
The wmii User Guide

Kris Maglione

13 October 2009

Contents

1 Introduction 1
. Concepts . 

.. The Filesystem . 
.. Views and Tags . 
.. The Bar . 
.. The Menus . 
.. The Keyboard . 
.. The Mouse . 

2 Getting Started 4
. Your First Steps . 

.. Floating Mode . 
.. Managed Mode . 
.. Keyboard Navigation . 
.. Mouse Navigation . 
.. Window Focus and Selection . 

. Running Programs . 
. Using Views . 
. Learning More . 

3 Customizing wmii 9
. Events . 
. Bar Items . 

.. View Buttons . 
.. Urgency . 
.. Notices . 

. Keys . 
. Click Menus . 
. Control Files . 
. Clients . 

.. Key Bindings . 
.. Click Menus . 
.. Unresponsive Clients . 

. Views . 
.. Key Bindings . 
.. Click Menus . 

. Command and Program Execution . 
.. Key Bindings . 

. The Root . 
.. Configuration . 

i

Contents

.. Key Bindings . 
. Tieing it All Together . 
. The End Result . 

ii

License
This file is distributed under the same terms as wmii:

Copyright © 2009 Kris Maglione ⟨maglione.k@gmail.com⟩

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

iii

mailto:maglione.k@gmail.com

1 Introduction
wmii is a simple but powerfulwindowmanager for theXWindowSystem. It provides both
the classic (“floating”) and tiling (“managed”) window management paradigms, which is
to say, it does the job of managing your windows, so you don’t have to. It also provides
programability by means of a simple file-like interface, which allows the user to program
in virtually any language he chooses. These basic features have become indispensable
to the many users of wmii and other similar window managers, but they come at a cost.
Though our penchant for simplicitymakes wmii’s learning curve significantly shorter than
most of its competitors, there’s still a lot to learn. The rest of this guide will be devoted to
familiarizing new users with wmii’s novel features and eccentricities, as well as provide
advanced users with an in-depth look at our customization facilities.

1.1 Concepts
As noted, wmii provides two management styles:

Managed This is the primary style of window management in wmii. Windows managed
in this style are automatically arranged by wmii into columns. Columns are cre-
ated and destroyed on demand. Individual windows in the column may be moved
or resized, and are often collapsed or hidden entirely. Ad-hoc stacks of collapsed
and uncollapsed windows allow the user to efficiently manage their tasks. When
switching from an active to a collapsed window, the active window collapses and
the collapsed one effectively takes its place.

Managed windows have an unadorned titlebar:

Floating Since some programs aren’t designed in ways conducive to the managed work
flow, wmii also provides the classic “floating” window management model. Win-
dows managed in this model float above the managed windows and may be moved
freely about. Other than automatic placement of new windows and snapping of
edges, wmii doesn’t manage floating windows at all.

Floating windows are indicated by a decorated titlebar:

Fullscreen Fullscreen mode is actually a subset of the floating style. Windows may be
toggled to and from fullscreen mode at will. When fullscreen, windows reside in
the floating layer, above the managed windows. They have no borders or titlebars,
and occupy the full area of the screen. Other than that, however, they’re not special
in any way. Other floating windows may appear above them and the user can still
select, open, and close other windows at will.



 Introduction

1.1.1 The Filesystem
All of wmii’s customization is done via a virtual filesystem. Since the filesystem is imple-
mented in the standardized 9P protocol, it can be accessed in many ways. wmii provides
a simple command-line client, wmiir, but many alternatives exist, including libraries for
Python, Perl, Ruby, PHP, and C. It can even be mounted, either by Linux’s p.ko kernel
module or indirectly via FUSE.

The filesystem that wmii provides is “virtual”, which is to say that it doesn’t reside on
disk anywhere. In a sense, it’s a figment of wmii’s imagination. Files, when read, represent
wmii’s current configuration or state. When written, they perform actions, update the UI,
etc. For instance, the directory /client/ contains a directory for each window that wmii is
currently managing. Each of those directories, in turn, contains files describing the client’s
properties (its title, its views¹, its state). Most files can be written to update the state they
describe. For instance, /client/sel/ctl describes the state of the selected client. If a
client is fullscreen, it contains the line:

Fullscreen on

To change this, you’d update the file with the line Fullscreen off or even Fullscreen
toggle to toggle the client’s fullscreen state.

The concept of controlling a program via a filesystem derives from Plan , where such
interfaces are extensive and well proven. The metaphor has shown itself to be quite in-
tuitive to Unix users, once the shock of a “virtual” filesystem wears off. The flexibility of
being able to control wmii from myriad programming languages, including the standard
Unix shell and even from the command line, is well worth the shock.

1.1.2 Views and Tags
Like most X window managers, wmii provides virtual workspaces. Unlike other win-
dowmanagers though, wmii’s workspaces are created and destroyed on demand. Instead
of being sent to a workspace, windows in wmii are tagged with any number of names.
Views are created dynamically from these tags, and automatically if the user tries to ac-
cess them. For instance, if a window is given the tags ‘foo’ and ‘bar’, the two views ‘foo’
and ‘bar’ are created, if they don’t already exist. The window is now visible on both of
them. Moreover, tags can be specified as regular expressions. So, a client tagged with
/^foo/ will appear on any view named ‘foo’, ‘foo:bar’, and so forth. Any time a client is
tagged with a matching tag, or the user opens a matching view, the window is automati-
cally added to it.

1.1.3 The Bar
wmii provides a general purpose information bar at the top or bottom of the screen. The
bar is divided into a left and a right section. Each section is made up of buttons, with a
single button spanning the gap between the two sides. Buttons can be individually styled
and can hold any text content the user wishes. By convention, the buttons to the left show
view names, and those to the right display status information.

¹Views in wmii are akin to workspaces or virtual desktops in other window managers, but with some subtle
differences.



 Introduction

1.1.4 The Menus
wmii includes two simple, external menu programs. The first, wimenu, is keyboard-based,
and is used to launch programs and generally prompt the user for input. It provides a
list of completions which are automatically filtered as you type. The second, wi9menu,
is mouse-based, and is generally used to provide context menus for titlebars and view
buttons. Both menus can be easily launched from shell scripts or the command line, as
well as from more complex scripting languages.

