rsa des3 random : update

This commit is contained in:
Jacob Barthelmeh 2014-12-31 15:31:50 -07:00
parent e6cebf1246
commit e3c82842a5
6 changed files with 3335 additions and 58 deletions

View File

@ -26,6 +26,11 @@
#ifndef CTAO_CRYPT_SETTINGS_H
#define CTAO_CRYPT_SETTINGS_H
#define CYASSL_SHA512
//WOLFSSL_SHA512
#define CYASSL_SHA384
//WOLFSSL_SHA384
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -23,11 +23,6 @@
#include <config.h>
#endif
/* compatability layer temporary */
#include <cyassl/ssl.h>
#include <wolfssl/wolfcrypt/settings.h>
#ifndef NO_ASN
@ -2996,7 +2991,7 @@ static int ConfirmSignature(const byte* buf, word32 bufSz,
#ifdef WOLFSSL_SHA512
case CTC_SHA512wRSA:
case CTC_SHA512wECDSA:
if (wc_Sha512Hash(buf, bufSz, digest) == 0) {
if (Sha512Hash(buf, bufSz, digest) == 0) {
typeH = SHA512h;
digestSz = SHA512_DIGEST_SIZE;
}
@ -3005,7 +3000,7 @@ static int ConfirmSignature(const byte* buf, word32 bufSz,
#ifdef WOLFSSL_SHA384
case CTC_SHA384wRSA:
case CTC_SHA384wECDSA:
if (wc_Sha384Hash(buf, bufSz, digest) == 0) {
if (Sha384Hash(buf, bufSz, digest) == 0) {
typeH = SHA384h;
digestSz = SHA384_DIGEST_SIZE;
}

File diff suppressed because it is too large Load Diff

View File

@ -23,27 +23,16 @@
#include <config.h>
#endif
#include <cyassl/ctaocrypt/settings.h>
#include <wolfssl/wolfcrypt/settings.h>
/* on HPUX 11 you may need to install /dev/random see
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I
*/
#ifdef HAVE_FIPS
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#endif
#include <wolfssl/wolfcrypt/random.h>
#include <cyassl/ctaocrypt/error-crypt.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef HAVE_FIPS
int wc_GenerateSeed(OS_Seed* os, byte* seed, word32 sz)
{
return GenerateSeed(os, seed, sz);
@ -127,9 +116,963 @@ int wc_RNG_GenerateByte(RNG* rng, byte* b)
#define RNG_HealthTest RNG_HealthTest_fips
#endif /* FIPS_NO_WRAPPERS */
#endif /* HAVE_FIPS */
#else
#include <wolfssl/wolfcrypt/error-crypt.h>
#if defined(HAVE_HASHDRBG) || defined(NO_RC4)
#include <wolfssl/wolfcrypt/sha256.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#include <wolfcrypt/src/misc.c>
#endif
#endif /* HAVE_HASHDRBG || NO_RC4 */
#if defined(USE_WINDOWS_API)
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#include <windows.h>
#include <wincrypt.h>
#else
#if !defined(NO_DEV_RANDOM) && !defined(WOLFSSL_MDK_ARM) \
&& !defined(WOLFSSL_IAR_ARM)
#include <fcntl.h>
#ifndef EBSNET
#include <unistd.h>
#endif
#else
/* include headers that may be needed to get good seed */
#endif
#endif /* USE_WINDOWS_API */
#ifdef __cplusplus
} /* extern "C" */
#if defined(HAVE_HASHDRBG) || defined(NO_RC4)
/* Start NIST DRBG code */
#define OUTPUT_BLOCK_LEN (SHA256_DIGEST_SIZE)
#define MAX_REQUEST_LEN (0x10000)
#define RESEED_INTERVAL (1000000)
#define SECURITY_STRENGTH (256)
#define ENTROPY_SZ (SECURITY_STRENGTH/8)
#define NONCE_SZ (ENTROPY_SZ/2)
#define ENTROPY_NONCE_SZ (ENTROPY_SZ+NONCE_SZ)
/* Internal return codes */
#define DRBG_SUCCESS 0
#define DRBG_ERROR 1
#define DRBG_FAILURE 2
#define DRBG_NEED_RESEED 3
#define DRBG_CONT_FAILURE 4
/* RNG health states */
#define DRBG_NOT_INIT 0
#define DRBG_OK 1
#define DRBG_FAILED 2
#define DRBG_CONT_FAILED 3
enum {
drbgInitC = 0,
drbgReseed = 1,
drbgGenerateW = 2,
drbgGenerateH = 3,
drbgInitV
};
typedef struct DRBG {
Sha256 sha;
byte digest[SHA256_DIGEST_SIZE];
byte V[DRBG_SEED_LEN];
byte C[DRBG_SEED_LEN];
word32 reseedCtr;
word32 lastBlock;
byte matchCount;
} DRBG;
/* Hash Derivation Function */
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_df(DRBG* drbg, byte* out, word32 outSz, byte type,
const byte* inA, word32 inASz,
const byte* inB, word32 inBSz)
{
byte ctr;
int i;
int len;
word32 bits = (outSz * 8); /* reverse byte order */
#ifdef LITTLE_ENDIAN_ORDER
bits = ByteReverseWord32(bits);
#endif
len = (outSz / OUTPUT_BLOCK_LEN)
+ ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
for (i = 0, ctr = 1; i < len; i++, ctr++)
{
if (InitSha256(&drbg->sha) != 0)
return DRBG_FAILURE;
if (Sha256Update(&drbg->sha, &ctr, sizeof(ctr)) != 0)
return DRBG_FAILURE;
if (Sha256Update(&drbg->sha, (byte*)&bits, sizeof(bits)) != 0)
return DRBG_FAILURE;
/* churning V is the only string that doesn't have
* the type added */
if (type != drbgInitV)
if (Sha256Update(&drbg->sha, &type, sizeof(type)) != 0)
return DRBG_FAILURE;
if (Sha256Update(&drbg->sha, inA, inASz) != 0)
return DRBG_FAILURE;
if (inB != NULL && inBSz > 0)
if (Sha256Update(&drbg->sha, inB, inBSz) != 0)
return DRBG_FAILURE;
if (Sha256Final(&drbg->sha, drbg->digest) != 0)
return DRBG_FAILURE;
if (outSz > OUTPUT_BLOCK_LEN) {
XMEMCPY(out, drbg->digest, OUTPUT_BLOCK_LEN);
