) != MP_OKAY) {
CYASSL_MSG("mp_copy error");
return SSL_FATAL_ERROR;
}
return 0;
}
#ifndef NO_DSA
static int SetDsaExternal(CYASSL_DSA* dsa)
{
DsaKey* key;
CYASSL_MSG("Entering SetDsaExternal");
if (dsa == NULL || dsa->internal == NULL) {
CYASSL_MSG("dsa key NULL error");
return SSL_FATAL_ERROR;
}
key = (DsaKey*)dsa->internal;
if (SetIndividualExternal(&dsa->p, &key->p) < 0) {
CYASSL_MSG("dsa p key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->q, &key->q) < 0) {
CYASSL_MSG("dsa q key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->g, &key->g) < 0) {
CYASSL_MSG("dsa g key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->pub_key, &key->y) < 0) {
CYASSL_MSG("dsa y key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->priv_key, &key->x) < 0) {
CYASSL_MSG("dsa x key error");
return SSL_FATAL_ERROR;
}
dsa->exSet = 1;
return 0;
}
#endif /* NO_DSA */
static int SetRsaExternal(CYASSL_RSA* rsa)
{
RsaKey* key;
CYASSL_MSG("Entering SetRsaExternal");
if (rsa == NULL || rsa->internal == NULL) {
CYASSL_MSG("rsa key NULL error");
return SSL_FATAL_ERROR;
}
key = (RsaKey*)rsa->internal;
if (SetIndividualExternal(&rsa->n, &key->n) < 0) {
CYASSL_MSG("rsa n key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->e, &key->e) < 0) {
CYASSL_MSG("rsa e key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->d, &key->d) < 0) {
CYASSL_MSG("rsa d key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->p, &key->p) < 0) {
CYASSL_MSG("rsa p key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->q, &key->q) < 0) {
CYASSL_MSG("rsa q key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->dmp1, &key->dP) < 0) {
CYASSL_MSG("rsa dP key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->dmq1, &key->dQ) < 0) {
CYASSL_MSG("rsa dQ key error");
return SSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->iqmp, &key->u) < 0) {
CYASSL_MSG("rsa u key error");
return SSL_FATAL_ERROR;
}
rsa->exSet = 1;
return 0;
}
/* SSL_SUCCESS on ok */
int CyaSSL_RSA_generate_key_ex(CYASSL_RSA* rsa, int bits, CYASSL_BIGNUM* bn,
void* cb)
{
RNG rng;
CYASSL_MSG("CyaSSL_RSA_generate_key_ex");
(void)rsa;
(void)bits;
(void)cb;
(void)bn;
if (InitRng(&rng) < 0) {
CYASSL_MSG("RNG init failed");
return SSL_FATAL_ERROR;
}
#ifdef CYASSL_KEY_GEN
if (MakeRsaKey((RsaKey*)rsa->internal, bits, 65537, &rng) < 0) {
CYASSL_MSG("MakeRsaKey failed");
return SSL_FATAL_ERROR;
}
if (SetRsaExternal(rsa) < 0) {
CYASSL_MSG("SetRsaExternal failed");
return SSL_FATAL_ERROR;
}
rsa->inSet = 1;
return SSL_SUCCESS;
#else
CYASSL_MSG("No Key Gen built in");
return SSL_FATAL_ERROR;
#endif
}
/* SSL_SUCCESS on ok */
int CyaSSL_RSA_blinding_on(CYASSL_RSA* rsa, CYASSL_BN_CTX* bn)
{
(void)rsa;
(void)bn;
CYASSL_MSG("CyaSSL_RSA_blinding_on");
return SSL_SUCCESS; /* on by default */
}