1.1.5 The Keyboard
wmii is a very keyboard friendly window manager. Most actions can be performed with-
out touching themouse, including launching, closing, moving, resizing, and selecting pro-
grams. New keybindings of any complexity can easily be added to handle any missing
functionality, or to simplify any repetitive tasks.

1.1.6 The Mouse
Despite being highly keyboard-accessible, wmii strives to be highly mouse accessible as
well. Windows can be moved or resized by dragging their window borders. When com-
bined with a key press, they can be moved, resized, or raised by dragging any visible
portion of the window. Mouse menus are accessed with a single click and drag. View
buttons in the bar and client titlebars respond to the mouse wheel; view buttons can be
activated by dragging any draggable object (e.g., a file from a file manager) over them.



2 Getting Started
This section will walk you through your first wmii startup. For your first experience, we
recommend running wmii in its own X session, so you can easily switch back to a more
comfortable environment if you get lost. Though you may start wmii from a session man-
ager in your day to day use, these instructions will use xinit. To begin with, copy this
file to your home directory, so we can open it in your new X session. Then setup your
~/.xinitrc as follows:

cd

Start a PDF viewer with this guide. Use any viewer
you're comfortable with.
xpdf wmii.pdf &

Launch wmii
exec wmii

That was easy.

Before you run xinit, make sure you know how to switch between terminals. Depend-
ing on your system, your current X session is probably on terminal  or . You should
be able to switch between your terminals by pressing Ctrl-Alt-F⟨n⟩. Assuming that your
current X session is on terminal , you should be able to switch between it and your new
session by pressing Ctrl-Alt-F and Ctrl-Alt-F. Now you should be ready to start wmii.
When you run the following command, you should be presented with a new X session
running wmii and a PDF viewer showing this document.

xinit

When you’re there, find this page in the new PDF viewer and continue.

2.1 Your First Steps
If everything went according to plan, you should be viewing this from a nearly empty
wmii session. We’re going to be using the keyboard a lot, so let’s start with a convention for
key notation. We’ll be using the key modifiers Control, Alt, Shift, and Meta¹, which we’ll
specify as C-, A-, S-, and M-, respectively. So, ⟨C-S-a⟩ means pressing ‘a’ while holding
Control and Shift. We’ll also express mouse clicks this way, with ⟨M-Mouse1⟩ signifying
a press of the right mouse button, with the Meta key depressed. Buttons  and  are the
up and down scroll wheel directions, respectively.

¹The Windows® key on most keyboards. The Penguin key, on the more tongue in cheek varieties.



 Getting Started

2.1.1 Floating Mode
Beginning with what’s familiar to most users, we’ll first explore floating mode. First, we
need to select the floating layer. Press ⟨M-Space⟩. You should see the titlebar of thiswindow
change color. Now, press ⟨M-Return⟩ to launch a terminal. The easiest way to drag the
terminal around is to press and hold ⟨M-Mouse1⟩ over the window and simply drag the
window around. You should be able to drag the window anywhere onscreen without
ever releasing the mouse button. As you drag near the screen edges, you should notice
a snap. If you try to drag the window fully off-screen, you’ll find it constrained so that
a portion always remains visible. Now, release the window and move the mouse toward
one of its corners. Press and hold ⟨M-Mouse3⟩². As you drag themouse around, you should
see the window resized accordingly.

To move the window without the modifier key, move the pointer over the layout box to
the left of its titlebar. You should see the cursor change. Now, simply click and drag. To
resize it, move the pointer toward the window’s edge until you see the cursor change, and
again, click and drag. Now, to close the window, move the mouse over the windows title-
bar, press and hold ⟨Mouse3⟩, select Delete, and release it. You should see this window’s
titlebar return to its original color, indicating that it’s regained focus.

2.1.2 Managed Mode
Now, for the fun part. We’ll start exploring managed mode by looking at the basics of
columns. In the default configuration, columns have three modes:

Stack ⟨M-s⟩ The default mode for new columns. Only one window is fully visible per
column at once. The others only display their title bars. When new windows are
added to the column, the active window collapses, and the new one takes its place.
Whenever a collapsed client is selected, the active window is collapsed to take its
place.

Max ⟨M-m⟩ Like stack mode, but the titlebars of collapsed clients are hidden.

Default ⟨M-d⟩Multiple uncollapsed windowsmay be visible at once. Newwindows split
the spacewith the other uncollapsedwindows in their vicinity. Windowsmay still be
collapsed by shrinking them to the size of their titlebars. At this point, the behavior
of a stack of collapsed and uncollapsed clients is similar to that of stack mode.

Before we open any new windows in managed mode, we need to explore the column
modes a bit. Columnmodes are activatedwith the key bindings listed above. This column
should be in stack mode now. Watch the right side of the titlebar as you press ⟨M-m⟩ to
enter max mode. You should see an indicator appear. This tells you the number of hidden
windowsdirectly above andbelow the currentwindow, and its position in that stack. Press
⟨M-d⟩ to enter default mode. Now we’re ready to open another client. Press ⟨M-Return⟩ to
launch another terminal. Now, press ⟨M-S-l⟩ to move the terminal to a new column to
the right of this one. Once it’s there, press ⟨M-Return⟩ two more times to launch two more
terminals. Now that you havemore than onewindow in a column, cycle through the three
column modes again until they seem familiar.

²The right button.



 Getting Started

2.1.3 Keyboard Navigation
To begin, switch back to default mode. The basic keyboard navigation keys, ⟨M-h⟩, ⟨M-j⟩,
⟨M-k⟩, and ⟨M-l⟩, derive from vi, and represent moving left, down, up, and right respec-
tively. Try selecting each of the four windows currently visible on screen. Notice that
navigation wraps from one side of the screen to the other, and from the top to the bottom.
Now, return to the write column, switch to stack mode, and select each of the three termi-
nals again. Do the same in maxmode, paying careful attention to the indicator to the right
of the titlebar.