outSz -= OUTPUT_BLOCK_LEN;
out += OUTPUT_BLOCK_LEN;
}
else {
XMEMCPY(out, drbg->digest, outSz);
}
}
return DRBG_SUCCESS;
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_DRBG_Reseed(DRBG* drbg, const byte* entropy, word32 entropySz)
{
byte seed[DRBG_SEED_LEN];
if (Hash_df(drbg, seed, sizeof(seed), drbgReseed, drbg->V, sizeof(drbg->V),
entropy, entropySz) != DRBG_SUCCESS) {
return DRBG_FAILURE;
}
XMEMCPY(drbg->V, seed, sizeof(drbg->V));
XMEMSET(seed, 0, sizeof(seed));
if (Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
sizeof(drbg->V), NULL, 0) != DRBG_SUCCESS) {
return DRBG_FAILURE;
}
drbg->reseedCtr = 1;
drbg->lastBlock = 0;
drbg->matchCount = 0;
return DRBG_SUCCESS;
}
static INLINE void array_add_one(byte* data, word32 dataSz)
{
int i;
for (i = dataSz - 1; i >= 0; i--)
{
data[i]++;
if (data[i] != 0) break;
}
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_gen(DRBG* drbg, byte* out, word32 outSz, const byte* V)
{
byte data[DRBG_SEED_LEN];
int i;
int len;
word32 checkBlock;
/* Special case: outSz is 0 and out is NULL. wc_Generate a block to save for
* the continuous test. */
if (outSz == 0) outSz = 1;
len = (outSz / OUTPUT_BLOCK_LEN) + ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
XMEMCPY(data, V, sizeof(data));
for (i = 0; i < len; i++) {
if (InitSha256(&drbg->sha) != 0 ||
Sha256Update(&drbg->sha, data, sizeof(data)) != 0 ||
Sha256Final(&drbg->sha, drbg->digest) != 0) {
return DRBG_FAILURE;
}
checkBlock = *(word32*)drbg->digest;
if (drbg->reseedCtr > 1 && checkBlock == drbg->lastBlock) {
if (drbg->matchCount == 1) {
return DRBG_CONT_FAILURE;
}
else {
if (i == len) {
len++;
}
drbg->matchCount = 1;
}
}
else {
drbg->matchCount = 0;
drbg->lastBlock = checkBlock;
}
if (outSz >= OUTPUT_BLOCK_LEN) {
XMEMCPY(out, drbg->digest, OUTPUT_BLOCK_LEN);
outSz -= OUTPUT_BLOCK_LEN;
out += OUTPUT_BLOCK_LEN;
array_add_one(data, DRBG_SEED_LEN);
}
else if (out != NULL && outSz != 0) {
XMEMCPY(out, drbg->digest, outSz);
outSz = 0;
}
}
XMEMSET(data, 0, sizeof(data));
return DRBG_SUCCESS;
}
static INLINE void array_add(byte* d, word32 dLen, const byte* s, word32 sLen)
{
word16 carry = 0;
if (dLen > 0 && sLen > 0 && dLen >= sLen) {
int sIdx, dIdx;
for (sIdx = sLen - 1, dIdx = dLen - 1; sIdx >= 0; dIdx--, sIdx--)
{
carry += d[dIdx] + s[sIdx];
d[dIdx] = carry;
carry >>= 8;
}
for (; carry != 0 && dIdx >= 0; dIdx--) {
carry += d[dIdx];
d[dIdx] = carry;
carry >>= 8;
}
}
}
/* Returns: DRBG_SUCCESS, DRBG_NEED_RESEED, or DRBG_FAILURE */
static int Hash_DRBG_Generate(DRBG* drbg, byte* out, word32 outSz)
{
int ret = DRBG_NEED_RESEED;
if (drbg->reseedCtr != RESEED_INTERVAL) {
byte type = drbgGenerateH;
word32 reseedCtr = drbg->reseedCtr;
ret = Hash_gen(drbg, out, outSz, drbg->V);
if (ret == DRBG_SUCCESS) {
if (InitSha256(&drbg->sha) != 0 ||
Sha256Update(&drbg->sha, &type, sizeof(type)) != 0 ||
Sha256Update(&drbg->sha, drbg->V, sizeof(drbg->V)) != 0 ||
Sha256Final(&drbg->sha, drbg->digest) != 0) {
ret = DRBG_FAILURE;
}
else {
array_add(drbg->V, sizeof(drbg->V),
drbg->digest, sizeof(drbg->digest));
array_add(drbg->V, sizeof(drbg->V), drbg->C, sizeof(drbg->C));
#ifdef LITTLE_ENDIAN_ORDER
reseedCtr = ByteReverseWord32(reseedCtr);
#endif
array_add(drbg->V, sizeof(drbg->V),
(byte*)&reseedCtr, sizeof(reseedCtr));
ret = DRBG_SUCCESS;
}
drbg->reseedCtr++;
}
}
return ret;
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_DRBG_Instantiate(DRBG* drbg, const byte* seed, word32 seedSz,
const byte* nonce, word32 nonceSz)
{
int ret = DRBG_FAILURE;
XMEMSET(drbg, 0, sizeof(DRBG));
if (Hash_df(drbg, drbg->V, sizeof(drbg->V), drbgInitV, seed, seedSz,
nonce, nonceSz) == DRBG_SUCCESS &&
Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
sizeof(drbg->V), NULL, 0) == DRBG_SUCCESS) {
drbg->reseedCtr = 1;
drbg->lastBlock = 0;
drbg->matchCount = 0;
ret = DRBG_SUCCESS;
}
return ret;
}
/* Returns: DRBG_SUCCESS */
static int Hash_DRBG_Uninstantiate(DRBG* drbg)
{
XMEMSET(drbg, 0, sizeof(DRBG));
return DRBG_SUCCESS;
}
/* End NIST DRBG Code */
/* Get seed and key cipher */
int wc_InitRng(RNG* rng)
{
int ret = BAD_FUNC_ARG;
if (rng != NULL) {
byte entropy[ENTROPY_NONCE_SZ];
rng->drbg = (struct DRBG*)XMALLOC(sizeof(DRBG), NULL, DYNAMIC_TYPE_RNG);
if (rng->drbg == NULL) {
ret = MEMORY_E;
}
/* This doesn't use a separate nonce. The entropy input will be
* the default size plus the size of the nonce making the seed
* size. */
else if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_NONCE_SZ) == 0 &&
Hash_DRBG_Instantiate(rng->drbg, entropy, ENTROPY_NONCE_SZ,
NULL, 0) == DRBG_SUCCESS) {
ret = Hash_DRBG_Generate(rng->drbg, NULL, 0);
}
else
ret = DRBG_FAILURE;
XMEMSET(entropy, 0, ENTROPY_NONCE_SZ);
