sha.c updated

This commit is contained in:
kaleb-himes 2014-12-31 17:03:07 -07:00
parent 87431aa744
commit aa08c17dc1

View File

@ -2,14 +2,14 @@
*
* Copyright (C) 2006-2014 wolfSSL Inc.
*
* This file is part of CyaSSL.
* This file is part of wolfSSL. (formerly known as CyaSSL)
*
* CyaSSL is free software; you can redistribute it and/or modify
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CyaSSL is distributed in the hope that it will be useful,
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
@ -43,27 +43,377 @@
#include <wolfcrypt/src/misc.c>
#endif
#ifndef HAVE_FIPS
#ifdef STM32F2_HASH
/*
* STM32F2 hardware SHA1 support through the STM32F2 standard peripheral
* library. Documentation located in STM32F2xx Standard Peripheral Library
* document (See note in README).
*/
#include "stm32f2xx.h"
#include "stm32f2xx_hash.h"
int wc_InitSha(Sha* sha)
{
return InitSha(sha);
/* STM32F2 struct notes:
* sha->buffer = first 4 bytes used to hold partial block if needed
* sha->buffLen = num bytes currently stored in sha->buffer
* sha->loLen = num bytes that have been written to STM32 FIFO
*/
XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
sha->buffLen = 0;
sha->loLen = 0;
/* initialize HASH peripheral */
HASH_DeInit();
/* configure algo used, algo mode, datatype */
HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH
| HASH_DataType_8b);
/* reset HASH processor */
HASH->CR |= HASH_CR_INIT;
return 0;
}
int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
{
return ShaUpdate(sha, data, len);
word32 i = 0;
word32 fill = 0;
word32 diff = 0;
/* if saved partial block is available */
if (sha->buffLen) {
fill = 4 - sha->buffLen;
/* if enough data to fill, fill and push to FIFO */
if (fill <= len) {
XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill);
HASH_DataIn(*(uint32_t*)sha->buffer);
data += fill;
len -= fill;
sha->loLen += 4;
sha->buffLen = 0;
} else {
/* append partial to existing stored block */
XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len);
sha->buffLen += len;
return;
}
}
/* write input block in the IN FIFO */
for(i = 0; i < len; i += 4)
{
diff = len - i;
if ( diff < 4) {
/* store incomplete last block, not yet in FIFO */
XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
XMEMCPY((byte*)sha->buffer, data, diff);
sha->buffLen = diff;
} else {
HASH_DataIn(*(uint32_t*)data);
data+=4;
}
}
/* keep track of total data length thus far */
sha->loLen += (len - sha->buffLen);
return 0;
}
int wc_ShaFinal(Sha* sha, byte* hash)
{
return ShaFinal(sha, hash);
__IO uint16_t nbvalidbitsdata = 0;
/* finish reading any trailing bytes into FIFO */
if (sha->buffLen) {
HASH_DataIn(*(uint32_t*)sha->buffer);
sha->loLen += sha->buffLen;
}
/* calculate number of valid bits in last word of input data */
nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE);
/* configure number of valid bits in last word of the data */
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
/* start HASH processor */
HASH_StartDigest();
/* wait until Busy flag == RESET */
while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {}
/* read message digest */
sha->digest[0] = HASH->HR[0];
sha->digest[1] = HASH->HR[1];
sha->digest[2] = HASH->HR[2];
sha->digest[3] = HASH->HR[3];
sha->digest[4] = HASH->HR[4];
ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
return wc_InitSha(sha); /* reset state */
}
#else /* wc_ software implementation */
#ifndef min
static INLINE word32 min(word32 a, word32 b)
{
return a > b ? b : a;
}
#endif /* min */
int wc_InitSha(Sha* sha)
{
#ifdef FREESCALE_MMCAU
cau_sha1_initialize_output(sha->digest);
#else
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
#endif
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return 0;
}
#ifndef FREESCALE_MMCAU
#define blk0(i) (W[i] = sha->buffer[i])
#define blk1(i) (W[(i)&15] = \
rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
#define f1(x,y,z) ((z)^((x) &((y)^(z))))
#define f2(x,y,z) ((x)^(y)^(z))
#define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
#define f4(x,y,z) ((x)^(y)^(z))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
static void Transform(Sha* sha)
{
word32 W[SHA_BLOCK_SIZE / sizeof(word32)];
/* Copy context->state[] to working vars */
word32 a = sha->digest[0];
word32 b = sha->digest[1];
word32 c = sha->digest[2];
word32 d = sha->digest[3];
word32 e = sha->digest[4];
#ifdef USE_SLOW_SHA
word32 t, i;
for (i = 0; i < 16; i++) {
R0(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 20; i++) {
R1(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; i++) {
R2(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; i++) {
R3(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; i++) {
R4(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
/* nearly 1 K bigger in code size but 25% faster */
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#endif
/* Add the working vars back into digest state[] */
sha->digest[0] += a;
sha->digest[1] += b;
sha->digest[2] += c;
sha->digest[3] += d;
sha->digest[4] += e;
}
#endif /* FREESCALE_MMCAU */
static INLINE void AddLength(Sha* sha, word32 len)
{
word32 tmp = sha->loLen;
if ( (sha->loLen += len) < tmp)
sha->hiLen++; /* carry low to high */
}
int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
{
/* do block size increments */
byte* local = (byte*)sha->buffer;
while (len) {
word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen);
XMEMCPY(&local[sha->buffLen], data, add);
sha->buffLen += add;
data += add;
len -= add;
if (sha->buffLen == SHA_BLOCK_SIZE) {
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
#endif
XTRANSFORM(sha, local);
AddLength(sha, SHA_BLOCK_SIZE);
sha->buffLen = 0;
}
}
return 0;
}
int wc_ShaFinal(Sha* sha, byte* hash)
{
byte* local = (byte*)sha->buffer;
AddLength(sha, sha->buffLen); /* before adding pads */
local[sha->buffLen++] = 0x80; /* add 1 */
/* pad with zeros */
if (sha->buffLen > SHA_PAD_SIZE) {
XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen);
sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
#endif
XTRANSFORM(sha, local);
sha->buffLen = 0;
}
XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen);
/* put lengths in bits */
sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) +
(sha->hiLen << 3);
sha->loLen = sha->loLen << 3;
/* store lengths */
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
#endif
/* ! length ordering dependent on digest endian type ! */
XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
#ifdef FREESCALE_MMCAU
/* Kinetis requires only these bytes reversed */
ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
2 * sizeof(word32));
#endif
XTRANSFORM(sha, local);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
#endif
XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
return wc_InitSha(sha); /* reset state */
}
#endif /* STM32F2_HASH */
int wc_ShaHash(const byte* data, word32 len, byte* hash)
{
return ShaHash(data, len, hash);
}
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
Sha* sha;
#else
Sha sha[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
sha = (Sha*)XMALLOC(sizeof(Sha), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (sha == NULL)
return MEMORY_E;
#endif
if ((ret = wc_InitSha(sha)) != 0) {
CYASSL_MSG("wc_InitSha failed");
}
else {
wc_ShaUpdate(sha, data, len);
wc_ShaFinal(sha, hash);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(sha, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif /* not defined HAVE_FIPS */
/* fips wrapper calls, user can call direct */
#ifdef HAVE_FIPS