int CyaSSL_RSA_public_encrypt(int len, unsigned char* fr,
unsigned char* to, CYASSL_RSA* rsa, int padding)
{
(void)len;
(void)fr;
(void)to;
(void)rsa;
(void)padding;
CYASSL_MSG("CyaSSL_RSA_public_encrypt");
return SSL_FATAL_ERROR;
}
int CyaSSL_RSA_private_decrypt(int len, unsigned char* fr,
unsigned char* to, CYASSL_RSA* rsa, int padding)
{
(void)len;
(void)fr;
(void)to;
(void)rsa;
(void)padding;
CYASSL_MSG("CyaSSL_RSA_private_decrypt");
return SSL_FATAL_ERROR;
}
int CyaSSL_RSA_size(const CYASSL_RSA* rsa)
{
CYASSL_MSG("CyaSSL_RSA_size");
if (rsa == NULL)
return 0;
return CyaSSL_BN_num_bytes(rsa->n);
}
#ifndef NO_DSA
/* return SSL_SUCCESS on success, < 0 otherwise */
int CyaSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet,
CYASSL_DSA* dsa)
{
RNG tmpRNG;
RNG* rng = &tmpRNG;
CYASSL_MSG("CyaSSL_DSA_do_sign");
if (d == NULL || sigRet == NULL || dsa == NULL) {
CYASSL_MSG("Bad function arguments");
return SSL_FATAL_ERROR;
}
if (dsa->inSet == 0) {
CYASSL_MSG("No DSA internal set");
return SSL_FATAL_ERROR;
}
if (InitRng(&tmpRNG) != 0) {
CYASSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
CYASSL_MSG("Global RNG no Init");
return SSL_FATAL_ERROR;
}
rng = &globalRNG;
}
if (DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0) {
CYASSL_MSG("DsaSign failed");
return SSL_FATAL_ERROR;
}
return SSL_SUCCESS;
}
#endif /* NO_DSA */
/* return SSL_SUCCES on ok, 0 otherwise */
int CyaSSL_RSA_sign(int type, const unsigned char* m,
unsigned int mLen, unsigned char* sigRet,
unsigned int* sigLen, CYASSL_RSA* rsa)
{
byte encodedSig[MAX_ENCODED_SIG_SZ];
word32 outLen;
word32 signSz;
RNG tmpRNG;
RNG* rng = &tmpRNG;
CYASSL_MSG("CyaSSL_RSA_sign");
if (m == NULL || sigRet == NULL || sigLen == NULL || rsa == NULL) {
CYASSL_MSG("Bad function arguments");
return 0;
}
if (rsa->inSet == 0) {
CYASSL_MSG("No RSA internal set");
return 0;
}
outLen = (word32)CyaSSL_BN_num_bytes(rsa->n);
if (outLen == 0) {
CYASSL_MSG("Bad RSA size");
return 0;
}
if (InitRng(&tmpRNG) != 0) {
CYASSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
CYASSL_MSG("Global RNG no Init");
return 0;
}
rng = &globalRNG;
}
switch (type) {
case NID_md5:
type = MD5h;
break;
case NID_sha1:
type = SHAh;
break;
default:
CYASSL_MSG("Bad md type");
return 0;
}
signSz = EncodeSignature(encodedSig, m, mLen, type);
if (signSz == 0) {
CYASSL_MSG("Bad Encode Signature");
return 0;
}
*sigLen = RsaSSL_Sign(encodedSig, signSz, sigRet, outLen,
(RsaKey*)rsa->internal, rng);
if (*sigLen <= 0) {
CYASSL_MSG("Bad Rsa Sign");
return 0;
}
CYASSL_MSG("CyaSSL_RSA_sign success");
return SSL_SUCCESS;
}
int CyaSSL_RSA_public_decrypt(int flen, unsigned char* from,
unsigned char* to, CYASSL_RSA* rsa, int padding)
{
(void)flen;
(void)from;
(void)to;
(void)rsa;
(void)padding;
CYASSL_MSG("CyaSSL_RSA_public_decrypt");
return SSL_FATAL_ERROR;
}