if (ret == DRBG_SUCCESS) {
rng->status = DRBG_OK;
ret = 0;
}
else if (ret == DRBG_CONT_FAILURE) {
rng->status = DRBG_CONT_FAILED;
ret = DRBG_CONT_FIPS_E;
}
else if (ret == DRBG_FAILURE) {
rng->status = DRBG_FAILED;
ret = RNG_FAILURE_E;
}
else {
rng->status = DRBG_FAILED;
}
}
return ret;
}
/* place a generated block in output */
int wc_RNG_GenerateBlock(RNG* rng, byte* output, word32 sz)
{
int ret;
if (rng == NULL || output == NULL || sz > MAX_REQUEST_LEN)
return BAD_FUNC_ARG;
if (rng->status != DRBG_OK)
return RNG_FAILURE_E;
ret = Hash_DRBG_Generate(rng->drbg, output, sz);
if (ret == DRBG_NEED_RESEED) {
byte entropy[ENTROPY_SZ];
if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_SZ) == 0 &&
Hash_DRBG_Reseed(rng->drbg, entropy, ENTROPY_SZ) == DRBG_SUCCESS) {
ret = Hash_DRBG_Generate(rng->drbg, NULL, 0);
if (ret == DRBG_SUCCESS)
ret = Hash_DRBG_Generate(rng->drbg, output, sz);
}
else
ret = DRBG_FAILURE;
XMEMSET(entropy, 0, ENTROPY_SZ);
}
if (ret == DRBG_SUCCESS) {
ret = 0;
}
else if (ret == DRBG_CONT_FAILURE) {
ret = DRBG_CONT_FIPS_E;
rng->status = DRBG_CONT_FAILED;
}
else {
ret = RNG_FAILURE_E;
rng->status = DRBG_FAILED;
}
return ret;
}
int wc_RNG_GenerateByte(RNG* rng, byte* b)
{
return wc_RNG_GenerateBlock(rng, b, 1);
}
int wc_FreeRng(RNG* rng)
{
int ret = BAD_FUNC_ARG;
if (rng != NULL) {
if (Hash_DRBG_Uninstantiate(rng->drbg) == DRBG_SUCCESS)
ret = 0;
else
ret = RNG_FAILURE_E;
XFREE(rng->drbg, NULL, DYNAMIC_TYPE_RNG);
rng->drbg = NULL;
rng->status = DRBG_NOT_INIT;
}
return ret;
}
int wc_RNG_HealthTest(int reseed, const byte* entropyA, word32 entropyASz,
const byte* entropyB, word32 entropyBSz,
byte* output, word32 outputSz)
{
DRBG drbg;
if (entropyA == NULL || output == NULL)
return BAD_FUNC_ARG;
if (reseed != 0 && entropyB == NULL)
return BAD_FUNC_ARG;
if (outputSz != (SHA256_DIGEST_SIZE * 4))
return -1;
if (Hash_DRBG_Instantiate(&drbg, entropyA, entropyASz, NULL, 0) != 0)
return -1;
if (reseed) {
if (Hash_DRBG_Reseed(&drbg, entropyB, entropyBSz) != 0) {
Hash_DRBG_Uninstantiate(&drbg);
return -1;
}
}
if (Hash_DRBG_Generate(&drbg, output, outputSz) != 0) {
Hash_DRBG_Uninstantiate(&drbg);
return -1;
}
if (Hash_DRBG_Generate(&drbg, output, outputSz) != 0) {
Hash_DRBG_Uninstantiate(&drbg);
return -1;
}
Hash_DRBG_Uninstantiate(&drbg);
return 0;
}
#else /* HAVE_HASHDRBG || NO_RC4 */
/* Get seed and key cipher */
int wc_InitRng(RNG* rng)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
byte* key;
byte* junk;
#else
byte key[32];
byte junk[256];
#endif
#ifdef HAVE_CAVIUM
if (rng->magic == WOLFSSL_RNG_CAVIUM_MAGIC)
return 0;
#endif
#ifdef WOLFSSL_SMALL_STACK
key = (byte*)XMALLOC(32, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (key == NULL)
return MEMORY_E;
junk = (byte*)XMALLOC(256, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (junk == NULL) {
XFREE(key, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
ret = wc_GenerateSeed(&rng->seed, key, 32);
if (ret == 0) {
Arc4SetKey(&rng->cipher, key, sizeof(key));
ret = wc_RNG_GenerateBlock(rng, junk, 256); /*rid initial state*/
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(junk, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#ifdef HAVE_CAVIUM
static void CaviumRNG_GenerateBlock(RNG* rng, byte* output, word32 sz);
#endif
/* place a generated block in output */
int wc_RNG_GenerateBlock(RNG* rng, byte* output, word32 sz)
{
#ifdef HAVE_CAVIUM
if (rng->magic == WOLFSSL_RNG_CAVIUM_MAGIC)
return CaviumRNG_GenerateBlock(rng, output, sz);
#endif
XMEMSET(output, 0, sz);
Arc4Process(&rng->cipher, output, output, sz);
return 0;
}
int wc_RNG_GenerateByte(RNG* rng, byte* b)
{
return wc_RNG_GenerateBlock(rng, b, 1);
}
#ifdef HAVE_CAVIUM
#include <cyassl/ctaocrypt/logging.h>
#include "cavium_common.h"
/* Initiliaze RNG for use with Nitrox device */
int wc_InitRngCavium(RNG* rng, int devId)
{
if (rng == NULL)
return -1;
rng->devId = devId;
rng->magic = WOLFSSL_RNG_CAVIUM_MAGIC;
return 0;
}
static void CaviumRNG_GenerateBlock(RNG* rng, byte* output, word32 sz)
{
cyassl_word offset = 0;
word32 requestId;
while (sz > WOLFSSL_MAX_16BIT) {
word16 slen = (word16)WOLFSSL_MAX_16BIT;
if (CspRandom(CAVIUM_BLOCKING, slen, output + offset, &requestId,
rng->devId) != 0) {
WOLFSSL_MSG("Cavium RNG failed");
}
sz -= WOLFSSL_MAX_16BIT;
offset += WOLFSSL_MAX_16BIT;
}
if (sz) {
word16 slen = (word16)sz;
if (CspRandom(CAVIUM_BLOCKING, slen, output + offset, &requestId,
rng->devId) != 0) {
WOLFSSL_MSG("Cavium RNG failed");
}
}
}
#endif /* HAVE_CAVIUM */
#endif /* HAVE_HASHDRBG || NO_RC4 */
#if defined(USE_WINDOWS_API)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
