
The wmii User Guide

Kris Maglione

23 May 2009

Contents

1 Introduction 1
. Concepts .

.. The Filesystem .
.. Views and Tags .
.. The Bar .
.. The Menus .
.. The Keyboard .
.. The Mouse .

2 Getting Started 4
. Your First Steps .

.. Floating Mode .
.. Managed Mode .
.. Keyboard Navigation .
.. Mouse Navigation .

. Running Programs .
. Using Views .
. Learning More .

3 Customizing wmii 9
. Events .
. Bar Items .

.. View Buttons .
.. Urgency .
.. Notices .

. Keys .
. Click Menus .
. Control Files .
. Clients .

.. Key Bindings .
.. Click Menus .
.. Unresponsive Clients .

. Views .
.. Key Bindings .
.. Click Menus .

. Command and Program Execution .
.. Key Bindings .

. The Root .
.. Configuration .
.. Key Bindings .

i

Contents

. Tieing it All Together .

ii

1 Introduction
wmii is a simple but powerfulwindowmanager for theXWindowSystem. It provides both
the classic (“floating”) and tiling (“managed”) window management paradigms, which is
to say, it does the job of managing your windows, so you don’t have to. It also provides
programability by means of a simple file-like interface, which allows the user to program
in virtually any language he chooses. These basic features have become indispensible
to the many users of wmii and other similar window managers, but they come at a cost.
Though our penchant for simplicitymakes wmii’s learning curve significantly shorter than
most of its competitors, there’s still a lot to learn. The rest of this guide will be devoted to
familiarizing new users with wmii’s novel features and eccentricities, as well as provide
advanced users with an in-depth look at our customization facilities.

1.1 Concepts
As noted, wmii provides two management styles:

Managed This is the primary style of window management in wmii. Windows managed
in this style are automatically arranged by wmii into columns. Columns are cre-
ated and destroyed on demand. Individual windows in the column may be moved
or resized, and are often collapsed or hidden entirely. Ad-hoc stacks of collapsed
and uncollapsed windows allow the user to efficiently manage their tasks. When
switching from an active to a collapsed window, the active window collapses, and
the collapsed one effectively takes its place.

Floating Since some programs aren’t designed in ways conducive to the managed work
flow, wmii also provides the classic “floating” window management model. In this
model, windowsfloat above themanagedwindows, andmaybemoved freely about.
Other than automatic placement of newwindows and snapping of edges, wmiidoesn’t
manage floating windows at all.

Fullscreen Fullscreen mode is actually a subset of the floating style. Windows may be
toggled to and from fullscreen mode at will. When fullscreen, windows reside in
the floating layer, above the managed windows. They have no borders or titlebars,
and occupy the full area of the screen. Other than that, however, they’re not special
in any way. Other floating windows may appear above them, and the user can still
select, open, and close other windows at will.

1.1.1 The Filesystem
All of wmii’s customization is done via a virtual filesystem. Since the filesystem is imple-
mented in the standardized 9P protocol, it can be accessed in many ways. wmii provides
a simple command-line client, wmiir, but many alternatives exist, including libraries for

 Introduction

Python, Perl, Ruby, PHP, and C. It can even be mounted, either by Linux’s p.ko kernel
module or indirectly via FUSE.

The filesystem that wmii provides is “virtual”, which is to say that it doesn’t reside on
disk anywhere. In a sense, it’s a figment of wmii’s imagination. Files, when read, represent
wmii’s current configuration or state. When written, they perform actions, update the UI,
etc. For instance, the directory /client/ contains a directory for each window that wmii is
currently managing. Each of those directories, in turn, contains files describing the client’s
properties (its title, its views¹, its state). Most files can be written to update the the state
they describe. For instance, /client/sel/ctl describes the state of the selected client. If
a client is fullscreen, it contains the line:

Fullscreen on

To change this, you’dupdate the filewith the line Fullscreen off or even Fullscreen toggle
to toggle the client’s fullscreen state.

The concept of controlling a program via a filesystem derives from Plan , where such
interfaces are extensive and well proven. The metaphor has shown itself to be quite in-
tuitive to Unix users, once the shock of a “virtual” filesystem wears off. The flexibility of
being able to control wmii from myriad programming languages, including the standard
Unix shell and even from the command line, is well worth the shock.

1.1.2 Views and Tags
Like most X window managers, wmii provides virtual workspaces. Unlike other win-
dowmanagers, though, wmii’s workspaces are created and destroyed on demand. Instead
of being sent to a workspace, windows in wmii are tagged with any number of names.
Views are created dynamically from these tags, and automatically if the user tries to ac-
cess them. For instance, if a window is given the tags ‘foo’ and ‘bar’, the two views ‘foo’
and ‘bar’ are created, if they don’t already exist. The window is now visible on both of
them. Moreover, tags can be specified as regular expressions. So, a client tagged with
/^foo/ will appear on any view named ‘foo’, ‘foo:bar’, and so forth. Any time a client is
tagged with a matching tag, or the user opens a matching view, the window is automati-
cally added to it.

