Merge pull request #3947 from dgarske/nxp_ltc

Fixes for NXP LTC
This commit is contained in:
Chris Conlon 2021-04-13 13:49:22 -06:00 committed by GitHub
commit 71e2f191a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 91 additions and 68 deletions

View File

@ -64,10 +64,10 @@
// UART TX Port, Pin, Mux and Baud
#ifdef FREESCALE_KSDK_BM
#define UART_PORT LPUART0 /* UART Port */
#define UART_TX_PORT PORTA /* UART TX Port */
#define UART_TX_PIN 2U /* UART TX Pin */
#define UART_TX_MUX kPORT_MuxAlt2 /* Kinetis UART pin mux */
#define UART_PORT LPUART4 /* UART Port */
#define UART_TX_PORT PORTC /* UART TX Port */
#define UART_TX_PIN 15U /* UART TX Pin */
#define UART_TX_MUX kPORT_MuxAlt3 /* Kinetis UART pin mux */
#elif defined (WOLFSSL_FRDM_K64)
#define UART_PORT UART0 /* UART Port */
#define UART_TX_PORT PORTB /* UART TX Port */
@ -91,7 +91,7 @@
/* Note: TWR-K60 is UART3, PTC17 */
/* Note: FRDM-K64 is UART4, PTE24 or UART0 PTB17 for OpenOCD (SIM_SCGC4_UART0_MASK)*/
/* Note: TWR-K64 is UART5, PTE8 */
/* Note: FRDM-K82F is LPUART0 A2, LPUART4 PTC15 */
/* Note: FRDM-K82F is LPUART4 PTC15 Alt3 (OpenOCD UART) */
/***********************************************/

View File

@ -159,7 +159,6 @@
<file file_name="drivers/fsl_edma.h" />
<file file_name="drivers/fsl_ewm.c" />
<file file_name="drivers/fsl_ewm.h" />
<file file_name="drivers/fsl_flash.c" />
<file file_name="drivers/fsl_flash.h" />
<file file_name="drivers/fsl_flexbus.c" />
<file file_name="drivers/fsl_flexbus.h" />
@ -223,8 +222,6 @@
<file file_name="drivers/fsl_ltc.h" />
<file file_name="drivers/fsl_ltc_edma.c" />
<file file_name="drivers/fsl_ltc_edma.h" />
<file file_name="drivers/fsl_mpu.c" />
<file file_name="drivers/fsl_mpu.h" />
<file file_name="drivers/fsl_pdb.c" />
<file file_name="drivers/fsl_pdb.h" />
<file file_name="drivers/fsl_pit.c" />

View File

@ -2882,7 +2882,7 @@ static int ecc_mulmod(const mp_int* k, ecc_point* P, ecc_point* Q,
#endif
/* Convert the point to montogmery form.
/* Convert the point to montgomery form.
*
* @param [in] p Point to convert.
* @param [out] r Point in montgomery form.
@ -4459,10 +4459,14 @@ static int ecc_make_pub_ex(ecc_key* key, ecc_curve_spec* curveIn,
err = MEMORY_E;
}
}
#ifndef FREESCALE_LTC_ECC /* this is done in hardware */
if (err == MP_OKAY) {
/* Use constant time map if compiled in */
err = ecc_map_ex(pub, curve->prime, mp, 1);
}
#else
(void)mp;
#endif
wc_ecc_del_point_ex(base, key->heap);
}