Now that you can select windows, you’ll want to move them around. To move a win-
dow, just add the Shift key to the direction keys. So, to move a window left, instead of
⟨M-h⟩, type ⟨M-S-h⟩. Now, experiment with moving windows, just as you did with navi-
gating them, in each of the three columnmodes. Once you’re comfortable with that, move
a window to the floating layer. Since we toggled between the floating andmanaged layers
with ⟨M-Space⟩, we’ll move windows between them with ⟨M-S-Space⟩. Try moving some
windows back and forth until it becomes familiar. Now, move several windows to the
floating layer and try switching between them with the keyboard. You’ll notice that ⟨M-
h⟩ and ⟨M-l⟩ don’t function in the floating layer. This is for both historical and logistical
reasons. ⟨M-j⟩ and ⟨M-k⟩ cycle through floating windows in order of their most recent use.

2.1.4 Mouse Navigation
wmii uses the “sloppy focus” model, which is to say, it focuses windows when the mouse
enters them and when you click them. It focuses windows only when you select them
with the keyboard, click their titlebars, or press click them with ⟨M-Mouse2⟩. Collapsed
windows may be opened with the mouse by clicking their titlebars. Moving and resizing
floatingwindows should be largely familiar, and has already been covered. The same can’t
be said for managed windows.

Let’s begin working with the mouse in the managed layer. Return to a layout with this
document in a column on the left, and three terminals in a column to the right. Switch
the right column to default mode. Now, bring the mouse to the top of the third terminal’s
titlebar until you see a resize cursor. Click and drag the titlebar to the very top of the
screen. Now, move the cursor to the top of the second terminal’s titlebar and drag it to
the very bottom of the screen. Press ⟨M-d⟩ to restore the terminals to their original sizes.
Now, click and hold the layout box of the second terminal. Drag it to the middle of the
terminal’s window and release. Click and hold the layout box of the third terminal and
drag it to themiddle of the first terminal’s window. Finally, drag the first terminal’s layout
box to halfway down this window. ⟨M-Mouse1⟩ works to the same effect as dragging the
layout box, but allows you to click anywhere in the window.

Now that you’ve seen the basics of moving and dragging windows, let’s move on to
columns. Click and drag the border between the two columns. If that’s a difficult target
to click, there’s a triangle at the top of the division between the two columns that you can
click and drag as well. If that’s still too hard a target, try using ⟨M-Mouse3⟩, which works
anywhere and provides much richer functionality.



 Getting Started

2.1.5 Window Focus and Selection
For the purposes of keyboard navigation, wmii keeps track of which window is currently
selected, and confers its titlebar a different color scheme from the other windows. This
window is the basis of relative motion commands, such as “select the window to the left”,
and the target of commands such as “close this window”. Normally, the selected window
is the same as the focused window, i.e., the window that receives keyboard events. Some
applications, however, present strange corner cases.

Focused, selected window This is the normal case of a window which is both selected
and has the keyboard focus.

Unfocused, unselected window This is the normal case for an unselected window which
does not have the keyboard focus.

Unfocused, selected window This is the first unusual case. This is the selected window,
for the purposes of keyboard navigation, but it does not receive keyboard events. A
good example is an onscreen keyboard, which will receive mouse clicks and trans-
late them to keyboard events, but won’t absorb those keyboard events itself. Other
examples include any windowwhilst another (such as wimenu) has grabbed the key-
board.

Focused, unselected window This is the second unusual focus case. The window has the
keyboard focus, but for the purposes of keyboard navigation, it is not considered
selected. In the case of an onscreen keyboard, this is the window which will receive
the generated events. In the case of a keyboard grab, the will likely be the window
holding the grab.

2.2 Running Programs
You’ve already seen the convenient key binding to launch a terminal, but what about other
programs? To get a menu of all of the executables in your path, type ⟨M-p⟩. This should
replace the bar at the bottom of the screen with a prompt, followed by a string of comple-
tions. Start typing the name of a program that you want to open. You can press ⟨Tab⟩ and
⟨S-Tab⟩ to cycle through the completions, or you can just press ⟨Return⟩ to select the first
one. If you want to execute a more complex command, just type it out and press ⟨Return⟩.
If you want to recall that command later, use wimenu’s history. Start typing the command
you want and then press ⟨C-p⟩ until you come to it.

When you’re done with a program, you’ll probably want an easy way to close it. The
first way is to ask the program to close itself. Since that can be tedious (and sometimes



 Getting Started

impossible), wmii provides other ways. As mentioned, you can right click the titlebar and
select Delete. If you’re at the keyboard, you can type ⟨M-S-c⟩. These two actions cause
wmii to ask nicely that the program exit. In those sticky cases where the program doesn’t
respond, wmii will wait  seconds before prompting you to kill the program. If you don’t
feel like waiting, you can select Kill from the window’s titlebar menu, in which case wmii
will forcefully and immediately kill it. Beware, killing clients is a last resort. In cases
where the same program opens multiple windows, killing one will kill them all—without
warning.

2.3 Using Views
As already noticed, wmii’s concept of virtual workspaces is somewhat unique, so let’s
begin exploring it. Open up a terminal and press ⟨M-S-2⟩. You should see a new button
on the bar at the bottom of the screen. When you click it, you should see your original
terminal. Press ⟨M-1⟩ to come back here. Now, press ⟨M-3⟩, and ⟨M-1⟩ again to return here
once more. Notice that the views were created when needed, and destroyed when no
longer necessary. If you want to select a view with a proper name, use ⟨M-t⟩ and enter the
name. Other than the dynamic creation of views, this is still similar to the familiar X
workspace model. But that’s just the beginning of wmii’s model. Open a new terminal,
and type:

echo ‘Hello world!’

Now, type ⟨M-S-t⟩. In the menu that appears, enter 1+2+3. Now, visit the views 1, 2, and
3, and you’ll see the client on each. To remove a tag, type ⟨M-S-t⟩ again, and this time
enter -2. You’ll notice that the client is no longer on the 2 view. Finally, tag names needn’t
be discrete, ordinary strings. They can also be regular expressions. Select the terminal
again, and enter +/^5/. Now, switch to the 5 view. Now try the 6 view. Finally, type ⟨M-t⟩
and enter 50 to check the 50 view. Clients tagged with regular expressions are attached to
any matching views when they’re created. So, when you switch to an empty view, or tag
a client with a new tag, any clients with matching regular expressions are automatically
added to it. When all explicitly tagged clients disappear from the view, and it’s no longer
visible, clients held there by regular expressions are automatically removed.