/* generate p-1 and q-1, SSL_SUCCESS on ok */
int CyaSSL_RSA_GenAdd(CYASSL_RSA* rsa)
{
int err;
mp_int tmp;
CYASSL_MSG("CyaSSL_RsaGenAdd");
if (rsa == NULL || rsa->p == NULL || rsa->q == NULL || rsa->d == NULL ||
rsa->dmp1 == NULL || rsa->dmq1 == NULL) {
CYASSL_MSG("rsa no init error");
return SSL_FATAL_ERROR;
}
if (mp_init(&tmp) != MP_OKAY) {
CYASSL_MSG("mp_init error");
return SSL_FATAL_ERROR;
}
err = mp_sub_d((mp_int*)rsa->p->internal, 1, &tmp);
if (err != MP_OKAY)
CYASSL_MSG("mp_sub_d error");
else
err = mp_mod((mp_int*)rsa->d->internal, &tmp,
(mp_int*)rsa->dmp1->internal);
if (err != MP_OKAY)
CYASSL_MSG("mp_mod error");
else
err = mp_sub_d((mp_int*)rsa->q->internal, 1, &tmp);
if (err != MP_OKAY)
CYASSL_MSG("mp_sub_d error");
else
err = mp_mod((mp_int*)rsa->d->internal, &tmp,
(mp_int*)rsa->dmq1->internal);
mp_clear(&tmp);
if (err == MP_OKAY)
return SSL_SUCCESS;
else
return SSL_FATAL_ERROR;
}
void CyaSSL_HMAC_Init(CYASSL_HMAC_CTX* ctx, const void* key, int keylen,
const EVP_MD* type)
{
CYASSL_MSG("CyaSSL_HMAC_Init");
if (ctx == NULL) {
CYASSL_MSG("no ctx on init");
return;
}
if (type) {
CYASSL_MSG("init has type");
if (XSTRNCMP(type, "MD5", 3) == 0) {
CYASSL_MSG("md5 hmac");
ctx->type = MD5;
}
else if (XSTRNCMP(type, "SHA256", 6) == 0) {
CYASSL_MSG("sha256 hmac");
ctx->type = SHA256;
}
/* has to be last since would pick or 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
CYASSL_MSG("sha hmac");
ctx->type = SHA;
}
else {
CYASSL_MSG("bad init type");
}
}
if (key && keylen) {
CYASSL_MSG("keying hmac");
HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key, (word32)keylen);
}
}
void CyaSSL_HMAC_Update(CYASSL_HMAC_CTX* ctx, const unsigned char* data,
int len)
{
CYASSL_MSG("CyaSSL_HMAC_Update");
if (ctx && data) {
CYASSL_MSG("updating hmac");
HmacUpdate(&ctx->hmac, data, (word32)len);
}
}
void CyaSSL_HMAC_Final(CYASSL_HMAC_CTX* ctx, unsigned char* hash,
unsigned int* len)
{
CYASSL_MSG("CyaSSL_HMAC_Final");
if (ctx && hash) {
CYASSL_MSG("final hmac");
HmacFinal(&ctx->hmac, hash);
if (len) {
CYASSL_MSG("setting output len");
switch (ctx->type) {
case MD5:
*len = MD5_DIGEST_SIZE;
break;
case SHA:
*len = SHA_DIGEST_SIZE;
break;
case SHA256:
*len = SHA256_DIGEST_SIZE;
break;
default:
CYASSL_MSG("bad hmac type");
}
}
}
}
void CyaSSL_HMAC_cleanup(CYASSL_HMAC_CTX* ctx)
{
(void)ctx;
CYASSL_MSG("CyaSSL_HMAC_cleanup");
}
const CYASSL_EVP_MD* CyaSSL_EVP_get_digestbynid(int id)
{
CYASSL_MSG("CyaSSL_get_digestbynid");
switch(id) {
case NID_md5:
return CyaSSL_EVP_md5();
case NID_sha1:
return CyaSSL_EVP_sha1();
default:
CYASSL_MSG("Bad digest id value");
}
return NULL;
}
CYASSL_RSA* CyaSSL_EVP_PKEY_get1_RSA(CYASSL_EVP_PKEY* key)
{
(void)key;
CYASSL_MSG("CyaSSL_EVP_PKEY_get1_RSA");
return NULL;
}
CYASSL_DSA* CyaSSL_EVP_PKEY_get1_DSA(CYASSL_EVP_PKEY* key)
{
(void)key;