View File

@ -129,9 +129,9 @@ int mp_mul(mp_int *A, mp_int *B, mp_int *C)
#endif
/* unsigned multiply */
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrB = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrB = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
if (ptrA && ptrB && ptrC) {
uint16_t sizeA, sizeB;
@ -179,17 +179,15 @@ int mp_mul(mp_int *A, mp_int *B, mp_int *C)
int mp_mod(mp_int *a, mp_int *b, mp_int *c)
{
int res = MP_OKAY;
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
int szA, szB;
szA = mp_unsigned_bin_size(a);
szB = mp_unsigned_bin_size(b);
if ((szA <= LTC_MAX_INT_BYTES) && (szB <= LTC_MAX_INT_BYTES))
{
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
int neg = 0;
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrB = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrB = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
#ifndef WOLFSSL_SP_MATH
/* get sign for the result */
@ -233,12 +231,15 @@ int mp_mod(mp_int *a, mp_int *b, mp_int *c)
if (ptrC) {
XFREE(ptrC, NULL, DYNAMIC_TYPE_BIGINT);
}
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
}
else {
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
res = wolfcrypt_mp_mod(a, b, c);
#else
res = NOT_COMPILED_IN;
#endif
}
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
return res;
}
@ -246,15 +247,13 @@ int mp_mod(mp_int *a, mp_int *b, mp_int *c)
int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
{
int res = MP_OKAY;
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
int szA, szB;
szA = mp_unsigned_bin_size(a);
szB = mp_unsigned_bin_size(b);
if ((szA <= LTC_MAX_INT_BYTES) && (szB <= LTC_MAX_INT_BYTES)) {
#endif
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrB = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrB = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
if (ptrA && ptrB && ptrC) {
uint16_t sizeA, sizeB, sizeC;
@ -290,12 +289,14 @@ int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
if (ptrC) {
XFREE(ptrC, NULL, DYNAMIC_TYPE_BIGINT);
}
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
}
else {
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
res = wolfcrypt_mp_invmod(a, b, c);
#else
res = NOT_COMPILED_IN;
#endif
}
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
return res;
}
@ -303,13 +304,11 @@ int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
int res = MP_OKAY;
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
int szA, szB, szC;
szA = mp_unsigned_bin_size(a);
szB = mp_unsigned_bin_size(b);
szC = mp_unsigned_bin_size(c);
if ((szA <= LTC_MAX_INT_BYTES) && (szB <= LTC_MAX_INT_BYTES) && (szC <= LTC_MAX_INT_BYTES)) {
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
mp_int t;
uint8_t *ptrA = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
@ -317,8 +316,8 @@ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
uint8_t *ptrC = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrD = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
/* if A or B is negative, subtract abs(A) or abs(B) from modulus to get positive integer representation of the
* same number */
/* if A or B is negative, subtract abs(A) or abs(B) from modulus to get
* positive integer representation of the same number */
res = mp_init(&t);
#ifndef WOLFSSL_SP_MATH
if (a->sign) {
@ -347,7 +346,8 @@ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
/* (A*B)mod C = ((A mod C) * (B mod C)) mod C */
if (res == MP_OKAY && LTC_PKHA_CompareBigNum(ptrA, sizeA, ptrC, sizeC) >= 0) {
if (kStatus_Success !=
LTC_PKHA_ModRed(LTC_BASE, ptrA, sizeA, ptrC, sizeC, ptrA, &sizeA, kLTC_PKHA_IntegerArith))
LTC_PKHA_ModRed(LTC_BASE, ptrA, sizeA, ptrC, sizeC, ptrA,
&sizeA, kLTC_PKHA_IntegerArith))
{
res = MP_VAL;
}
@ -355,16 +355,18 @@ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
if (res == MP_OKAY && (LTC_PKHA_CompareBigNum(ptrB, sizeB, ptrC, sizeC) >= 0))
{
if (kStatus_Success !=
LTC_PKHA_ModRed(LTC_BASE, ptrB, sizeB, ptrC, sizeC, ptrB, &sizeB, kLTC_PKHA_IntegerArith))
LTC_PKHA_ModRed(LTC_BASE, ptrB, sizeB, ptrC, sizeC, ptrB,
&sizeB, kLTC_PKHA_IntegerArith))
{
res = MP_VAL;
}
}
if (res == MP_OKAY) {
if (kStatus_Success != LTC_PKHA_ModMul(LTC_BASE, ptrA, sizeA, ptrB, sizeB, ptrC, sizeC, ptrD, &sizeD,
kLTC_PKHA_IntegerArith, kLTC_PKHA_NormalValue,
kLTC_PKHA_NormalValue, kLTC_PKHA_TimingEqualized))
if (kStatus_Success != LTC_PKHA_ModMul(LTC_BASE, ptrA, sizeA,
ptrB, sizeB, ptrC, sizeC, ptrD, &sizeD,
kLTC_PKHA_IntegerArith, kLTC_PKHA_NormalValue,
kLTC_PKHA_NormalValue, kLTC_PKHA_TimingEqualized))
{
res = MP_VAL;
}
@ -394,12 +396,15 @@ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
#ifndef USE_FAST_MATH
mp_clear(&t);
#endif
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
}
else {
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
res = wolfcrypt_mp_mulmod(a, b, c, d);
#else
res = NOT_COMPILED_IN;
#endif
}
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
return res;
}
@ -407,12 +412,12 @@ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
{
int res = MP_OKAY;
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
int szA, szB, szC;
mp_int tmp;
/* if G cannot fit into LTC_PKHA, reduce it */
szA = mp_unsigned_bin_size(G);
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
if (szA > LTC_MAX_INT_BYTES) {
res = mp_init(&tmp);
if (res != MP_OKAY)
@ -423,18 +428,19 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
G = &tmp;
szA = mp_unsigned_bin_size(G);
}
#endif
szB = mp_unsigned_bin_size(X);
szC = mp_unsigned_bin_size(P);
if ((szA <= LTC_MAX_INT_BYTES) && (szB <= LTC_MAX_INT_BYTES) && (szC <= LTC_MAX_INT_BYTES)) {
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
if ((szA <= LTC_MAX_INT_BYTES) && (szB <= LTC_MAX_INT_BYTES) &&
(szC <= LTC_MAX_INT_BYTES))
{
mp_int t;
uint16_t sizeG, sizeX, sizeP;
uint8_t *ptrG = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrX = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrP = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, 0, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrG = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrX = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