1.1.3 The Bar
wmii provides a general purpose information bar at the top or bottom of the screen. The
bar is divided into a left and a right section. Each section is made up of buttons, with a
single button spanning the gap between the two sides. Buttons can be individually styled,
and can hold any text content the user wishes. By convention, the buttons to the left show
view names, and those to the right display status information.

1.1.4 The Menus
wmii includes two simple, external menu programs. The first, wimenu, is keyboard-based,
and is used launch programs and generally prompt the user for input. It provides a list of

¹Views in wmii are akin to workspaces or virtual desktops in other window managers, but with some subtle
differences.

 Introduction

completions which are automatically filtered as you type. The second, wi9menu, is mouse-
based, and is generally used to provide context menus for titlebars and view buttons. Both
menus can be easily launched from shell scripts or the command line, as well as frommore
complex scripting languages.

1.1.5 The Keyboard
wmii is a very keyboard friendly window manager. Most actions can be performed with-
out touching themouse, including launching, closing, moving, resizing, and selecting pro-
grams. New keybindings of any complexity can easily be added to handle any missing
functionality, or to simplify any repetative tasks.

1.1.6 The Mouse
Despite being highly keyboard-accessible, wmii strives to be highly mouse accessible as
well. Windows can be moved or resized by dragging their window borders. When com-
bined with a key press, they can be moved, resized, or raised by dragging any visible
portion of the window. Mouse menus are accessed with a single click and drag. View
buttons in the bar and client titlebars respond to the mouse wheel; view buttons can be
activated by dragging any draggable object (e.g., a file from a file manager) over them.

2 Getting Started
This section will walk you through your first wmii startup. For your first experience, we
recommend running wmii in its own X session, so you can easily switch back to a more
comfortable environment if you get lost. Though you may start wmii from a session man-
ager in your day to day use, these instructions will use xinit. To begin with, copy this
file to your home directory, so we can open it in your new X session. Then setup your
~/.xinitrc as follows:

cd

Start a PDF viewer with this guide. Use any viewer
you're comfortable with.
xpdf wmii.pdf &

Launch wmii
exec wmii

That was easy.

Before you run xinit, make sure you know how to switch between terminals. Depend-
ing on your system, your current X session is probably on terminal or . You should be
able to switched between your terminals by pressing Ctrl-Alt-F⟨n⟩. Assuming that your
current X session is on terminal , you should be able to switch between it and your new
session by pressing Ctrl-Alt-F and Ctrl-Alt-F. Now you should be ready to start wmii.
When you run the following command, from a terminal, you should be presented with a
new X session, running wmii, with this document open in a PDF viewer occupying most
of the screen. When you’re there, come back to this page and continue. Now, open a
terminal and execute:

xinit

2.1 Your First Steps
If everything went according to plan, you should be viewing this from a nearly empty
wmii session. We’re going to be using the keyboard a lot, so let’s start with a convention
for key notation. We’ll be using the key modifiers Control, Alt, Shift, and Meta¹, which
we’ll specify as C-, A-, S-, andM-, respectively. So, ⟨C-S-a⟩means pressing ‘a’ while holding
Control and Shift. We’ll also expressmouse clicks this way, which ⟨M-Mouse1⟩ signifying
a press of the right mouse button, with the Meta key depressed. Buttons and are the
up and down scroll wheel directions, respectively.

¹The Windows© key on most keyboards. The Penguin key, on the more tongue in cheek varieties.

 Getting Started

2.1.1 Floating Mode
Begining with what’s familiar to most years, we’ll first explore floating mode. First, we
need to select the floating layer. Press ⟨M-Space⟩. You should see the titlebar of thiswindow
change color. Now, press ⟨M-Return⟩ to launch a terminal. The easiest way to drag the
terminal around is to press and hold ⟨M-Mouse1⟩ over the window and simply drag the
window around. You should be able to drag the window anywhere onscreen without
ever releasing the mouse button. As you drag near the screen edges, you should notice
a snap. If you try to drag the window fully off-screen, you’ll find it constrined so that a
portion always remains visible. Now, release the window and move the mose toward one
of its corners. Press and hold ⟨M-Mouse3⟩². As you drag the mouse around, you should
see the window resized accordingly.