CYASSL_MSG("CyaSSL_EVP_PKEY_get1_DSA");
return NULL;
}
void* CyaSSL_EVP_X_STATE(const CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_MSG("CyaSSL_EVP_X_STATE");
if (ctx) {
switch (ctx->cipherType) {
case ARC4_TYPE:
CYASSL_MSG("returning arc4 state");
return (void*)&ctx->cipher.arc4.x;
default:
CYASSL_MSG("bad x state type");
return 0;
}
}
return NULL;
}
int CyaSSL_EVP_X_STATE_LEN(const CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_MSG("CyaSSL_EVP_X_STATE_LEN");
if (ctx) {
switch (ctx->cipherType) {
case ARC4_TYPE:
CYASSL_MSG("returning arc4 state size");
return sizeof(Arc4);
default:
CYASSL_MSG("bad x state type");
return 0;
}
}
return 0;
}
void CyaSSL_3des_iv(CYASSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
CYASSL_MSG("CyaSSL_3des_iv");
if (ctx == NULL || iv == NULL) {
CYASSL_MSG("Bad function argument");
return;
}
if (doset)
Des3_SetIV(&ctx->cipher.des3, iv);
else
memcpy(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
}
void CyaSSL_aes_ctr_iv(CYASSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
CYASSL_MSG("CyaSSL_aes_ctr_iv");
if (ctx == NULL || iv == NULL) {
CYASSL_MSG("Bad function argument");
return;
}
if (doset)
AesSetIV(&ctx->cipher.aes, iv);
else
memcpy(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
}
const CYASSL_EVP_MD* CyaSSL_EVP_ripemd160(void)
{
CYASSL_MSG("CyaSSL_ripemd160");
return NULL;
}
int CyaSSL_EVP_MD_size(const CYASSL_EVP_MD* type)
{
CYASSL_MSG("CyaSSL_EVP_MD_size");
if (type == NULL) {
CYASSL_MSG("No md type arg");
return BAD_FUNC_ARG;
}
if (XSTRNCMP(type, "MD5", 3) == 0) {
return MD5_DIGEST_SIZE;
}
else if (XSTRNCMP(type, "SHA256", 6) == 0) {
return SHA256_DIGEST_SIZE;
}
#ifdef CYASSL_SHA384
else if (XSTRNCMP(type, "SHA384", 6) == 0) {
return SHA384_DIGEST_SIZE;
}
#endif
#ifdef CYASSL_SHA512
else if (XSTRNCMP(type, "SHA512", 6) == 0) {
return SHA512_DIGEST_SIZE;
}
#endif
/* has to be last since would pick or 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
return SHA_DIGEST_SIZE;
}
return BAD_FUNC_ARG;
}
int CyaSSL_EVP_CIPHER_CTX_iv_length(const CYASSL_EVP_CIPHER_CTX* ctx)
{
CYASSL_MSG("CyaSSL_EVP_CIPHER_CTX_iv_length");
switch (ctx->cipherType) {
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
CYASSL_MSG("AES CBC");
return AES_BLOCK_SIZE;
#ifdef CYASSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
CYASSL_MSG("AES CTR");
return AES_BLOCK_SIZE;
#endif
case DES_CBC_TYPE :
CYASSL_MSG("DES CBC");
return DES_BLOCK_SIZE;
case DES_EDE3_CBC_TYPE :
CYASSL_MSG("DES EDE3 CBC");
return DES_BLOCK_SIZE;
case ARC4_TYPE :
CYASSL_MSG("ARC4");
return 0;
case NULL_CIPHER_TYPE :
CYASSL_MSG("NULL");
return 0;
default: {
CYASSL_MSG("bad type");
}
}
return 0;
}
void CyaSSL_OPENSSL_free(void* p)
{
CYASSL_MSG("CyaSSL_OPENSSL_free");
XFREE(p, NULL, 0);
}