uint8_t *ptrP = (uint8_t *)XMALLOC(LTC_MAX_INT_BYTES, NULL, DYNAMIC_TYPE_BIGINT);
/* if G is negative, add modulus to convert to positive number for LTC */
res = mp_init(&t);
@ -454,7 +460,8 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
if (res == MP_OKAY)
res = ltc_get_lsb_bin_from_mp_int(ptrP, P, &sizeP);
/* if number if greater that modulo, we must first reduce due to LTC requirement on modular exponentiaton */
/* if number if greater that modulo, we must first reduce due to
LTC requirement on modular exponentiation */
/* it needs number less than modulus. */
/* we can take advantage of modular arithmetic rule that: A^B mod C = ( (A mod C)^B ) mod C
and so we do first (A mod N) : LTC does not give size requirement on A versus N,
@ -462,7 +469,8 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
*/
/* if G >= P then */
if (res == MP_OKAY && LTC_PKHA_CompareBigNum(ptrG, sizeG, ptrP, sizeP) >= 0) {
res = (int)LTC_PKHA_ModRed(LTC_BASE, ptrG, sizeG, ptrP, sizeP, ptrG, &sizeG, kLTC_PKHA_IntegerArith);
res = (int)LTC_PKHA_ModRed(LTC_BASE, ptrG, sizeG, ptrP, sizeP,
ptrG, &sizeG, kLTC_PKHA_IntegerArith);
if (res != kStatus_Success) {
res = MP_VAL;
@ -470,8 +478,9 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
}
if (res == MP_OKAY) {
res = (int)LTC_PKHA_ModExp(LTC_BASE, ptrG, sizeG, ptrP, sizeP, ptrX, sizeX, ptrP, &sizeP,
kLTC_PKHA_IntegerArith, kLTC_PKHA_NormalValue, kLTC_PKHA_TimingEqualized);
res = (int)LTC_PKHA_ModExp(LTC_BASE, ptrG, sizeG, ptrP, sizeP,
ptrX, sizeX, ptrP, &sizeP, kLTC_PKHA_IntegerArith,
kLTC_PKHA_NormalValue, kLTC_PKHA_TimingEqualized);
if (res != kStatus_Success) {
res = MP_VAL;
@ -498,17 +507,20 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
#ifndef USE_FAST_MATH
mp_clear(&t);
#endif
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
}
else {
#if defined(FREESCALE_LTC_TFM_RSA_4096_ENABLE)
res = wolfcrypt_mp_exptmod(G, X, P, Y);
#else
res = NOT_COMPILED_IN;
#endif
}
#ifndef USE_FAST_MATH
if (szA > LTC_MAX_INT_BYTES)
mp_clear(&tmp);
#endif
#endif /* FREESCALE_LTC_TFM_RSA_4096_ENABLE */
return res;
}
@ -575,7 +587,7 @@ static const uint8_t ltc_ecc256_modulus[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF};
static const uint8_t ltc_ecc256_r2modn[32] = {
static const uint8_t ltc_ecc256_r2modn[32] = { /* R^2 mod N */
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF,
0xFF, 0xFB, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0x04, 0x00, 0x00, 0x00};
@ -696,7 +708,7 @@ static int ltc_get_ecc_specs(const uint8_t **modulus, const uint8_t **r2modn,
(1==map, 0 == leave in projective)
return MP_OKAY on success
*/
int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
int wc_ecc_mulmod_ex(const mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
mp_int *modulus, int map, void* heap)
{
ltc_pkha_ecc_point_t B;
@ -707,9 +719,6 @@ int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
status_t status;
int res;
(void)a;
(void)heap;
uint8_t Gxbin[LTC_MAX_ECC_BITS / 8];
uint8_t Gybin[LTC_MAX_ECC_BITS / 8];
uint8_t kbin[LTC_MAX_INT_BYTES];
@ -719,6 +728,9 @@ int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
const uint8_t *bCurveParam;
const uint8_t *r2modn;
(void)a;
(void)heap;
if (k == NULL || G == NULL || R == NULL || modulus == NULL) {
return ECC_BAD_ARG_E;
}
@ -726,26 +738,32 @@ int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
szModulus = mp_unsigned_bin_size(modulus);
szkbin = mp_unsigned_bin_size(k);
res = ltc_get_from_mp_int(kbin, k, szkbin);
/* make sure LTC big number variable is large enough */
if (szModulus > LTC_MAX_INT_BYTES / 2) {
return MP_MEM;
}
res = ltc_get_from_mp_int(kbin, (mp_int*)k, szkbin);
if (res == MP_OKAY)
res = ltc_get_from_mp_int(Gxbin, G->x, szModulus);
if (res == MP_OKAY)
res = ltc_get_from_mp_int(Gybin, G->y, szModulus);
if (res != MP_OKAY)
return res;
size = szModulus;
/* find LTC friendly parameters for the selected curve */
if (0 != ltc_get_ecc_specs(&modbin, &r2modn, &aCurveParam, &bCurveParam, size)) {
if (ltc_get_ecc_specs(&modbin, &r2modn, &aCurveParam, &bCurveParam, size) != 0) {
return ECC_BAD_ARG_E;
}
B.X = &Gxbin[0];
B.Y = &Gybin[0];
status = LTC_PKHA_ECC_PointMul(LTC_BASE, &B, kbin, szkbin, modbin, r2modn, aCurveParam, bCurveParam, size,
kLTC_PKHA_TimingEqualized, kLTC_PKHA_IntegerArith, &B, &point_of_infinity);
status = LTC_PKHA_ECC_PointMul(LTC_BASE, &B, kbin, szkbin, modbin, r2modn,
aCurveParam, bCurveParam, size, kLTC_PKHA_TimingEqualized,
kLTC_PKHA_IntegerArith, &B, &point_of_infinity);
if (status != kStatus_Success) {
return MP_VAL;
}
@ -768,7 +786,7 @@ int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
return res;
}
int wc_ecc_mulmod_ex2(mp_int* k, ecc_point *G, ecc_point *R, mp_int* a,
int wc_ecc_mulmod_ex2(const mp_int* k, ecc_point *G, ecc_point *R, mp_int* a,
mp_int* modulus, mp_int* order, WC_RNG* rng, int map,
void* heap)
{
@ -817,8 +835,8 @@ int wc_ecc_point_add(ecc_point *mG, ecc_point *mQ, ecc_point *mR, mp_int *m)
B.X = Qxbin;
B.Y = Qybin;
status = LTC_PKHA_ECC_PointAdd(LTC_BASE, &A, &B, modbin, r2modn, aCurveParam, bCurveParam, size,
kLTC_PKHA_IntegerArith, &A);
status = LTC_PKHA_ECC_PointAdd(LTC_BASE, &A, &B, modbin, r2modn,
aCurveParam, bCurveParam, size, kLTC_PKHA_IntegerArith, &A);
if (status != kStatus_Success) {
res = MP_VAL;
}
@ -1131,7 +1149,8 @@ status_t LTC_PKHA_Curve25519ComputeY(ltc_pkha_ecc_point_t *ltcPoint)
/* if type is set, the input point p is in Montgomery curve coordinates,
so there is a map to Weierstrass curve */
/* q output point is always in Montgomery curve coordinates */
int nxp_ltc_curve25519(ECPoint *q, const byte *n, const ECPoint *p, fsl_ltc_ecc_coordinate_system_t type)
int nxp_ltc_curve25519(ECPoint *q, const byte *n, const ECPoint *p,
fsl_ltc_ecc_coordinate_system_t type)
{
status_t status;
ltc_pkha_ecc_point_t ltcPoint;