To move the window without the modifier key, move the pointer over the layout box to
the left of its titlebar. You should see the cursor change. Now, simply click and drag. To
resize it, move the pointer toward the window’s edge until you see the cursor change, and
again, click and drag. Now, to close the window, move the mouse over the windows title-
bar, press and hold ⟨Mouse3⟩, select Delete, and release it. You should see this window’s
titlebar return to its original color, indicating that it’s regained focus.

2.1.2 Managed Mode
Now, for the fun part. We’ll start exploring managed mode by looking at the basics of
columns. In the default configuration, columns have three modes:

Stack ⟨M-s⟩ The default mode for new columns. Only one window is fully visible per
column at once. The others only display their title bars. When new windows are
added to the column, the active window collapses, and the new one takes its place.
Whenever a collapsed client is selected, the active window is collapsed to take its
place.

Max ⟨M-m⟩ Like stack mode, but the titlebars of collapsed clients are hidden.

Default ⟨M-d⟩Multiple uncollapsed windowsmay be visible at once. Newwindows split
the spacewith the other uncollapsedwindows in their vicinity. Windowsmay still be
collapsed by shrinking them to the size of their titlebars. At this point, the behavior
of a stack of collapsed and uncollapsed clients is similar to that of stack mode.

Before we open any new windows in managed mode, we need to explore the column
modes a bit. Columnmodes are activatedwith the key bindings listed above. This column
should be in stack mode now. Watch the right side of the titlebar as you press ⟨M-m⟩ to
enter max mode. You should see an indicator appear. This tells you the number of hidden
windowsdirectly above andbelow the currentwindow, and its position in that stack. Press
⟨M-d⟩ to enter default mode. Now we’re ready to open another client. Press ⟨M-Return⟩ to
launch another terminal. Now, press ⟨M-S-l⟩ to move the terminal to a new column to
the right of this one. Once it’s there, press ⟨M-Return⟩ two more times to launch two more
terminals. Now that you havemore than onewindow in a column, cycle through the three
column modes again until they seem familiar.

²The right button.

 Getting Started

2.1.3 Keyboard Navigation
To begin, switch back to default mode. The basic keyboard navigation keys, ⟨M-h⟩, ⟨M-j⟩,
⟨M-k⟩, and ⟨M-l⟩, derive from vi, and represent moving left, down, up, and right respec-
tively. Try selecting each of the four windows currently visible on screen. Notice that
navigation wraps from one side of the screen to the other, and from the top to the bottom.
Now, return to the write column, switch to stack mode, and select each of the three termi-
nals again. Do the same in maxmode, paying careful attention to the indicator to the right
of the tilebar.

Now that you can select windows, you’ll want to move them around. To move a win-
dow, just add the Shift key to the direction keys. So, to move a window left, instead of
⟨M-h⟩, type ⟨M-S-h⟩. Now, experiment with moving windows, just as you did with navi-
gating them, in each of the three columnmodes. Once you’re comfortable with that, move
a window to the floating layer. Since we toggled between the floating andmanaged layers
with ⟨M-Space⟩, we’ll move windows between them with ⟨M-S-Space⟩. Try moving some
windows back and forth until it becomes familiar. Now, move several windows to the
floating layer and try switching between them with the keyboard. You’ll notice that ⟨M-
h⟩ and ⟨M-l⟩ don’t function in the floating layer. This is for both historical and logistical
reasons. ⟨M-j⟩ and ⟨M-k⟩ cycle through floating windows in order of their most recent use.

2.1.4 Mouse Navigation
wmiiuses the “sloppy focus” model, which is to say, it focuses windows when the mouse
enters them and when you click them. It focuses windows only when you select them
with the keyboard, click their titlebars, or press click them with ⟨M-Mouse2⟩. Collapsed
windows may be opened with the mouse by clicking their titlebars. Moving and resizing
floatingwindows should be largely familiar, and has already been covered. The same can’t
be said for managed windows.

Let’s begin working with the mouse in the managed layer. Return to a layout with this
document in a column on the left, and three terminals in a column to the right. Switch
the right column to default mode. Now, bring the mouse to the top of the third terminal’s
titlebar until you see a resize cursor. Click and drag the titlebar to the very top of the
screen. Now, move the cursor to the top of the second terminal’s titlebar and drag it to
the very bottom of the screen. Press ⟨M-d⟩ to restore the terminals to their original sizes.
Now, click and hold the layout box of the second terminal. Drag it to the middle of the
terminal’s window and release. Click and hold the layout box of the third terminal and
drag it to themiddle of the first terminal’s window. Finally, drag the first terminal’s layout
box to halfway down this window. ⟨M-Mouse1⟩ works to the same effect as dragging the
layout box, but allows you to click anywhere in the window.