int CyaSSL_PEM_write_bio_RSAPrivateKey(CYASSL_BIO* bio, RSA* rsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb cb, void* arg)
{
(void)bio;
(void)rsa;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
CYASSL_MSG("CyaSSL_PEM_write_bio_RSAPrivateKey");
return SSL_FATAL_ERROR;
}
int CyaSSL_PEM_write_bio_DSAPrivateKey(CYASSL_BIO* bio, DSA* rsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb cb, void* arg)
{
(void)bio;
(void)rsa;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
CYASSL_MSG("CyaSSL_PEM_write_bio_DSAPrivateKey");
return SSL_FATAL_ERROR;
}
CYASSL_EVP_PKEY* CyaSSL_PEM_read_bio_PrivateKey(CYASSL_BIO* bio,
CYASSL_EVP_PKEY** key, pem_password_cb cb, void* arg)
{
(void)bio;
(void)key;
(void)cb;
(void)arg;
CYASSL_MSG("CyaSSL_PEM_read_bio_PrivateKey");
return NULL;
}
/* Return bytes written to buff or < 0 for error */
int CyaSSL_KeyPemToDer(const unsigned char* pem, int pemSz, unsigned char* buff,
int buffSz, const char* pass)
{
EncryptedInfo info;
int eccKey = 0;
int ret;
buffer der;
(void)pass;
CYASSL_ENTER("CyaSSL_KeyPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
CYASSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
info.set = 0;
info.ctx = NULL;
info.consumed = 0;
der.buffer = NULL;
ret = PemToDer(pem, pemSz, PRIVATEKEY_TYPE, &der, NULL, &info, &eccKey);
if (ret < 0) {
CYASSL_MSG("Bad Pem To Der");
}
else {
if (der.length <= (word32)buffSz) {
XMEMCPY(buff, der.buffer, der.length);
ret = der.length;
}
else {
CYASSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
XFREE(der.buffer, NULL, DYNAMIC_TYPE_KEY);
return ret;
}
/* Load RSA from Der, SSL_SUCCESS on success < 0 on error */
int CyaSSL_RSA_LoadDer(CYASSL_RSA* rsa, const unsigned char* der, int derSz)
{
word32 idx = 0;
int ret;
CYASSL_ENTER("CyaSSL_RSA_LoadDer");
if (rsa == NULL || rsa->internal == NULL || der == NULL || derSz <= 0) {
CYASSL_MSG("Bad function arguments");
return BAD_FUNC_ARG;
}
ret = RsaPrivateKeyDecode(der, &idx, (RsaKey*)rsa->internal, derSz);
if (ret < 0) {
CYASSL_MSG("RsaPrivateKeyDecode failed");
return ret;
}
if (SetRsaExternal(rsa) < 0) {
CYASSL_MSG("SetRsaExternal failed");
return SSL_FATAL_ERROR;
}
rsa->inSet = 1;
return SSL_SUCCESS;
}
#ifndef NO_DSA
/* Load DSA from Der, SSL_SUCCESS on success < 0 on error */
int CyaSSL_DSA_LoadDer(CYASSL_DSA* dsa, const unsigned char* der, int derSz)
{
word32 idx = 0;
int ret;
CYASSL_ENTER("CyaSSL_DSA_LoadDer");
if (dsa == NULL || dsa->internal == NULL || der == NULL || derSz <= 0) {
CYASSL_MSG("Bad function arguments");
return BAD_FUNC_ARG;
}
ret = DsaPrivateKeyDecode(der, &idx, (DsaKey*)dsa->internal, derSz);
if (ret < 0) {
CYASSL_MSG("DsaPrivateKeyDecode failed");
return ret;
}
if (SetDsaExternal(dsa) < 0) {
CYASSL_MSG("SetDsaExternal failed");
return SSL_FATAL_ERROR;
}
dsa->inSet = 1;
return SSL_SUCCESS;
}
#endif /* NO_DSA */