if(!CryptAcquireContext(&os->handle, 0, 0, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT))
return WINCRYPT_E;
if (!CryptGenRandom(os->handle, sz, output))
return CRYPTGEN_E;
CryptReleaseContext(os->handle, 0);
return 0;
}
#elif defined(HAVE_RTP_SYS) || defined(EBSNET)
#include "rtprand.h" /* rtp_rand () */
#include "rtptime.h" /* rtp_get_system_msec() */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
rtp_srand(rtp_get_system_msec());
for (i = 0; i < sz; i++ ) {
output[i] = rtp_rand() % 256;
if ( (i % 8) == 7)
rtp_srand(rtp_get_system_msec());
}
return 0;
}
#elif defined(MICRIUM)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
#if (NET_SECURE_MGR_CFG_EN == DEF_ENABLED)
NetSecure_InitSeed(output, sz);
#endif
return 0;
}
#elif defined(MBED)
/* write a real one !!!, just for testing board */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
for (i = 0; i < sz; i++ )
output[i] = i;
return 0;
}
#elif defined(MICROCHIP_PIC32)
#ifdef MICROCHIP_MPLAB_HARMONY
#define PIC32_SEED_COUNT _CP0_GET_COUNT
#else
#if !defined(WOLFSSL_MICROCHIP_PIC32MZ)
#include <peripheral/timer.h>
#endif
#define PIC32_SEED_COUNT ReadCoreTimer
#endif
#ifdef WOLFSSL_MIC32MZ_RNG
#include "xc.h"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i ;
byte rnd[8] ;
word32 *rnd32 = (word32 *)rnd ;
word32 size = sz ;
byte* op = output ;
/* This part has to be replaced with better random seed */
RNGNUMGEN1 = ReadCoreTimer();
RNGPOLY1 = ReadCoreTimer();
RNGPOLY2 = ReadCoreTimer();
RNGNUMGEN2 = ReadCoreTimer();
#ifdef DEBUG_WOLFSSL
printf("GenerateSeed::Seed=%08x, %08x\n", RNGNUMGEN1, RNGNUMGEN2) ;
#endif
RNGCONbits.PLEN = 0x40;
RNGCONbits.PRNGEN = 1;
for(i=0; i<5; i++) { /* wait for RNGNUMGEN ready */
volatile int x ;
x = RNGNUMGEN1 ;
x = RNGNUMGEN2 ;
}
do {
rnd32[0] = RNGNUMGEN1;
rnd32[1] = RNGNUMGEN2;
for(i=0; i<8; i++, op++) {
*op = rnd[i] ;
size -- ;
if(size==0)break ;
}
} while(size) ;
return 0;
}
#else /* WOLFSSL_MIC32MZ_RNG */
/* uses the core timer, in nanoseconds to seed srand */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(PIC32_SEED_COUNT() * 25);
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ( (i % 8) == 7)
srand(PIC32_SEED_COUNT() * 25);
}
return 0;
}
#endif /* WOLFSSL_MIC32MZ_RNG */
#elif defined(FREESCALE_MQX)
#ifdef FREESCALE_K70_RNGA
/*
* wc_Generates a RNG seed using the Random Number Generator Accelerator
* on the Kinetis K70. Documentation located in Chapter 37 of
* K70 Sub-Family Reference Manual (see Note 3 in the README for link).
*/
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
/* turn on RNGA module */
SIM_SCGC3 |= SIM_SCGC3_RNGA_MASK;
/* set SLP bit to 0 - "RNGA is not in sleep mode" */
RNG_CR &= ~RNG_CR_SLP_MASK;
/* set HA bit to 1 - "security violations masked" */
RNG_CR |= RNG_CR_HA_MASK;
/* set GO bit to 1 - "output register loaded with data" */
RNG_CR |= RNG_CR_GO_MASK;
for (i = 0; i < sz; i++) {
/* wait for RNG FIFO to be full */
while((RNG_SR & RNG_SR_OREG_LVL(0xF)) == 0) {}
/* get value */
output[i] = RNG_OR;
}
return 0;
}
#elif defined(FREESCALE_K53_RNGB)
/*
* wc_Generates a RNG seed using the Random Number Generator (RNGB)
* on the Kinetis K53. Documentation located in Chapter 33 of
* K53 Sub-Family Reference Manual (see note in the README for link).
*/
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
/* turn on RNGB module */
SIM_SCGC3 |= SIM_SCGC3_RNGB_MASK;
/* reset RNGB */
RNG_CMD |= RNG_CMD_SR_MASK;
/* FIFO generate interrupt, return all zeros on underflow,
* set auto reseed */
RNG_CR |= (RNG_CR_FUFMOD_MASK | RNG_CR_AR_MASK);
/* gen seed, clear interrupts, clear errors */
RNG_CMD |= (RNG_CMD_GS_MASK | RNG_CMD_CI_MASK | RNG_CMD_CE_MASK);
/* wait for seeding to complete */
while ((RNG_SR & RNG_SR_SDN_MASK) == 0) {}
for (i = 0; i < sz; i++) {
/* wait for a word to be available from FIFO */
while((RNG_SR & RNG_SR_FIFO_LVL_MASK) == 0) {}
/* get value */
output[i] = RNG_OUT;
}
return 0;
}
#else
#warning "write a real random seed!!!!, just for testing now"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
for (i = 0; i < sz; i++ )
output[i] = i;
return 0;
}
#endif /* FREESCALE_K70_RNGA */
#elif defined(WOLFSSL_SAFERTOS) || defined(CYASSL_LEANPSK) \
|| defined(WOLFSSL_IAR_ARM) || defined(CYASSL_MDK_ARM)
#warning "write a real random seed!!!!, just for testing now"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
for (i = 0; i < sz; i++ )
output[i] = i;
(void)os;
return 0;
}
#elif defined(STM32F2_RNG)
#undef RNG
#include "stm32f2xx_rng.h"
#include "stm32f2xx_rcc.h"
/*
* wc_Generate a RNG seed using the hardware random number generator
* on the STM32F2. Documentation located in STM32F2xx Standard Peripheral
* Library document (See note in README).