Now that you’ve seen the basics of moving and dragging windows, let’s move on to
columns. Click and drag the border between the two columns. If that’s a difficult target
to click, there’s a triangle at the top of the division between the two columns that you can
click and drag as well. If that’s still too hard a target, try using ⟨M-Mouse3⟩, which works
anywhere and provides much richer functionality.

 Getting Started

2.2 Running Programs
You’ve already seen the convenience key binding to launch a terminal, but what about
other programs? To get a menu of all of the executables in your path, type ⟨M-p⟩. This
should replace the bar at the bottom of the screen with a prompt, followed by a string of
completions. Start typing the name of a program that you want to open. You can press
⟨Tab⟩ and ⟨S-Tab⟩ to cycle through the completions, or you can just press ⟨Return⟩ to select
the first one. If you want to execute a more complex command, just type it out and press
⟨Return⟩. If you want to recall that command later, use wimenu’s history. Start typing the
command you want and then press ⟨C-p⟩ until you come to it.

When you’re done with a program, you’ll probably want an easy way to close it. The
first way is to ask the program to close itself. Since that can be tedious (and sometimes
impossible), wmii provides other ways. As mentioned, you can right click the titlebar and
select Delete. If you’re at the keyboard, you can type ⟨M-S-c⟩. These two actions cause
wmii to ask nicely that the program exit. In those sticky cases where the program doesn’t
respond, wmii will wait seconds before prompting you to kill the program. If you don’t
feel like waiting, you can select Kill from the window’s titlebar menu, in which case wmii
will forcefully and immediately kill it. Beware, killing clients is a last resort. In cases
where the same program opens multiple windows, killing one will kill them all—without
warning.

2.3 Using Views
As already noticed, wmii’s concept of virtual workspaces is somewhat unique, so let’s
begin exploring it. Open up a terminal and press ⟨M-S-2⟩. You should see a new button
on the bar at the bottom of the screen. When you click it, you should see your original
terminal. Press ⟨M-1⟩ to come back here. Now, press ⟨M-3⟩, and ⟨M-1⟩ again to return here
once more. Notice that the views were created when needed, and destoryed when no
longer necessary. If you want to select a view with a proper name, use ⟨M-t⟩ and enter the
name. Other than the dynamic creation of views, this is still similar to the familiar X
workspace model. But that’s just the begining of wmii’s model. Open a new terminal, and
type:

echo ‘Hello world!’

Now, type ⟨M-S-t⟩. In the menu that appears, enter 1+2+3. Now, visit the views 1, 2, and
3, and you’ll see the client on each. To remove a tag, type ⟨M-S-t⟩ again, and this time
enter -2. You’ll notice that the client is no longer on the 2 view. Finally, tag names needn’t
be discrete, ordinary strings. They can also be regular expressions. Select the terminal
again, and enter +/^5/. Now, switch to the 5 view. Now try the 6 view. Finally, type ⟨M-t⟩
and enter 50 to check the 50 view. Clients tagged with regular expressions are attached to
any matching views when they’re created. So, when you switch to an empty view, or tag
a client with a new tag, any clients with matching regular expressions are automatically
added to it. When all explicitely tagged clients disappear from the view, and it’s no longer
visible, clients held there by regular expressions are automatically removed.

 Getting Started

2.4 Learning More
For full tables of the standard key bindings, and descriptions of the precise semantics of
the topics discussed above, you should refer to wmii’s man pages.

3 Customizing wmii

There are several configuration schemes available for wmii. If you’re only looking to add
basic key bindings, status monitors, et cetera, you should have no trouble modifying the
stock configuration for your language of choice. If you’re looking for deeper knowledge
of wmii’s control interface, though, this section is for you. We’ll proceed by building a
configuration script in POSIX sh syntax, and move on to a discussion of the higher level
constructs in the stock configuration scripts.

3.1 Events
The wmii control interface is largely event driven. Each event is represented by a single,
plain-text line written to the /event file. You can think of this file as a named pipe. When
reading it, you won’t recieve an EOF¹ until wmii exits. Moreover, any lines written to the
filewill be transmitted to all of its readers. Notable events include key presses, the creation
and destruction of windows, and changes of focus and views.