#endif /* OPENSSL_EXTRA */
#ifdef SESSION_CERTS
/* Get peer's certificate chain */
CYASSL_X509_CHAIN* CyaSSL_get_peer_chain(CYASSL* ssl)
{
CYASSL_ENTER("CyaSSL_get_peer_chain");
if (ssl)
return &ssl->session.chain;
return 0;
}
/* Get peer's certificate chain total count */
int CyaSSL_get_chain_count(CYASSL_X509_CHAIN* chain)
{
CYASSL_ENTER("CyaSSL_get_chain_count");
if (chain)
return chain->count;
return 0;
}
/* Get peer's ASN.1 DER ceritifcate at index (idx) length in bytes */
int CyaSSL_get_chain_length(CYASSL_X509_CHAIN* chain, int idx)
{
CYASSL_ENTER("CyaSSL_get_chain_length");
if (chain)
return chain->certs[idx].length;
return 0;
}
/* Get peer's ASN.1 DER ceritifcate at index (idx) */
byte* CyaSSL_get_chain_cert(CYASSL_X509_CHAIN* chain, int idx)
{
CYASSL_ENTER("CyaSSL_get_chain_cert");
if (chain)
return chain->certs[idx].buffer;
return 0;
}
/* Get peer's CyaSSL X509 ceritifcate at index (idx) */
CYASSL_X509* CyaSSL_get_chain_X509(CYASSL_X509_CHAIN* chain, int idx)
{
int ret;
CYASSL_X509* x509;
DecodedCert dCert;
CYASSL_ENTER("CyaSSL_get_chain_X509");
if (chain == NULL)
return NULL;
InitDecodedCert(&dCert, chain->certs[idx].buffer, chain->certs[idx].length,
NULL);
ret = ParseCertRelative(&dCert, CERT_TYPE, 0, NULL);
if (ret != 0) {
CYASSL_MSG("Failed to parse cert");
FreeDecodedCert(&dCert);
return NULL;
}
x509 = (CYASSL_X509*)XMALLOC(sizeof(CYASSL_X509), NULL, DYNAMIC_TYPE_X509);
if (x509 == NULL) {
CYASSL_MSG("Failed alloc X509");
FreeDecodedCert(&dCert);
return NULL;
}
InitX509(x509, 1);
ret = CopyDecodedToX509(x509, &dCert);
if (ret != 0) {
CYASSL_MSG("Failed to copy decoded");
XFREE(x509, NULL, DYNAMIC_TYPE_X509);
x509 = NULL;
}
FreeDecodedCert(&dCert);
return x509;
}
/* Get peer's PEM ceritifcate at index (idx), output to buffer if inLen big
enough else return error (-1), output length is in *outLen
SSL_SUCCESS on ok */
int CyaSSL_get_chain_cert_pem(CYASSL_X509_CHAIN* chain, int idx,
unsigned char* buf, int inLen, int* outLen)
{
const char header[] = "-----BEGIN CERTIFICATE-----\n";
const char footer[] = "-----END CERTIFICATE-----\n";
int headerLen = sizeof(header) - 1;
int footerLen = sizeof(footer) - 1;
int i;
int err;
CYASSL_ENTER("CyaSSL_get_chain_cert_pem");
if (!chain || !outLen || !buf)
return BAD_FUNC_ARG;
/* don't even try if inLen too short */
if (inLen < headerLen + footerLen + chain->certs[idx].length)
return BAD_FUNC_ARG;
/* header */
XMEMCPY(buf, header, headerLen);
i = headerLen;
/* body */
*outLen = inLen; /* input to Base64_Encode */
if ( (err = Base64_Encode(chain->certs[idx].buffer,
chain->certs[idx].length, buf + i, (word32*)outLen)) < 0)
return err;
i += *outLen;
/* footer */
if ( (i + footerLen) > inLen)
return BAD_FUNC_ARG;
XMEMCPY(buf + i, footer, footerLen);
*outLen += headerLen + footerLen;
return SSL_SUCCESS;
}