2.4 Learning More
For full tables of the standard key bindings, and descriptions of the precise semantics of
the topics discussed above, you should refer to wmii’s man pages.



3 Customizing wmii

There are several configuration schemes available for wmii. If you’re only looking to add
basic key bindings, status monitors, et cetera, you should have no trouble modifying the
stock configuration for your language of choice. If you’re looking for deeper knowledge
of wmii’s control interface though, this section is for you. We’ll proceed by building a
configuration script in POSIX sh syntax and then move on to a discussion of the higher
level constructs in the stock configuration scripts.

3.1 Events
The wmii control interface is largely event driven. Each event is represented by a single,
plain-text line written to the /event file. You can think of this file as a named pipe. When
reading it, you won’t receive an EOF¹ until wmii exits. Moreover, any lines written to the
file will be transmitted to everyone currently reading from it. Notable events include key
presses, the creation and destruction of windows, and changes of focus and views.

We’ll start building our configuration with an event processing framework:

⟨⟨Event Loop⟩⟩ F
Broadcast a custom event
wmiir xwrite /event Start wmiirc

Turn off globbing
set -f
Open /event for reading
wmiir read /event |
Read the events line by line
while read line; do

Split the line into words, store in $@
set -- $line
event=$1; shift
line = "$(echo $line | sed ‘s/^[^]* //’ | tr -d ‘\n’)"
Process the event
case $event in
Start) # Quit when a new instance starts

[$1 = wmiirc] && exit;;
⟨⟨Event Handlers⟩⟩
esac

done

Now, we need to consider which types of events we’ll need to handle:

¹End of File



 Customizing wmii

⟨⟨Event Handlers⟩⟩ F
⟨⟨View Button Events⟩⟩
⟨⟨Urgency Events⟩⟩
⟨⟨Unresponsive Clients⟩⟩
⟨⟨Notice Events⟩⟩
⟨⟨Key Events⟩⟩
⟨⟨Client Menu Events⟩⟩
⟨⟨Tag Menu Events⟩⟩

3.2 Bar Items
The bar is described by the files in the two directories /lbar/ and /rbar/ for buttons on
the left and right side of the bar, respectively. The format of the files is:

⟨Color Tuple⟩ ⟨Label⟩

although the color tuple may be elided in cases where the label doesn’t match its format.
A ⟨Color Tuple⟩ is defined as:

⟨tuple⟩ F ⟨foreground color⟩ ⟨background color⟩ ⟨border color⟩
⟨color⟩ F #⟨6 character RGB hex color code⟩

Let’s define our basic theme information now:

⟨⟨Theme Definitions⟩⟩ F
normcolors=‘#000000 #c1c48b #81654f’
focuscolors=‘#000000 #81654f #000000’
background=‘#333333’
font=‘drift,-*-fixed-*-*-*-*-9-*-*-*-*-*-*-*’

3.2.1 View Buttons
With a basic understanding of bar items in mind, we can write our view event handlers:

⟨⟨View Button Events⟩⟩ F
CreateTag) # CreateTag ⟨Tag Name⟩

echo $normcolors $1 | wmiir create /lbar/$1;;
DestroyTag) # DestroyTag ⟨Tag Name⟩

wmiir rm /lbar/$1;;
FocusTag) # FocusTag ⟨Tag Name⟩

wmiir xwrite /lbar/$1 $focuscolors $1;;
UnfocusTag) # UnfocusTag ⟨Tag Name⟩

wmiir xwrite /lbar/$1 $normcolors $1;;

3.2.2 Urgency
Windows can specify that they require attention, and in X parlance, this is called ur-
gency. When a window requests attention as such, or declares that it’s been satisfied,
wmii broadcasts an event for the client and an event for each view that it belongs to, and



 Customizing wmii

fills in the client’s layout box. It’s the job of a script to decide how to handle it above and
beyond that. The standard scripts simply mark urgent views with an asterisk:

⟨⟨Urgency Events⟩⟩ F
The urgency events are ‘Client’ events when the program
owning the window sets its urgency state. They're ‘Manager’
events when wmii or the wmii user sets the state.
UrgentTag) # UrgentTag ⟨‘Client’ or ‘Manager’⟩ ⟨Tag Name⟩

wmiir xwrite /lbar/$2 $2;;
NotUrgentTag) # NotUrgentTag ⟨‘Client’ or ‘Manager’⟩ ⟨Tag Name⟩

wmiir xwrite /lbar/$2 $2;;

3.2.3 Notices
The standard scripts provide a customNotice event for displaying status information. The
events appear in the long bar between the left and right sides for five seconds.

⟨⟨Notice Events⟩⟩ F
Notice)

wmiir xwrite /rbar/!notice $line
kill $xpid 2>/dev/null # Let's hope this isn't reused...
{ sleep 5; wmiir xwrite /rbar/!notice ‘ ’; } &
xpid = $!;;

3.3 Keys
Now to the part you’ve no doubt been waiting for:binding keys. When binding keys, you
need to be aware of two files, /keys and /event. The former defines which keys wmii
needs to grab, and the latter broadcasts the events when they’re pressed.

Key names are specified as a series ofmodifiers followed by a key name, all separated by
hyphens. Valid modifier names are Control, Shift, Mod1 (usually Alt), Mod2, Mod3, Mod4
(usually the Windows® key), and Mod5. Modifier keys can be changed via xmodmap(1),
the details of which are beyond the scope of this document.

Key names can be detected by running xev from a terminal, pressing the desired key,
and looking at the output (it’s in the parentheses, after the keysym). A wmii-specific utility
is forthcoming.