We’ll start building our configuration with an event processing framework:

⟨⟨Event Loop⟩⟩ F
Broadcast a custom event
wmiir xwrite /event Start wmiirc

Turn off globbing
set -f
Open /event for reading
wmiir read /event |
Read the events line by line
while read line; do

Split the line into words, store in $@
set -- $line
event=$1; shift
line = "$(echo $line | sed ‘s/^[^]* //’ | tr -d ‘\n’)"
Process the event
case $event in
Start) # Quit when a new instance starts

[$1 = wmiirc] && exit;;
⟨⟨Event Handlers⟩⟩
esac

done

Now, we need to consider which types of events we’ll need to handle:

¹End of File

 Customizing wmii

⟨⟨Event Handlers⟩⟩ F
⟨⟨View Button Events⟩⟩
⟨⟨Urgency Events⟩⟩
⟨⟨Unresponsive Clients⟩⟩
⟨⟨Notice Events⟩⟩
⟨⟨Key Events⟩⟩
⟨⟨Client Menu Events⟩⟩
⟨⟨Tag Menu Events⟩⟩

3.2 Bar Items
The bar described by the files in the two directories /lbar/ and /rbar/ for buttons of the
left and right side of the bar, respectively. The format of the files is:

⟨Color Tuple⟩ ⟨Label⟩

although the color tuple may be elided in cases where the label doesn’t match its format.
A ⟨Color Tuple⟩ is defined as:

⟨tuple⟩ F ⟨foreground color⟩ ⟨background color⟩ ⟨border color⟩
⟨color⟩ F #⟨6 character RGB hex color code⟩

Let’s define our basic theme information now:

⟨⟨Theme Definitions⟩⟩ F
normcolors=‘#000000 #c1c48b #81654f’
focuscolors=‘#000000 #81654f #000000’
background=‘#333333’
font=‘drift,-*-fixed-*-*-*-*-9-*-*-*-*-*-*-*’

3.2.1 View Buttons
With a basic understanding of bar items in mind, we can write our view event handlers:

⟨⟨View Button Events⟩⟩ F
CreateTag) # CreateTag ⟨Tag Name⟩

echo $normcolors $1 | wmiir create /lbar/$1;;
DestroyTag) # DestroyTag ⟨Tag Name⟩

wmiir rm /lbar/$1;;
FocusTag) # FocusTag ⟨Tag Name⟩

wmiir xwrite /lbar/$1 $focuscolors $1;;
UnfocusTag) # UnfocusTag ⟨Tag Name⟩

wmiir xwrite /lbar/$* $normcolors $1;;

3.2.2 Urgency
Windows can specify that they require attention, and in X parlance, this is called ur-
gency. When a window requests attention as such, or declares that it’s been satisfied,
wmii broadcasts an event for the client and an event for each view that it belongs to, and

 Customizing wmii

fills in the client’s layout box. It’s the job of a script to decide how handle it above and
beyond that. The standard scripts simply mark urgent views with an asterisk:

⟨⟨Urgency Events⟩⟩ F
The urgency events are ‘Client’ events when the program
owning the window sets its urgency state. They're ‘Manager’
events when wmii or the wmii user sets the state.
UrgentTag) # UrgentTag ⟨‘Client’ or ‘Manager’⟩ ⟨Tag Name⟩

wmiir xwrite /lbar/$2 *$2;;
NotUrgentTag) # NotUrgentTag ⟨‘Client’ or ‘Manager’⟩ ⟨Tag Name⟩

wmiir xwrite /lbar/$2 $2;;

3.2.3 Notices
The standard scripts provide a customNotice event for displaying status information. The
events appear in the long bar between the left and right sides for five seconds.

⟨⟨Notice Events⟩⟩ F
Notice)

wmiir xwrite /rbar/!notice $line
kill $xpid 2>/dev/null # Let's hope this isn't reused...
{ sleep 5; wmiir xwrite /rbar/!notice ‘ ’; } &
xpid = $!;;

3.3 Keys
Now to the part you’ve no doubt been waiting for:binding keys. When binding keys, you
need to be aware of twofiles, /keys and /event. The former defineswhich keys wmiineeds
to grab, and the latter broadcasts the eventswhen they’re pressed. Key names are specified
as a series of modifiers followed by a key name, all separated by hyphens. Valid modifier
names are Control, Shift, Mod1 (usually Alt), Mod2, Mod3, Mod4 (usually the Windows®
key), and Mod5. Modifier keys can be changed via xmodmap(1), which is beyond the scope
of this discussion. Key names can be detected by running xev from a terminal, pressing
the desired key, and looking at the output (it’s in the parentheses, after the keysym). A
wmii-specific utility is forthcoming.