*/
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
/* enable RNG clock source */
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
/* enable RNG peripheral */
RNG_Cmd(ENABLE);
for (i = 0; i < sz; i++) {
/* wait until RNG number is ready */
while(RNG_GetFlagStatus(RNG_FLAG_DRDY)== RESET) { }
/* get value */
output[i] = RNG_GetRandomNumber();
}
return 0;
}
#elif defined(WOLFSSL_LPC43xx) || defined(CYASSL_STM32F2xx)
#warning "write a real random seed!!!!, just for testing now"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
for (i = 0; i < sz; i++ )
output[i] = i;
return 0;
}
#elif defined(WOLFSSL_TIRTOS)
#include <xdc/runtime/Timestamp.h>
#include <stdlib.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(xdc_runtime_Timestamp_get32());
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ((i % 8) == 7) {
srand(xdc_runtime_Timestamp_get32());
}
}
return 0;
}
#elif defined(CUSTOM_RAND_GENERATE)
/* Implement your own random generation function
* word32 rand_gen(void);
* #define CUSTOM_RAND_GENERATE rand_gen */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
for (i = 0; i < sz; i++ )
output[i] = CUSTOM_RAND_GENERATE();
return 0;
}
#elif defined(NO_DEV_RANDOM)
#error "you need to write an os specific wc_GenerateSeed() here"
/*
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
return 0;
}
*/
#else /* !USE_WINDOWS_API && !HAVE_RPT_SYS && !MICRIUM && !NO_DEV_RANDOM */
/* may block */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret = 0;
os->fd = open("/dev/urandom",O_RDONLY);
if (os->fd == -1) {
/* may still have /dev/random */
os->fd = open("/dev/random",O_RDONLY);
if (os->fd == -1)
return OPEN_RAN_E;
}
while (sz) {
int len = (int)read(os->fd, output, sz);
if (len == -1) {
ret = READ_RAN_E;
break;
}
sz -= len;
output += len;
if (sz) {
#ifdef BLOCKING
sleep(0); /* context switch */
#else
ret = RAN_BLOCK_E;
break;
#endif
}
}
close(os->fd);
return ret;
}
#endif /* USE_WINDOWS_API */
#endif /* HAVE_FIPS */

View File

@ -29,11 +29,7 @@
#include <wolfssl/wolfcrypt/rsa.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef HAVE_FIPS
int wc_InitRsaKey(RsaKey* key, void* ptr)
{
return InitRsaKey(key, ptr);
@ -127,7 +123,7 @@ int wc_RsaFlattenPublicKey(RsaKey* key, byte* a, word32* aSz, byte* b,
}
int wc_RsaKeyToDer(RsaKey* key, byte* output, word32 inLen)
int RsaKey*ToDer(RsaKey* key, byte* output, word32 inLen)
{
return RsaKeyToDer(key, output, inLen);
}
@ -237,12 +233,833 @@ int wc_RsaFlattenPublicKey(RsaKey* key, byte* a, word32* aSz, byte* b,
#endif /* FIPS_NO_WRAPPERS */
#endif /* HAVE_FIPS */
#else
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#ifdef __cplusplus
} /* extern "C" */
#ifdef SHOW_GEN
#ifdef FREESCALE_MQX
#include <fio.h>
#else
#include <stdio.h>
#endif
#endif
#ifdef HAVE_CAVIUM
static int InitCaviumRsaKey(RsaKey* key, void* heap);
static int FreeCaviumRsaKey(RsaKey* key);
static int CaviumRsaPublicEncrypt(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key);
static int CaviumRsaPrivateDecrypt(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key);
static int CaviumRsaSSL_Sign(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key);
static int CaviumRsaSSL_Verify(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key);
#endif
enum {
RSA_PUBLIC_ENCRYPT = 0,
RSA_PUBLIC_DECRYPT = 1,
RSA_PRIVATE_ENCRYPT = 2,
RSA_PRIVATE_DECRYPT = 3,
RSA_BLOCK_TYPE_1 = 1,
RSA_BLOCK_TYPE_2 = 2,
RSA_MIN_SIZE = 512,
RSA_MAX_SIZE = 4096,
RSA_MIN_PAD_SZ = 11 /* seperator + 0 + pad value + 8 pads */
};
int wc_InitRsaKey(RsaKey* key, void* heap)
{
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return InitCaviumRsaKey(key, heap);
#endif
key->type = -1; /* haven't decided yet */
key->heap = heap;
/* TomsFastMath doesn't use memory allocation */
#ifndef USE_FAST_MATH
key->n.dp = key->e.dp = 0; /* public alloc parts */
key->d.dp = key->p.dp = 0; /* private alloc parts */
key->q.dp = key->dP.dp = 0;
key->u.dp = key->dQ.dp = 0;
#endif
return 0;
}
int wc_FreeRsaKey(RsaKey* key)
{
(void)key;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return FreeCaviumRsaKey(key);
#endif
/* TomsFastMath doesn't use memory allocation */
#ifndef USE_FAST_MATH
if (key->type == RSA_PRIVATE) {
mp_clear(&key->u);
mp_clear(&key->dQ);
mp_clear(&key->dP);
mp_clear(&key->q);
mp_clear(&key->p);
mp_clear(&key->d);
}
mp_clear(&key->e);
mp_clear(&key->n);
#endif
return 0;
}
static int wc_RsaPad(const byte* input, word32 inputLen, byte* pkcsBlock,
word32 pkcsBlockLen, byte padValue, RNG* rng)
{
if (inputLen == 0)
return 0;
pkcsBlock[0] = 0x0; /* set first byte to zero and advance */
pkcsBlock++; pkcsBlockLen--;
pkcsBlock[0] = padValue; /* insert padValue */
if (padValue == RSA_BLOCK_TYPE_1)
/* pad with 0xff bytes */
XMEMSET(&pkcsBlock[1], 0xFF, pkcsBlockLen - inputLen - 2);
else {
/* pad with non-zero random bytes */
word32 padLen = pkcsBlockLen - inputLen - 1, i;
int ret = RNG_GenerateBlock(rng, &pkcsBlock[1], padLen);
if (ret != 0)
return ret;
/* remove zeros */
for (i = 1; i < padLen; i++)
if (pkcsBlock[i] == 0) pkcsBlock[i] = 0x01;
}
pkcsBlock[pkcsBlockLen-inputLen-1] = 0; /* separator */