View File

@ -646,7 +646,7 @@ static int stm32_get_ecc_specs(const uint8_t **prime, const uint8_t **coef,
(1==map, 0 == leave in projective)
return MP_OKAY on success
*/
int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
int wc_ecc_mulmod_ex(const mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
mp_int *modulus, int map, void* heap)
{
PKA_ECCMulInTypeDef pka_mul;
@ -725,7 +725,7 @@ int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
return res;
}
int wc_ecc_mulmod_ex2(mp_int* k, ecc_point *G, ecc_point *R, mp_int* a,
int wc_ecc_mulmod_ex2(const mp_int* k, ecc_point *G, ecc_point *R, mp_int* a,
mp_int* modulus, mp_int* order, WC_RNG* rng, int map,
void* heap)
{

View File

@ -1178,8 +1178,11 @@ extern void uITRON4_free(void *p) ;
/* the LTC PKHA hardware limit is 2048 bits (256 bytes) for integer arithmetic.
the LTC_MAX_INT_BYTES defines the size of local variables that hold big integers. */
#ifndef LTC_MAX_INT_BYTES
#define LTC_MAX_INT_BYTES (256)
/* size is multiplication of 2 big ints */
#if !defined(NO_RSA) || !defined(NO_DH)
#define LTC_MAX_INT_BYTES (256*2)
#else
#define LTC_MAX_INT_BYTES (48*2)
#endif
/* This FREESCALE_LTC_TFM_RSA_4096_ENABLE macro can be defined.