Examples key bindings:

Windows® key + Capital A Mod4-Shift-A

Control + Alt + Space Mod1-Control-Space

Now, let’s bind the keys we plan on using:

⟨⟨Bind Keys⟩⟩ F
{
cat <<!
Mod4-space
Mod4-d
Mod4-s

 Customizing wmii

Mod4-m
Mod4-a
Mod4-p
Mod4-t
Mod4-Return
Mod4-Shift-space
Mod4-f
Mod4-Shift-c
Mod4-Shift-t
Mod4-h
Mod4-j
Mod4-k
Mod4-l
Mod4-Shift-h
Mod4-Shift-j
Mod4-Shift-k
Mod4-Shift-l
!
for i in 1 2 3 4 5 6 7 8 9 0; do

echo Mod4-$i
echo Mod4-Shift-$i

done
} | wmiir write /keys

and lay a framework for processing their events:

⟨⟨Key Events⟩⟩ F
Key) # Key ⟨Key Name⟩

case $1 in
⟨⟨Motion Keys⟩⟩
⟨⟨Client Movement Keys⟩⟩
⟨⟨Column Mode Keys⟩⟩
⟨⟨Client Command Keys⟩⟩
⟨⟨Command Execution Keys⟩⟩
⟨⟨Tag Selection Keys⟩⟩
⟨⟨Tagging Keys⟩⟩
esac;;

3.4 Click Menus
Sometimes, you have your hand on the mouse and don’t want to reach for the keyboard.
To help cope, wmii provides a mouse-driven, single-click menu. The default configuration
uses it for client and tag menus.

⟨⟨Click Menu Initialization⟩⟩ F
clickmenu() {

if res=$(wmii9menu -- “$@”); then eval “$res”; fi
}

 Customizing wmii

3.5 Control Files
Most filesystem objects, including the root directory, have control files, named ctl. The
first line of most control files is the cannonical name of the directory they reside in, which
comes in handy for the special sel/ directories, which are aliases for the currently selected
object of a group. The following lines represent properties of the object. Control files may
be written to, in similar syntax to the values that can be read, to update those properties.
For instance, if a file contains:

Fullscreen on

either of the following, when written to the file, will disable the Fullscreen state:

Fullscreen off
Fullscreen toggle

3.6 Clients
Clients are represented by directories under the /client/ tree. Subdirectory names rep-
resent the client’s X window ID. The special sel/ directory represents the currently se-
lected client. The files in these directories are:

ctl The control file. The properties are:

Fullscreen The client’s fullscreen state. Then on, the client is displayed fullscreen on
all of its views. Possible values are on, off, and toggle.

Urgent The client’s urgency state. When on, the client’s layout box will be high-
lighted. Possible values are on, off, and toggle.

kill When written, the window is closed politely, if possible.

slay When written, the client is killed peremptorily.

props The client’s window class (the X WM_CLASS property) and title string, separated
by colons. This file is not writable.

label The client’s window title. May be written to change the client’s title.

tags The client’s tags. Tag names are separated by + signs. Tags begining and endingwith
/ are treated as regular expressions. If thewritten value beginswith a + or a -, the tags
are updated rather than overwritten. Tag names which directly fillow a - sign are
removed rather than added. Regular expression tags which directly follow a minus
sign are treated as exclusion expressions. For example, the tag string +/foo/-/food/
will match the tag foobar, but not the tag foodstand.

3.6.1 Key Bindings
To control clients, we’ll add the following key bindings:

⟨⟨Client Command Keys⟩⟩ F
Mod4-Shift-c) wmiir xwrite /client/sel/ctl kill;;
Mod4-f) wmiir xwrite /client/sel/ctl Fullscreen toggle;;

 Customizing wmii

And to manage their tags, we’ll need:

⟨⟨Tagging Keys⟩⟩ F
Mod4-Shift-t)

Get the selected client's id
c=$(wmiir read /client/sel/tag | sed 1q)
Prompt the user for new tags
tags=$(wmiir ls /tag | sed ‘s,/,,; /sel/d’ | wimenu)
Write them to the client
wmiir xwrite /client/$c/tags $tag;;

Mod4-Shift-[0-9])
wmiir xwrite /client/sel/tags ${2##*-};;

3.6.2 Click Menus
⟨⟨Client Menu Events⟩⟩ F
ClientMouseDown) # ClientMouseDown ⟨Client ID⟩ ⟨Button⟩

[$2 = 3] && clickmenu \
“Delete:xwrite /client/$1/ctl kill” \
“Kill:xwrite /client/$1/ctl slay” \
“Fullscreen:/client/$1/ctl Fullscreen on”

3.6.3 Unresponsive Clients
When wmii tries to close a window, it waits seconds for the client to respond, and then
lets its scripts decide what to do with it. The stock scripts prompt the user for input:

⟨⟨Unresponsive Clients⟩⟩ F
UnresponsiveClient) # UnresponsiveClient ⟨Client ID⟩
{

Use wihack to make the xmessage a transient window of
the problem client. This will force it to open in the
floaing layer of whatever views the client is attached to
resp=$(wihack -transient $1 \

xmessage -nearmouse -buttons Kill,Wait -print \
“The following client is not responding.” \
“What would you like to do?$(echo)” \
$(wmiir read /client/$1/label))

[$resp = Kill] && wmiir xwrite /client/$1/ctl slay
} &;;