Examples of key bindings:

Windows® key + Capital A Mod4-Shift-A

Control + Alt + Space Mod1-Control-Space

Now, let’s bind the keys we plan on using:

⟨⟨Bind Keys⟩⟩ F
{
cat <<!
Mod4-space



 Customizing wmii

Mod4-d
Mod4-s
Mod4-m
Mod4-a
Mod4-p
Mod4-t
Mod4-Return
Mod4-Shift-space
Mod4-f
Mod4-Shift-c
Mod4-Shift-t
Mod4-h
Mod4-j
Mod4-k
Mod4-l
Mod4-Shift-h
Mod4-Shift-j
Mod4-Shift-k
Mod4-Shift-l
!
for i in 1 2 3 4 5 6 7 8 9 0; do

echo Mod4-$i
echo Mod4-Shift-$i

done
} | wmiir write /keys

and lay a framework for processing their events:

⟨⟨Key Events⟩⟩ F
Key) # Key ⟨Key Name⟩

case $1 in
⟨⟨Motion Keys⟩⟩
⟨⟨Client Movement Keys⟩⟩
⟨⟨Column Mode Keys⟩⟩
⟨⟨Client Command Keys⟩⟩
⟨⟨Command Execution Keys⟩⟩
⟨⟨Tag Selection Keys⟩⟩
⟨⟨Tagging Keys⟩⟩
esac;;

3.4 Click Menus
Sometimes, you have your hand on the mouse and don’t want to reach for the keyboard.
To help cope, wmii provides a mouse-driven, single-click menu. The default configuration
uses it for client and tag menus.

⟨⟨Click Menu Initialization⟩⟩ F
clickmenu() {



 Customizing wmii

if res=$(wmii9menu -- “$@”); then eval “$res”; fi
}

3.5 Control Files
Several directories including the root, have control files, named ctl. These files are used
to control the object (e.g., a client or tag) represented by the directory. Each line of the
file, with the possible section of the first, represents a control variable and its value. In the
case of all but the root /ctl file, the first line represents the id of the directory. In the case
of /tag/foo/ctl, for instance, the first line should read foo. This is useful when dealing
with the special sel/ directories. For instance, when foo is the selected tag, the special
/tag/sel directory is a link to /tag/foo, and the first line of /tag/sel/ctl will read foo,
just as if you’d accessed /tag/foo/ctl directly.

The rest of the lines, the control variables, can be modified by writing new values to the
control file. For instance, if a client is fullscreen, its control file will contain the line:

Fullscreen on

To restore the client from fullscreen, either of the following lines may be written to its
control file:

Fullscreen off
Fullscreen toggle

When next read, the Fullscreen on line will have been replaced with Fullscreen off.
No care need be taken to preserve the other contents of the file. They’re generated anew
each time it’s read.

3.6 Clients
Clients are represented by directories under the /client/ tree. Subdirectory names rep-
resent the client’s X window ID. The special sel/ directory represents the currently se-
lected client. The files in these directories are:

ctl The control file. The properties are:

Fullscreen The client’s fullscreen state. When on, the client is displayed fullscreen
on all of its views. Possible values are on, off, and toggle.

Urgent The client’s urgency state. When on, the client’s layout box will be high-
lighted. Possible values are on, off, and toggle.

kill When written, the window is closed politely, if possible.

slay When written, the client is killed peremptorily.

props The client’s window class (the X WM_CLASS property) and title string, separated
by colons. This file is not writable.

label The client’s window title. May be written to change the client’s title.



 Customizing wmii

tags The client’s tags. Tag names are separated by + signs. Tags beginning and ending
with / are treated as regular expressions. If the written value begins with a + or a
-, the tags are updated rather than overwritten. Tag names which directly follow
a - sign are removed rather than added. Regular expression tags which directly
follow a minus sign are treated as exclusion expressions. For example, the tag string
+/foo/-/food/ will match the tag foobar, but not the tag foodstand.

3.6.1 Key Bindings
To control clients, we’ll add the following key bindings:

⟨⟨Client Command Keys⟩⟩ F
Mod4-Shift-c) wmiir xwrite /client/sel/ctl kill;;
Mod4-f) wmiir xwrite /client/sel/ctl Fullscreen toggle;;

And to manage their tags, we’ll need:

⟨⟨Tagging Keys⟩⟩ F
Mod4-Shift-t)

Get the selected client's id
c=$(wmiir read /client/sel/ctl | sed 1q)
Prompt the user for new tags
tags=$(wmiir ls /tag | sed ‘s,/,,; /^sel$/d’ | wimenu)
Write them to the client
wmiir xwrite /client/$c/tags $tag;;

Mod4-Shift-[0-9])
wmiir xwrite /client/sel/tags ${1##*-};;

3.6.2 Click Menus
⟨⟨Client Menu Events⟩⟩ F
ClientMouseDown) # ClientMouseDown ⟨Client ID⟩ ⟨Button⟩

[$2 = 3] && clickmenu \
“Delete:xwrite /client/$1/ctl kill” \
“Kill:xwrite /client/$1/ctl slay” \
“Fullscreen:/client/$1/ctl Fullscreen on”

3.6.3 Unresponsive Clients
When wmii tries to close a window, it waits  seconds for the client to respond, and then
lets its scripts decide what to do with it. The stock scripts prompt the user for input:

⟨⟨Unresponsive Clients⟩⟩ F
UnresponsiveClient) # UnresponsiveClient ⟨Client ID⟩
{

Use wihack to make the xmessage a transient window of
the problem client. This will force it to open in the
floaing layer of whatever views the client is attached to



 Customizing wmii

resp=$(wihack -transient $1 \
xmessage -nearmouse -buttons Kill,Wait -print \
“The following client is not responding.” \
“What would you like to do?$(echo)” \
$(wmiir read /client/$1/label))

[$resp = Kill] && wmiir xwrite /client/$1/ctl slay
} &;;

3.7 Views
Views are represented by directories under the /tag/ tree. The special sel/ directory
represents the currently selected client. The sel tag is treated similarly elsewhere. The
files in these directories are:

ctl The view’s control file. The properties are:

select ⟨Area⟩ Select the column ⟨Area⟩, where ⟨Area⟩ is a -based column index, or ~
for the floating area. It may be optionally preceded by ⟨Screen⟩:, where ⟨Screen⟩
is a -based Xinerama screen index, or “sel”. When omitted, ⟨Screen⟩ defaults
to , the primary screen.