XMEMCPY(pkcsBlock+pkcsBlockLen-inputLen, input, inputLen);
return 0;
}
/* UnPad plaintext, set start to *output, return length of plaintext,
* < 0 on error */
static int RsaUnPad(const byte *pkcsBlock, unsigned int pkcsBlockLen,
byte **output, byte padValue)
{
word32 maxOutputLen = (pkcsBlockLen > 10) ? (pkcsBlockLen - 10) : 0,
invalid = 0,
i = 1,
outputLen;
if (pkcsBlock[0] != 0x0) /* skip past zero */
invalid = 1;
pkcsBlock++; pkcsBlockLen--;
/* Require block type padValue */
invalid = (pkcsBlock[0] != padValue) || invalid;
/* verify the padding until we find the separator */
if (padValue == RSA_BLOCK_TYPE_1) {
while (i<pkcsBlockLen && pkcsBlock[i++] == 0xFF) {/* Null body */}
}
else {
while (i<pkcsBlockLen && pkcsBlock[i++]) {/* Null body */}
}
if(!(i==pkcsBlockLen || pkcsBlock[i-1]==0)) {
WOLFSSL_MSG("RsaUnPad error, bad formatting");
return RSA_PAD_E;
}
outputLen = pkcsBlockLen - i;
invalid = (outputLen > maxOutputLen) || invalid;
if (invalid) {
WOLFSSL_MSG("RsaUnPad error, bad formatting");
return RSA_PAD_E;
}
*output = (byte *)(pkcsBlock + i);
return outputLen;
}
static int wc_RsaFunction(const byte* in, word32 inLen, byte* out, word32* outLen,
int type, RsaKey* key)
{
#define ERROR_OUT(x) { ret = (x); goto done;}
mp_int tmp;
int ret = 0;
word32 keyLen, len;
if (mp_init(&tmp) != MP_OKAY)
return MP_INIT_E;
if (mp_read_unsigned_bin(&tmp, (byte*)in, inLen) != MP_OKAY)
ERROR_OUT(MP_READ_E);
if (type == RSA_PRIVATE_DECRYPT || type == RSA_PRIVATE_ENCRYPT) {
#ifdef RSA_LOW_MEM /* half as much memory but twice as slow */
if (mp_exptmod(&tmp, &key->d, &key->n, &tmp) != MP_OKAY)
ERROR_OUT(MP_EXPTMOD_E);
#else
#define INNER_ERROR_OUT(x) { ret = (x); goto inner_done; }
mp_int tmpa, tmpb;
if (mp_init(&tmpa) != MP_OKAY)
ERROR_OUT(MP_INIT_E);
if (mp_init(&tmpb) != MP_OKAY) {
mp_clear(&tmpa);
ERROR_OUT(MP_INIT_E);
}
/* tmpa = tmp^dP mod p */
if (mp_exptmod(&tmp, &key->dP, &key->p, &tmpa) != MP_OKAY)
INNER_ERROR_OUT(MP_EXPTMOD_E);
/* tmpb = tmp^dQ mod q */
if (mp_exptmod(&tmp, &key->dQ, &key->q, &tmpb) != MP_OKAY)
INNER_ERROR_OUT(MP_EXPTMOD_E);
/* tmp = (tmpa - tmpb) * qInv (mod p) */
if (mp_sub(&tmpa, &tmpb, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_SUB_E);
if (mp_mulmod(&tmp, &key->u, &key->p, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_MULMOD_E);
/* tmp = tmpb + q * tmp */
if (mp_mul(&tmp, &key->q, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_MUL_E);
if (mp_add(&tmp, &tmpb, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_ADD_E);
inner_done:
mp_clear(&tmpa);
mp_clear(&tmpb);
if (ret != 0) return ret;
#endif /* RSA_LOW_MEM */
}
else if (type == RSA_PUBLIC_ENCRYPT || type == RSA_PUBLIC_DECRYPT) {
if (mp_exptmod(&tmp, &key->e, &key->n, &tmp) != MP_OKAY)
ERROR_OUT(MP_EXPTMOD_E);
}
else
ERROR_OUT(RSA_WRONG_TYPE_E);
keyLen = mp_unsigned_bin_size(&key->n);
if (keyLen > *outLen)
ERROR_OUT(RSA_BUFFER_E);
len = mp_unsigned_bin_size(&tmp);
/* pad front w/ zeros to match key length */
while (len < keyLen) {
*out++ = 0x00;
len++;
}
*outLen = keyLen;
/* convert */
if (mp_to_unsigned_bin(&tmp, out) != MP_OKAY)
ERROR_OUT(MP_TO_E);
done:
mp_clear(&tmp);
return ret;
}
int wc_RsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key, RNG* rng)
{
int sz, ret;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return CaviumRsaPublicEncrypt(in, inLen, out, outLen, key);
#endif
sz = mp_unsigned_bin_size(&key->n);
if (sz > (int)outLen)
return RSA_BUFFER_E;
if (inLen > (word32)(sz - RSA_MIN_PAD_SZ))
return RSA_BUFFER_E;
ret = wc_RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_2, rng);
if (ret != 0)
return ret;
if ((ret = wc_RsaFunction(out, sz, out, &outLen, RSA_PUBLIC_ENCRYPT, key)) < 0)
sz = ret;
return sz;
}
int wc_RsaPrivateDecryptInline(byte* in, word32 inLen, byte** out, RsaKey* key)
{
int ret;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC) {
ret = CaviumRsaPrivateDecrypt(in, inLen, in, inLen, key);
if (ret > 0)
*out = in;
return ret;
}
#endif
if ((ret = wc_RsaFunction(in, inLen, in, &inLen, RSA_PRIVATE_DECRYPT, key))
< 0) {
return ret;
}
return RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_2);
}
int wc_RsaPrivateDecrypt(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key)
{
int plainLen;
byte* tmp;
byte* pad = 0;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return CaviumRsaPrivateDecrypt(in, inLen, out, outLen, key);
#endif
tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA);
if (tmp == NULL) {
return MEMORY_E;
}
XMEMCPY(tmp, in, inLen);
if ( (plainLen = wc_RsaPrivateDecryptInline(tmp, inLen, &pad, key) ) < 0) {
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return plainLen;
}
if (plainLen > (int)outLen)
plainLen = BAD_FUNC_ARG;
else
XMEMCPY(out, pad, plainLen);
XMEMSET(tmp, 0x00, inLen);
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return plainLen;
}
/* for Rsa Verify */
int wc_RsaSSL_VerifyInline(byte* in, word32 inLen, byte** out, RsaKey* key)
{
int ret;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC) {
ret = CaviumRsaSSL_Verify(in, inLen, in, inLen, key);
if (ret > 0)
*out = in;