3.7 Views
Views are represented by directories under the /tag/ tree. The special sel/ directory
represents the currently selected client. The sel tag is treated similarly elsewhere. The
files in these directories are:

ctl The view’s control file. The properties are:

 Customizing wmii

select ⟨Area⟩ Select the column ⟨Area⟩, where ⟨Area⟩ is a -based column index, or ~ for
the floating area.

select ⟨Area⟩ ⟨Client Index⟩ Select the column ⟨Area⟩, and the ⟨Client Index⟩th client.

select client ⟨Client ID⟩ Select the client with the X window ID ⟨Client ID⟩.

select ⟨Direction⟩ Select the client in ⟨Direction⟩ where ⟨Direction⟩ may be one of ⟨up ∧
down ∧ left ∧ right⟩.

send client ⟨Client ID⟩ ⟨Area⟩ Send ⟨Cleint ID⟩ to ⟨Area⟩. ⟨Area⟩ may be sel for the se-
lected area, and client ⟨Client ID⟩may be sel for the currently selected client.

send client ⟨Client ID⟩ ⟨Direction⟩ Send ⟨Client ID⟩ to a column or position in its column
in the given direction.

send client ⟨Client ID⟩ toggle If ⟨Client ID⟩ is floating, send it to themanaged layer. If it’s
managed, send it to the floating layer.

swap client ⟨Client ID⟩ … The same as the send commands, but swap ⟨Client ID⟩with the
client at the given location.

colmode ⟨Area⟩ ⟨Mode⟩ Set ⟨Area⟩’s mode to ⟨Mode⟩, where ⟨Mode⟩ is a string of values
similar to tag specifications. Valueswhichmay be added and removed are as follows
for managed areas:

stack One and only one client in the area is uncollapsed at any given time. When
a new client is selected, it is uncollapsed and the previously selected client is
collapsed.

max Collapsed clients are hidden from view entirely. Uncollapsed clients display
an indicator ⟨n⟩/⟨m⟩, where ⟨m⟩ is the number of collapsed clients directly above
and below the client, plus one, and ⟨n⟩ is the client’s index in the stack.

For the floating area, the values are the same, except that in max mode, floating clients
are hidden when the managed layer is selected.

grow ⟨Frame⟩ ⟨Direction⟩ [⟨Amount⟩] Grow ⟨Frame⟩ in the given direction, by ⟨Amount⟩.
⟨Amount⟩may be any integer, positive or negative. If suffixed with px, it specifies an
exact pixel amount, otherwise it specifies a “reasonable increment”. Defaults to .

⟨Frame⟩may be one of:

• client ⟨Client ID⟩
• ⟨Area⟩ ⟨Client Index⟩

nudge ⟨Frame⟩ ⟨Direction⟩ [⟨Amount⟩] The same as grow, butmove the client in ⟨Direction⟩
instead of resizing it.

3.7.1 Key Bindings
We’ll use the following key bindings to interact with views:

 Customizing wmii

⟨⟨Motion Keys⟩⟩ F
Mod4-h) wmiir xwrite /tag/sel/ctl select left;;
Mod4-l) wmiir xwrite /tag/sel/ctl select right;;
Mod4-k) wmiir xwrite /tag/sel/ctl select up;;
Mod4-j) wmiir xwrite /tag/sel/ctl select down;;
Mod4-space) wmiir xwrite /tag/sel/ctl select toggle;;

⟨⟨Client Movement Keys⟩⟩ F
Mod4-Shift-h) wmiir xwrite /tag/sel/ctl send sel left;;
Mod4-Shift-l) wmiir xwrite /tag/sel/ctl send sel right;;
Mod4-Shift-k) wmiir xwrite /tag/sel/ctl send sel up;;
Mod4-Shift-j) wmiir xwrite /tag/sel/ctl send sel down;;
Mod4-Shift-space) wmiir xwrite /tag/sel/ctl send sel toggle;;

⟨⟨Column Mode Keys⟩⟩ F
Mod4-d) wmiir xwrite /tag/sel/ctl colmode sel -stack-max;;
Mod4-s) wmiir xwrite /tag/sel/ctl colmode sel stack-max;;
Mod4-m) wmiir xwrite /tag/sel/ctl colmode sel stack+max;;

3.7.2 Click Menus
⟨⟨Tag Menu Events⟩⟩ F
LeftBarMouseDown) # LeftBarMouseDown ⟨Button⟩ ⟨Bar Name⟩

[$1 = 3] && clickmenu \
“Delete:delete_view $2”

3.8 Command and Program Execution
Perhaps the most important function we need to provide for is the execution of programs.
Since wmii users tend to use a lot terminals often, we’ll add a direct shortcut to launch one.
Aside from that, we’ll add a menu to launch arbitrary programs (with completions) and a
separate menu to launch wmii specific commands.