select ⟨Area⟩ ⟨Client Index⟩ Select the column ⟨Area⟩, and the ⟨Client Index⟩th client.

select client ⟨Client ID⟩ Select the client with the X window ID ⟨Client ID⟩.
select ⟨Direction⟩ Select the client in ⟨Direction⟩where ⟨Direction⟩may be one of ⟨up

∧ down ∧ left ∧ right⟩.
send client ⟨Client ID⟩ ⟨Area⟩ Send ⟨Client ID⟩ to ⟨Area⟩. ⟨Area⟩may be sel for the

selected area, and client ⟨Client ID⟩ may be sel for the currently selected
client.

send client ⟨Client ID⟩ ⟨Direction⟩ Send ⟨Client ID⟩ to a column or position in its
column in the given direction.

send client ⟨Client ID⟩ toggle If ⟨Client ID⟩ is floating, send it to themanaged layer.
If it’s managed, send it to the floating layer.

swap client ⟨Client ID⟩ … The same as the send commands, but swap ⟨Client ID⟩
with the client at the given location.

colmode ⟨Area⟩ ⟨Mode⟩ Set ⟨Area⟩’s mode to ⟨Mode⟩, where ⟨Mode⟩ is a string of
values similar to tag specifications. Values which may be added and removed
are as follows for managed areas:

stack One and only one client in the area is uncollapsed at any given time.
When a new client is selected, it is uncollapsed and the previously selected
client is collapsed.

max Collapsed clients are hidden from view entirely. Uncollapsed clients dis-
play an indicator ⟨n⟩/⟨m⟩, where ⟨m⟩ is the number of collapsed clients di-
rectly above and below the client, plus one, and ⟨n⟩ is the client’s index in
the stack.



 Customizing wmii

default Like subtracting the stack mode, but all clients in the column are given
equal height.

For the floating area, the values are the same, except that in max mode, floating
clients are hidden when the managed layer is selected.

grow ⟨Frame⟩ ⟨Direction⟩ [⟨Amount⟩] Grow ⟨Frame⟩ in the givendirection, by ⟨Amount⟩.
⟨Amount⟩may be any integer, positive or negative. If suffixed with px, it speci-
fies an exact pixel amount, otherwise it specifies a “reasonable increment”. De-
faults to .

⟨Frame⟩may be one of:

• client ⟨Client ID⟩
• ⟨Area⟩ ⟨Client Index⟩

nudge ⟨Frame⟩ ⟨Direction⟩ [⟨Amount⟩] Like grow, butmove the client in ⟨Direction⟩
instead of resizing it.

3.7.1 Key Bindings
We’ll use the following key bindings to interact with views:

⟨⟨Motion Keys⟩⟩ F
Mod4-h) wmiir xwrite /tag/sel/ctl select left;;
Mod4-l) wmiir xwrite /tag/sel/ctl select right;;
Mod4-k) wmiir xwrite /tag/sel/ctl select up;;
Mod4-j) wmiir xwrite /tag/sel/ctl select down;;
Mod4-space) wmiir xwrite /tag/sel/ctl select toggle;;

⟨⟨Client Movement Keys⟩⟩ F
Mod4-Shift-h) wmiir xwrite /tag/sel/ctl send sel left;;
Mod4-Shift-l) wmiir xwrite /tag/sel/ctl send sel right;;
Mod4-Shift-k) wmiir xwrite /tag/sel/ctl send sel up;;
Mod4-Shift-j) wmiir xwrite /tag/sel/ctl send sel down;;
Mod4-Shift-space) wmiir xwrite /tag/sel/ctl send sel toggle;;

⟨⟨Column Mode Keys⟩⟩ F
Mod4-d) wmiir xwrite /tag/sel/ctl colmode sel -stack-max;;
Mod4-s) wmiir xwrite /tag/sel/ctl colmode sel stack-max;;
Mod4-m) wmiir xwrite /tag/sel/ctl colmode sel stack+max;;

3.7.2 Click Menus
⟨⟨Tag Menu Events⟩⟩ F
LeftBarMouseDown) # LeftBarMouseDown ⟨Button⟩ ⟨Bar Name⟩

[$1 = 3] && clickmenu \
“Delete:delete_view $2”



 Customizing wmii

3.8 Command and Program Execution
Perhaps the most important function we need to provide for is the execution of programs.
Since wmii users tend to use terminals often, we’ll add a direct shortcut to launch one.
Aside from that, we’ll add a menu to launch arbitrary programs (with completions) and a
separate menu to launch wmii specific commands.

We use wmiir setsid to launch programs with their own session IDs to prevent unto-
ward effects when this script dies.

⟨⟨Command Execution Initialization⟩⟩ F
terminal() { wmiir setsid xterm “$@” }
proglist() {

IFS=: set -- $1
find -L $@ -maxdepth 1 -perm /111 | sed ‘1d; s,.*/,,’ | sort | uniq
unset IFS

}

3.8.1 Key Bindings
⟨⟨Command Execution Keys⟩⟩ F
Mod4-Return) terminal & ;;
Mod4-p) eval exec wmiir setsid "$(proglist $PATH | wimenu)" &;;
Mod4-a) {

set -- $(proglist $WMII_CONFPATH | wimenu)
which=$(which which)
prog=$(PATH=$WMII_CONFPATH $which $1); shift
eval exec $prog “$@”

} &;;

3.9 The Root
The root filesystem contains the following:

ctl The control file. The properties are:

bar on ⟨top ∧ bottom⟩ Controls where the bar is shown.

bar off Disables the bar entirely.

border The border width, in pixels, of floating clients.

colmode ⟨Mode⟩ The default column mode for newly created columns.

focuscolors ⟨Color Tuple⟩ The colors of focused clients.

normcolors ⟨Color Tuple⟩ The colors of unfocused clients and the default color of
bar buttons.

font ⟨Font⟩ The font used throughout wmii. If prefixed with xft:, the Xft font ren-
derer is used, and fontsmay be antialiased. Xft font names follow the fontconfig
formula. For instance, pt, italic Lucida Sans would be specified as

xft:Lucida Sans-10:italic



 Customizing wmii

See fc-match().