/* get session ID */
const byte* CyaSSL_get_sessionID(const CYASSL_SESSION* session)
{
CYASSL_ENTER("CyaSSL_get_sessionID");
if (session)
return session->sessionID;
return NULL;
}
#endif /* SESSION_CERTS */
int CyaSSL_CTX_OCSP_set_options(CYASSL_CTX* ctx, int options)
{
CYASSL_ENTER("CyaSSL_CTX_OCSP_set_options");
#ifdef HAVE_OCSP
if (ctx != NULL) {
ctx->ocsp.enabled = (options & CYASSL_OCSP_ENABLE) != 0;
ctx->ocsp.useOverrideUrl = (options & CYASSL_OCSP_URL_OVERRIDE) != 0;
ctx->ocsp.useNonce = (options & CYASSL_OCSP_NO_NONCE) == 0;
return SSL_SUCCESS;
}
return SSL_FAILURE;
#else
(void)ctx;
(void)options;
return NOT_COMPILED_IN;
#endif
}
int CyaSSL_CTX_OCSP_set_override_url(CYASSL_CTX* ctx, const char* url)
{
CYASSL_ENTER("CyaSSL_CTX_OCSP_set_override_url");
#ifdef HAVE_OCSP
return CyaSSL_OCSP_set_override_url(&ctx->ocsp, url);
#else
(void)ctx;
(void)url;
return NOT_COMPILED_IN;
#endif
}
#ifndef NO_CERTS
#ifdef HAVE_PK_CALLBACKS
#ifdef HAVE_ECC
void CyaSSL_CTX_SetEccSignCb(CYASSL_CTX* ctx, CallbackEccSign cb)
{
if (ctx)
ctx->EccSignCb = cb;
}
void CyaSSL_SetEccSignCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSignCtx = ctx;
}
void* CyaSSL_GetEccSignCtx(CYASSL* ssl)
{
if (ssl)
return ssl->EccSignCtx;
return NULL;
}
void CyaSSL_CTX_SetEccVerifyCb(CYASSL_CTX* ctx, CallbackEccVerify cb)
{
if (ctx)
ctx->EccVerifyCb = cb;
}
void CyaSSL_SetEccVerifyCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->EccVerifyCtx = ctx;
}
void* CyaSSL_GetEccVerifyCtx(CYASSL* ssl)
{
if (ssl)
return ssl->EccVerifyCtx;
return NULL;
}
#endif /* HAVE_ECC */
#ifndef NO_RSA
void CyaSSL_CTX_SetRsaSignCb(CYASSL_CTX* ctx, CallbackRsaSign cb)
{
if (ctx)
ctx->RsaSignCb = cb;
}
void CyaSSL_SetRsaSignCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaSignCtx = ctx;
}
void* CyaSSL_GetRsaSignCtx(CYASSL* ssl)
{
if (ssl)
return ssl->RsaSignCtx;
return NULL;
}
void CyaSSL_CTX_SetRsaVerifyCb(CYASSL_CTX* ctx, CallbackRsaVerify cb)
{
if (ctx)
ctx->RsaVerifyCb = cb;
}
void CyaSSL_SetRsaVerifyCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaVerifyCtx = ctx;
}
void* CyaSSL_GetRsaVerifyCtx(CYASSL* ssl)
{
if (ssl)
return ssl->RsaVerifyCtx;
return NULL;
}
void CyaSSL_CTX_SetRsaEncCb(CYASSL_CTX* ctx, CallbackRsaEnc cb)
{
if (ctx)
ctx->RsaEncCb = cb;
}
void CyaSSL_SetRsaEncCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaEncCtx = ctx;
}
void* CyaSSL_GetRsaEncCtx(CYASSL* ssl)
{
if (ssl)
return ssl->RsaEncCtx;
return NULL;
}
void CyaSSL_CTX_SetRsaDecCb(CYASSL_CTX* ctx, CallbackRsaDec cb)
{
if (ctx)
ctx->RsaDecCb = cb;
}
void CyaSSL_SetRsaDecCtx(CYASSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaDecCtx = ctx;
}
void* CyaSSL_GetRsaDecCtx(CYASSL* ssl)
{
if (ssl)
return ssl->RsaDecCtx;
return NULL;
}
#endif /* NO_RSA */
#endif /* HAVE_PK_CALLBACKS */
#endif /* NO_CERTS */