return ret;
}
#endif
if ((ret = wc_RsaFunction(in, inLen, in, &inLen, RSA_PUBLIC_DECRYPT, key))
< 0) {
return ret;
}
return RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_1);
}
int wc_RsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key)
{
int plainLen;
byte* tmp;
byte* pad = 0;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return CaviumRsaSSL_Verify(in, inLen, out, outLen, key);
#endif
tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA);
if (tmp == NULL) {
return MEMORY_E;
}
XMEMCPY(tmp, in, inLen);
if ( (plainLen = wc_RsaSSL_VerifyInline(tmp, inLen, &pad, key) ) < 0) {
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return plainLen;
}
if (plainLen > (int)outLen)
plainLen = BAD_FUNC_ARG;
else
XMEMCPY(out, pad, plainLen);
XMEMSET(tmp, 0x00, inLen);
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return plainLen;
}
/* for Rsa Sign */
int wc_RsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key, RNG* rng)
{
int sz, ret;
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return CaviumRsaSSL_Sign(in, inLen, out, outLen, key);
#endif
sz = mp_unsigned_bin_size(&key->n);
if (sz > (int)outLen)
return RSA_BUFFER_E;
if (inLen > (word32)(sz - RSA_MIN_PAD_SZ))
return RSA_BUFFER_E;
ret = wc_RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_1, rng);
if (ret != 0)
return ret;
if ((ret = wc_RsaFunction(out, sz, out, &outLen, RSA_PRIVATE_ENCRYPT,key)) < 0)
sz = ret;
return sz;
}
int wc_RsaEncryptSize(RsaKey* key)
{
#ifdef HAVE_CAVIUM
if (key->magic == WOLFSSL_RSA_CAVIUM_MAGIC)
return key->c_nSz;
#endif
return mp_unsigned_bin_size(&key->n);
}
int wc_RsaFlattenPublicKey(RsaKey* key, byte* e, word32* eSz, byte* n, word32* nSz)
{
int sz, ret;
if (key == NULL || e == NULL || eSz == NULL || n == NULL || nSz == NULL)
return BAD_FUNC_ARG;
sz = mp_unsigned_bin_size(&key->e);
if ((word32)sz > *nSz)
return RSA_BUFFER_E;
ret = mp_to_unsigned_bin(&key->e, e);
if (ret != MP_OKAY)
return ret;
*eSz = (word32)sz;
sz = mp_unsigned_bin_size(&key->n);
if ((word32)sz > *nSz)
return RSA_BUFFER_E;
ret = mp_to_unsigned_bin(&key->n, n);
if (ret != MP_OKAY)
return ret;
*nSz = (word32)sz;
return 0;
}
#ifdef WOLFSSL_KEY_GEN
static const int USE_BBS = 1;
static int rand_prime(mp_int* N, int len, RNG* rng, void* heap)
{
int err, res, type;
byte* buf;
(void)heap;
if (N == NULL || rng == NULL)
return BAD_FUNC_ARG;
/* get type */
if (len < 0) {
type = USE_BBS;
len = -len;
} else {
type = 0;
}
/* allow sizes between 2 and 512 bytes for a prime size */
if (len < 2 || len > 512) {
return BAD_FUNC_ARG;
}
/* allocate buffer to work with */
buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_RSA);
if (buf == NULL) {
return MEMORY_E;
}
XMEMSET(buf, 0, len);
do {
#ifdef SHOW_GEN
printf(".");
fflush(stdout);
#endif
/* generate value */
err = RNG_GenerateBlock(rng, buf, len);
if (err != 0) {
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return err;
}
/* munge bits */
buf[0] |= 0x80 | 0x40;
buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00);
/* load value */
if ((err = mp_read_unsigned_bin(N, buf, len)) != MP_OKAY) {
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return err;
}
/* test */
if ((err = mp_prime_is_prime(N, 8, &res)) != MP_OKAY) {
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return err;
}
} while (res == MP_NO);
#ifdef LTC_CLEAN_STACK
XMEMSET(buf, 0, len);
#endif
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return 0;
}
/* Make an RSA key for size bits, with e specified, 65537 is a good e */
int wc_MakeRsaKey(RsaKey* key, int size, long e, RNG* rng)
{
mp_int p, q, tmp1, tmp2, tmp3;
int err;
if (key == NULL || rng == NULL)
return BAD_FUNC_ARG;
if (size < RSA_MIN_SIZE || size > RSA_MAX_SIZE)
return BAD_FUNC_ARG;
if (e < 3 || (e & 1) == 0)
return BAD_FUNC_ARG;
if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY)
return err;
err = mp_set_int(&tmp3, e);
/* make p */
if (err == MP_OKAY) {
do {
err = rand_prime(&p, size/16, rng, key->heap); /* size in bytes/2 */
if (err == MP_OKAY)
err = mp_sub_d(&p, 1, &tmp1); /* tmp1 = p-1 */
if (err == MP_OKAY)
err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(p-1, e) */
} while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes p-1 */
}
/* make q */
if (err == MP_OKAY) {
do {
err = rand_prime(&q, size/16, rng, key->heap); /* size in bytes/2 */
if (err == MP_OKAY)
err = mp_sub_d(&q, 1, &tmp1); /* tmp1 = q-1 */
if (err == MP_OKAY)
err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(q-1, e) */
} while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes q-1 */
}
if (err == MP_OKAY)
err = mp_init_multi(&key->n, &key->e, &key->d, &key->p, &key->q, NULL);
if (err == MP_OKAY)
err = mp_init_multi(&key->dP, &key->dQ, &key->u, NULL, NULL, NULL);
if (err == MP_OKAY)
err = mp_sub_d(&p, 1, &tmp2); /* tmp2 = p-1 */
if (err == MP_OKAY)
err = mp_lcm(&tmp1, &tmp2, &tmp1); /* tmp1 = lcm(p-1, q-1),last loop */
/* make key */
if (err == MP_OKAY)
err = mp_set_int(&key->e, e); /* key->e = e */
if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */
err = mp_invmod(&key->e, &tmp1, &key->d);