grabmod ⟨Modifier Keys⟩ The key which must be pressed to move and resize win-
dows with the mouse without clicking hot spots.

incmode ⟨Mode⟩ Controls how X increment hints are handled in managedmode.
Possible values are:

ignore Increment hints are ignored entirely. Clients are stretched to fill their
full allocated space.

show Gaps are shown around managed client windows when their increment
hints prevent them from filling their entire allocated space.

squeeze When increment hints cause gaps to show around clients, wmii will
try to adjust the sizes of the clients in the column to minimize lost space.

view ⟨Tag⟩ Change the currently visible view.

exec ⟨Command⟩ Replaces this wmii instance with ⟨Command⟩. ⟨Command⟩ is split
according to rc quoting rules, and no expansion occurs. If the command fails to
execute, wmii will respawn.

spawn ⟨Command⟩ Spawns ⟨Command⟩ as it would spawn wmiirc at startup. If
⟨Command⟩ is a single argument and doesn’t begin with / or ./, $WMII_CONF-
PATH is searched for the executable. Otherwise, the whole argument is passed
to the shell for evaluation.

keys The global keybindings. See section ..

event The global event feed. See section ..

colrules The /colrules file contains a list of rules which affect the width of newly created
columns. Rules have the form:

/⟨regex⟩/ -> ⟨width⟩[+⟨width⟩]*

When a new column, ⟨n⟩, is created on a view whose name matches ⟨regex⟩, the
⟨n⟩th given ⟨width⟩ percentage of the screen is given to it. If there is no ⟨n⟩th width,
1/⟨ncol⟩th of the screen is given to it.

tagrules The /tagrules file contains a list of rules similar to the colrules. These rules
specify the tags a client is to be given when it is created. Rules are specified:

/⟨regex⟩/ -> ⟨tag⟩[+⟨tag⟩]*

When a client’s ⟨name⟩:⟨class⟩:⟨title⟩ matches ⟨regex⟩, it is given the tagstring ⟨tag⟩.
There are two special tags. !, which is deprecated, and identical to sel, represents
the current tag. ~ represents the floating layer.

3.9.1 Configuration
We’ll need to let wmii know about our previously defined theme information:



 Customizing wmii

⟨⟨Configuration⟩⟩ F
⟨⟨Theme Definitions⟩⟩

xsetroot -solid $background
wmiir write /ctl <<!
border 2
focuscolors $focuscolors
normcolors $normcolors
font $font
grabmod Mod4
!

3.9.2 Key Bindings
And we need a few more key bindings to select our views:

⟨⟨Tag Selection Keys⟩⟩ F
Mod4-t)

Prompt the user for a tag
tags=$(wmiir ls /tag | sed ‘s,/,,; /^sel$/d’ | wimenu)
Write it to the filesystem.
wmiir xwrite /ctl view $tags;;

Mod4-[0-9])
wmiir xwrite /ctl view ${1##*-};;

3.10 Tieing it All Together
#!/bin/sh
⟨⟨Click Menu Initialization⟩⟩
⟨⟨Command Execution Initialization⟩⟩

⟨⟨Configuration⟩⟩

⟨⟨Bind Keys⟩⟩
⟨⟨Event Loop⟩⟩

3.11 The End Result
For clarity, here is the end result:

#!/bin/sh
⟨⟨Click Menu Initialization⟩⟩
clickmenu() {

if res=$(wmii9menu -- “$@”); then eval “$res”; fi
}
⟨⟨Command Execution Initialization⟩⟩
terminal() { wmiir setsid xterm “$@” }



 Customizing wmii

proglist() {
IFS=: set -- $1
find -L $@ -maxdepth 1 -perm /111 | sed ‘1d; s,.*/,,’ | sort | uniq
unset IFS

}

⟨⟨Configuration⟩⟩
⟨⟨Theme Definitions⟩⟩
normcolors=‘#000000 #c1c48b #81654f’
focuscolors=‘#000000 #81654f #000000’
background=‘#333333’
font=‘drift,-*-fixed-*-*-*-*-9-*-*-*-*-*-*-*’

xsetroot -solid $background
wmiir write /ctl <<!
border 2
focuscolors $focuscolors
normcolors $normcolors
font $font
grabmod Mod4
!

⟨⟨Bind Keys⟩⟩
{
cat <<!
Mod4-space
Mod4-d
Mod4-s
Mod4-m
Mod4-a
Mod4-p
Mod4-t
Mod4-Return
Mod4-Shift-space
Mod4-f
Mod4-Shift-c
Mod4-Shift-t
Mod4-h
Mod4-j
Mod4-k
Mod4-l
Mod4-Shift-h
Mod4-Shift-j
Mod4-Shift-k
Mod4-Shift-l
!
for i in 1 2 3 4 5 6 7 8 9 0; do

echo Mod4-$i



 Customizing wmii

echo Mod4-Shift-$i
done
} | wmiir write /keys

⟨⟨Event Loop⟩⟩
Broadcast a custom event
wmiir xwrite /event Start wmiirc

Turn off globbing
set -f
Open /event for reading
wmiir read /event |
Read the events line by line
while read line; do

Split the line into words, store in $@
set -- $line
event=$1; shift
line = "$(echo $line | sed ‘s/^[^]* //’ | tr -d ‘\n’)"

Process the event
case $event in
Start) # Quit when a new instance starts

[$1 = wmiirc] && exit;;

⟨⟨Event Handlers⟩⟩
⟨⟨View Button Events⟩⟩
CreateTag) # CreateTag ⟨Tag Name⟩

echo $normcolors $1 | wmiir create /lbar/$1;;
DestroyTag) # DestroyTag ⟨Tag Name⟩

wmiir rm /lbar/$1;;
FocusTag) # FocusTag ⟨Tag Name⟩

wmiir xwrite /lbar/$1 $focuscolors $1;;
UnfocusTag) # UnfocusTag ⟨Tag Name⟩

wmiir xwrite /lbar/$1 $normcolors $1;;