We use wmiir setsid to launch programs with their own session IDs to prevent unto-
ward effects when this script dies.

⟨⟨Command Execution Initialization⟩⟩ F
terminal() { wmiir setsid xterm “$@” }
proglist() {

IFS=: set -- $1
find -L $@ -maxdepth 1 -perm /111 | sed ‘s,.*/,,’ | sort | uniq
unset IFS

}

3.8.1 Key Bindings
⟨⟨Command Execution Keys⟩⟩ F
Mod4-Return) terminal & ;;
Mod4-p) eval exec wmiir setsid "$(proglist $PATH | wimenu)" &;;

 Customizing wmii

Mod4-a) {
set -- $(proglist $WMII_CONFPATH | wimenu)
prog = $((PATH=$WMII_CONFPATH which $1)); shift
eval exec $prog “$@”

} &;;

3.9 The Root
The root filesystem contains the following:

ctl The control file. The properties are:

bar on ⟨top ∧ bottom⟩ Controls where the bar is shown.

bar off Disables the bar entirely.

border The border width, in pixels, of floating clients.

colmode ⟨Mode⟩ The default column mode for newly created columns.

focuscolors ⟨Color Tuple⟩ The colors of focused clients.

normcolors ⟨Color Tuple⟩ The colors of unfocused clients and the default color of
bar buttons.

font ⟨Font⟩ The font used throughout wmii. If prefixed with xft:, the Xft font ren-
derer is used, and fonts may be antialiased.

grabmod ⟨Modifier Keys⟩ The key which must be pressed to move and resize win-
dows with the mouse without clicking hot spots.

incmode ⟨Mode⟩ Controls how X increment hints are handled in managedmode.
Possible values are:

ignore Increment hints are ignored entirely. Clients are stretched to fill their
full allocated space.

show Gaps are shown around managed client windows when their increment
hints prevent them from filling their entire allocated space.

squeeze When increment hints cause gaps to show around clients, wmii will
try to adjust the sizes of the clients in the column to minimize lost space.

view ⟨Tag⟩ The currently visible view.

exec ⟨Command⟩ Replaces this wmii instance with ⟨Command⟩. ⟨Command⟩ is split
according to rc quoting rules, and no expansion occurs. If the command fails to
execute, wmii will respawn.

props The client’s window class (the X WM_CLASS property) and title string, separated
by colons. This file is not writable.

label The client’s window title. May be written to change the client’s title.

tags The client’s tags. Tag names are separated by + signs. Tags begining and endingwith
/ are treated as regular expressions. If thewritten value beginswith a + or a -, the tags
are updated rather than overwritten. Tag names which directly fillow a - sign are
removed rather than added. Regular expression tags which directly follow a minus

 Customizing wmii

sign are treated as exclusion expressions. For example, the tag string +/foo/-/food/
will match the tag foobar, but not the tag foodstand.

3.9.1 Configuration
We’ll need to write our previously defined theme information to wmii:

⟨⟨Configuration⟩⟩ F
⟨⟨Theme Definitions⟩⟩

xsetroot -solid $background
wmiir write /ctl <<!
border 2
focuscolors $focuscolors
normcolors $normcolors
font $font
grabmod Mod4
!

3.9.2 Key Bindings
And we need a few more key bindings to select our views:

⟨⟨Tag Selection Keys⟩⟩ F
Mod4-Shift-t)

Prompt the user for a tag
tags=$(wmiir ls /tag | sed ‘s,/,,; /sel/d’ | wimenu)
Write it to the filesystem.
wmiir xwrite /ctl view $tag;;

Mod4-[0-9])
wmiir xwrite /ctl view ${2##*-};;

3.10 Tieing it All Together
#!/bin/sh
⟨⟨Click Menu Initialization⟩⟩
⟨⟨Command Execution Initialization⟩⟩

⟨⟨Configuration⟩⟩

⟨⟨Bind Keys⟩⟩
⟨⟨Event Loop⟩⟩

	Introduction
	Concepts
	The Filesystem
	Views and Tags
	The Bar
	The Menus
	The Keyboard
	The Mouse

	Getting Started
	Your First Steps
	Floating Mode
	Managed Mode
	Keyboard Navigation
	Mouse Navigation

	Running Programs
	Using Views
	Learning More

	Customizing wmii
	Events
	Bar Items
	View Buttons
	Urgency
	Notices

	Keys
	Click Menus
	Control Files
	Clients
	Key Bindings
	Click Menus
	Unresponsive Clients

	Views
	Key Bindings
	Click Menus

	Command and Program Execution
	Key Bindings

	The Root
	Configuration
	Key Bindings

	Tieing it All Together