if (err == MP_OKAY)
err = mp_mul(&p, &q, &key->n); /* key->n = pq */
if (err == MP_OKAY)
err = mp_sub_d(&p, 1, &tmp1);
if (err == MP_OKAY)
err = mp_sub_d(&q, 1, &tmp2);
if (err == MP_OKAY)
err = mp_mod(&key->d, &tmp1, &key->dP);
if (err == MP_OKAY)
err = mp_mod(&key->d, &tmp2, &key->dQ);
if (err == MP_OKAY)
err = mp_invmod(&q, &p, &key->u);
if (err == MP_OKAY)
err = mp_copy(&p, &key->p);
if (err == MP_OKAY)
err = mp_copy(&q, &key->q);
if (err == MP_OKAY)
key->type = RSA_PRIVATE;
mp_clear(&tmp3);
mp_clear(&tmp2);
mp_clear(&tmp1);
mp_clear(&q);
mp_clear(&p);
if (err != MP_OKAY) {
wc_FreeRsaKey(key);
return err;
}
return 0;
}
#endif /* WOLFSSL_KEY_GEN */
#ifdef HAVE_CAVIUM
#include <cyassl/ctaocrypt/logging.h>
#include "cavium_common.h"
/* Initiliaze RSA for use with Nitrox device */
int RsaInitCavium(RsaKey* rsa, int devId)
{
if (rsa == NULL)
return -1;
if (CspAllocContext(CONTEXT_SSL, &rsa->contextHandle, devId) != 0)
return -1;
rsa->devId = devId;
rsa->magic = WOLFSSL_RSA_CAVIUM_MAGIC;
return 0;
}
/* Free RSA from use with Nitrox device */
void wc_RsaFreeCavium(RsaKey* rsa)
{
if (rsa == NULL)
return;
CspFreeContext(CONTEXT_SSL, rsa->contextHandle, rsa->devId);
rsa->magic = 0;
}
/* Initialize cavium RSA key */
static int InitCaviumRsaKey(RsaKey* key, void* heap)
{
if (key == NULL)
return BAD_FUNC_ARG;
key->heap = heap;
key->type = -1; /* don't know yet */
key->c_n = NULL;
key->c_e = NULL;
key->c_d = NULL;
key->c_p = NULL;
key->c_q = NULL;
key->c_dP = NULL;
key->c_dQ = NULL;
key->c_u = NULL;
key->c_nSz = 0;
key->c_eSz = 0;
key->c_dSz = 0;
key->c_pSz = 0;
key->c_qSz = 0;
key->c_dP_Sz = 0;
key->c_dQ_Sz = 0;
key->c_uSz = 0;
return 0;
}
/* Free cavium RSA key */
static int FreeCaviumRsaKey(RsaKey* key)
{
if (key == NULL)
return BAD_FUNC_ARG;
XFREE(key->c_n, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_e, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_d, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_p, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_q, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_dP, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_dQ, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
XFREE(key->c_u, key->heap, DYNAMIC_TYPE_CAVIUM_TMP);
return InitCaviumRsaKey(key, key->heap); /* reset pointers */
}
static int CaviumRsaPublicEncrypt(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key)
{
word32 requestId;
word32 ret;
if (key == NULL || in == NULL || out == NULL || outLen < (word32)key->c_nSz)
return -1;
ret = CspPkcs1v15Enc(CAVIUM_BLOCKING, BT2, key->c_nSz, key->c_eSz,
(word16)inLen, key->c_n, key->c_e, (byte*)in, out,
&requestId, key->devId);
if (ret != 0) {
WOLFSSL_MSG("Cavium Enc BT2 failed");
return -1;
}
return key->c_nSz;
}
static INLINE void ato16(const byte* c, word16* u16)
{
*u16 = (c[0] << 8) | (c[1]);
}
static int CaviumRsaPrivateDecrypt(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key)
{
word32 requestId;
word32 ret;
word16 outSz = (word16)outLen;
if (key == NULL || in == NULL || out == NULL || inLen != (word32)key->c_nSz)
return -1;
ret = CspPkcs1v15CrtDec(CAVIUM_BLOCKING, BT2, key->c_nSz, key->c_q,
key->c_dQ, key->c_p, key->c_dP, key->c_u,
(byte*)in, &outSz, out, &requestId, key->devId);
if (ret != 0) {
WOLFSSL_MSG("Cavium CRT Dec BT2 failed");
return -1;
}
ato16((const byte*)&outSz, &outSz);
return outSz;
}
static int CaviumRsaSSL_Sign(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key)
{
word32 requestId;
word32 ret;
if (key == NULL || in == NULL || out == NULL || inLen == 0 || outLen <
(word32)key->c_nSz)
return -1;
ret = CspPkcs1v15CrtEnc(CAVIUM_BLOCKING, BT1, key->c_nSz, (word16)inLen,
key->c_q, key->c_dQ, key->c_p, key->c_dP, key->c_u,
(byte*)in, out, &requestId, key->devId);
if (ret != 0) {
WOLFSSL_MSG("Cavium CRT Enc BT1 failed");
return -1;
}
return key->c_nSz;
}
static int CaviumRsaSSL_Verify(const byte* in, word32 inLen, byte* out,
word32 outLen, RsaKey* key)
{
word32 requestId;
word32 ret;
word16 outSz = (word16)outLen;
if (key == NULL || in == NULL || out == NULL || inLen != (word32)key->c_nSz)
return -1;
ret = CspPkcs1v15Dec(CAVIUM_BLOCKING, BT1, key->c_nSz, key->c_eSz,
key->c_n, key->c_e, (byte*)in, &outSz, out,
&requestId, key->devId);
if (ret != 0) {
WOLFSSL_MSG("Cavium Dec BT1 failed");
return -1;
}
outSz = ntohs(outSz);
return outSz;
}
#endif /* HAVE_CAVIUM */
#endif /* HAVE_FIPS */
#endif /* NO_RSA */

View File

@ -26,11 +26,7 @@
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/sha512.h>
#ifdef WOLFSSL_SHA512
#ifdef __cplusplus
extern "C" {
#endif
#if defined(WOLFSSL_SHA512) || defined(CYASSL_SHA512)
int wc_InitSha512(Sha512* sha)
{
@ -55,7 +51,7 @@ int wc_Sha512Hash(const byte* data, word32 len, byte* out)
return Sha512Hash(data, len, out);
}
#if defined(WOLFSSL_SHA384) || defined(HAVE_AESGCM)
#if defined(CYASSL_SHA384) || defined(WOLFSSL_SHA384) || defined(HAVE_AESGCM)
int wc_InitSha384(Sha384* sha)
{
@ -82,9 +78,5 @@ int wc_Sha384Hash(const byte* data, word32 len, byte* out)
#endif /* WOLFSSL_SHA384 */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* WOLFSSL_SHA512 */