⟨⟨Urgency Events⟩⟩
The urgency events are ‘Client’ events when the program
owning the window sets its urgency state. They're ‘Manager’
events when wmii or the wmii user sets the state.
UrgentTag) # UrgentTag ⟨‘Client’ or ‘Manager’⟩ ⟨Tag Name⟩

wmiir xwrite /lbar/$2 $2;;
NotUrgentTag) # NotUrgentTag ⟨‘Client’ or ‘Manager’⟩ ⟨Tag Name⟩

wmiir xwrite /lbar/$2 $2;;

⟨⟨Unresponsive Clients⟩⟩
UnresponsiveClient) # UnresponsiveClient ⟨Client ID⟩
{

Use wihack to make the xmessage a transient window of



 Customizing wmii

the problem client. This will force it to open in the
floaing layer of whatever views the client is attached to
resp=$(wihack -transient $1 \

xmessage -nearmouse -buttons Kill,Wait -print \
“The following client is not responding.” \
“What would you like to do?$(echo)” \
$(wmiir read /client/$1/label))

[$resp = Kill] && wmiir xwrite /client/$1/ctl slay
} &;;

⟨⟨Notice Events⟩⟩
Notice)

wmiir xwrite /rbar/!notice $line
kill $xpid 2>/dev/null # Let's hope this isn't reused...
{ sleep 5; wmiir xwrite /rbar/!notice ‘ ’; } &
xpid = $!;;

⟨⟨Key Events⟩⟩
Key) # Key ⟨Key Name⟩

case $1 in
⟨⟨Motion Keys⟩⟩
Mod4-h) wmiir xwrite /tag/sel/ctl select left;;
Mod4-l) wmiir xwrite /tag/sel/ctl select right;;
Mod4-k) wmiir xwrite /tag/sel/ctl select up;;
Mod4-j) wmiir xwrite /tag/sel/ctl select down;;
Mod4-space) wmiir xwrite /tag/sel/ctl select toggle;;

⟨⟨Client Movement Keys⟩⟩
Mod4-Shift-h) wmiir xwrite /tag/sel/ctl send sel left;;
Mod4-Shift-l) wmiir xwrite /tag/sel/ctl send sel right;;
Mod4-Shift-k) wmiir xwrite /tag/sel/ctl send sel up;;
Mod4-Shift-j) wmiir xwrite /tag/sel/ctl send sel down;;
Mod4-Shift-space) wmiir xwrite /tag/sel/ctl send sel toggle;;

⟨⟨Column Mode Keys⟩⟩
Mod4-d) wmiir xwrite /tag/sel/ctl colmode sel -stack-max;;
Mod4-s) wmiir xwrite /tag/sel/ctl colmode sel stack-max;;
Mod4-m) wmiir xwrite /tag/sel/ctl colmode sel stack+max;;

⟨⟨Client Command Keys⟩⟩
Mod4-Shift-c) wmiir xwrite /client/sel/ctl kill;;
Mod4-f) wmiir xwrite /client/sel/ctl Fullscreen toggle;;

⟨⟨Command Execution Keys⟩⟩
Mod4-Return) terminal & ;;
Mod4-p) eval exec wmiir setsid "$(proglist $PATH | wimenu)" &;;
Mod4-a) {

set -- $(proglist $WMII_CONFPATH | wimenu)



 Customizing wmii

prog=$(PATH=$WMII_CONFPATH which $1); shift
eval exec $prog “$@”

} &;;

⟨⟨Tag Selection Keys⟩⟩
Mod4-t)

Prompt the user for a tag
tags=$(wmiir ls /tag | sed ‘s,/,,; /^sel$/d’ | wimenu)
Write it to the filesystem.
wmiir xwrite /ctl view $tag;;

Mod4-[0-9])
wmiir xwrite /ctl view ${1##*-};;

⟨⟨Tagging Keys⟩⟩
Mod4-Shift-t)

Get the selected client's id
c=$(wmiir read /client/sel/ctl | sed 1q)
Prompt the user for new tags
tags=$(wmiir ls /tag | sed ‘s,/,,; /^sel$/d’ | wimenu)
Write them to the client
wmiir xwrite /client/$c/tags $tag;;

Mod4-Shift-[0-9])
wmiir xwrite /client/sel/tags ${1##*-};;

esac;;

⟨⟨Client Menu Events⟩⟩
ClientMouseDown) # ClientMouseDown ⟨Client ID⟩ ⟨Button⟩

[$2 = 3] && clickmenu \
“Delete:xwrite /client/$1/ctl kill” \
“Kill:xwrite /client/$1/ctl slay” \
“Fullscreen:/client/$1/ctl Fullscreen on”

⟨⟨Tag Menu Events⟩⟩
LeftBarMouseDown) # LeftBarMouseDown ⟨Button⟩ ⟨Bar Name⟩

[$1 = 3] && clickmenu \
“Delete:delete_view $2”

esac
done



Index

events
ClientMouseDown, 
CreateTag, 
DestroyTag, 
FocusTag, 
LeftBarMouseDown, 
NotUrgentTag, –
UnfocusTag, 
UnresponsiveClient, –
UrgentTag, –

filesystem
/

colrules, 
ctl, 
event, , 
keys, , 
tagrules, 

/client/⟨client⟩/, –
ctl, 
label, 
props, 
tags, 

/tag/⟨tag⟩/, –
ctl, –

key bindings, 



	Introduction
	Concepts
	The Filesystem
	Views and Tags
	The Bar
	The Menus
	The Keyboard
	The Mouse

	Getting Started
	Your First Steps
	Floating Mode
	Managed Mode
	Keyboard Navigation
	Mouse Navigation
	Window Focus and Selection

	Running Programs
	Using Views
	Learning More

	Customizing wmii
	Events
	Bar Items
	View Buttons
	Urgency
	Notices

	Keys
	Click Menus
	Control Files
	Clients
	Key Bindings
	Click Menus
	Unresponsive Clients

	Views
	Key Bindings
	Click Menus

	Command and Program Execution
	Key Bindings

	The Root
	Configuration
	Key Bindings

	Tieing it All Together
	The End Result

