e1b4ad7d0b
All through weston we have code that passes int x, y or float x, y or wl_fixed_t x, y pairs. These pairs are frequently converted to/from wl_fixed_t and other types. We also have struct vec2d and struct weston_geometry which also contain coordinate pairs. Let's create a family of coordinate vector structures for coordinate pairs and use it anywhere we sensibly can. This has a few benefits - it helps remove intermediate conversion between fixed/float/int types. It lets us roll the homogenous coordinate normalization bits into helper functions instead of needing them open coded throughout the source. Possibly most importantly, it also allows us to do some compile time validation of what coordinate space we're working in. Signed-off-by: Derek Foreman <derek.foreman@collabora.com>
583 lines
14 KiB
C
583 lines
14 KiB
C
/*
|
|
* Copyright © 2011 Intel Corporation
|
|
* Copyright © 2012 Collabora, Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial
|
|
* portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include <wayland-server.h>
|
|
#include <libweston/matrix.h>
|
|
|
|
|
|
/*
|
|
* Matrices are stored in column-major order, that is the array indices are:
|
|
* 0 4 8 12
|
|
* 1 5 9 13
|
|
* 2 6 10 14
|
|
* 3 7 11 15
|
|
*/
|
|
|
|
WL_EXPORT void
|
|
weston_matrix_init(struct weston_matrix *matrix)
|
|
{
|
|
static const struct weston_matrix identity = {
|
|
.d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
|
|
.type = 0,
|
|
};
|
|
|
|
memcpy(matrix, &identity, sizeof identity);
|
|
}
|
|
|
|
/* m <- n * m, that is, m is multiplied on the LEFT. */
|
|
WL_EXPORT void
|
|
weston_matrix_multiply(struct weston_matrix *m, const struct weston_matrix *n)
|
|
{
|
|
struct weston_matrix tmp;
|
|
const float *row, *column;
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
row = m->d + i * 4;
|
|
for (j = 0; j < 4; j++) {
|
|
tmp.d[4 * i + j] = 0;
|
|
column = n->d + j;
|
|
for (k = 0; k < 4; k++)
|
|
tmp.d[4 * i + j] += row[k] * column[k * 4];
|
|
}
|
|
}
|
|
tmp.type = m->type | n->type;
|
|
memcpy(m, &tmp, sizeof tmp);
|
|
}
|
|
|
|
WL_EXPORT void
|
|
weston_matrix_translate(struct weston_matrix *matrix, float x, float y, float z)
|
|
{
|
|
struct weston_matrix translate = {
|
|
.d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 },
|
|
.type = WESTON_MATRIX_TRANSFORM_TRANSLATE,
|
|
};
|
|
|
|
weston_matrix_multiply(matrix, &translate);
|
|
}
|
|
|
|
WL_EXPORT void
|
|
weston_matrix_scale(struct weston_matrix *matrix, float x, float y,float z)
|
|
{
|
|
struct weston_matrix scale = {
|
|
.d = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 },
|
|
.type = WESTON_MATRIX_TRANSFORM_SCALE,
|
|
};
|
|
|
|
weston_matrix_multiply(matrix, &scale);
|
|
}
|
|
|
|
WL_EXPORT void
|
|
weston_matrix_rotate_xy(struct weston_matrix *matrix, float cos, float sin)
|
|
{
|
|
struct weston_matrix translate = {
|
|
.d = { cos, sin, 0, 0, -sin, cos, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
|
|
.type = WESTON_MATRIX_TRANSFORM_ROTATE,
|
|
};
|
|
|
|
weston_matrix_multiply(matrix, &translate);
|
|
}
|
|
|
|
/* v <- m * v */
|
|
WL_EXPORT void
|
|
weston_matrix_transform(const struct weston_matrix *matrix,
|
|
struct weston_vector *v)
|
|
{
|
|
int i, j;
|
|
struct weston_vector t;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
t.f[i] = 0;
|
|
for (j = 0; j < 4; j++)
|
|
t.f[i] += v->f[j] * matrix->d[i + j * 4];
|
|
}
|
|
|
|
*v = t;
|
|
}
|
|
|
|
WL_EXPORT struct weston_coord
|
|
weston_matrix_transform_coord(const struct weston_matrix *matrix,
|
|
struct weston_coord c)
|
|
{
|
|
struct weston_coord out;
|
|
struct weston_vector t = { { c.x, c.y, 0.0, 1.0 } };
|
|
|
|
weston_matrix_transform(matrix, &t);
|
|
|
|
assert(fabsf(t.f[3]) > 1e-6);
|
|
|
|
out.x = t.f[0] / t.f[3];
|
|
out.y = t.f[1] / t.f[3];
|
|
return out;
|
|
}
|
|
|
|
static inline void
|
|
swap_rows(double *a, double *b)
|
|
{
|
|
unsigned k;
|
|
double tmp;
|
|
|
|
for (k = 0; k < 13; k += 4) {
|
|
tmp = a[k];
|
|
a[k] = b[k];
|
|
b[k] = tmp;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
swap_unsigned(unsigned *a, unsigned *b)
|
|
{
|
|
unsigned tmp;
|
|
|
|
tmp = *a;
|
|
*a = *b;
|
|
*b = tmp;
|
|
}
|
|
|
|
static inline unsigned
|
|
find_pivot(double *column, unsigned k)
|
|
{
|
|
unsigned p = k;
|
|
for (++k; k < 4; ++k)
|
|
if (fabs(column[p]) < fabs(column[k]))
|
|
p = k;
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* reference: Gene H. Golub and Charles F. van Loan. Matrix computations.
|
|
* 3rd ed. The Johns Hopkins University Press. 1996.
|
|
* LU decomposition, forward and back substitution: Chapter 3.
|
|
*/
|
|
|
|
static int
|
|
matrix_invert(double *A, unsigned *p, const struct weston_matrix *matrix)
|
|
{
|
|
unsigned i, j, k;
|
|
unsigned pivot;
|
|
double pv;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
p[i] = i;
|
|
for (i = 16; i--; )
|
|
A[i] = matrix->d[i];
|
|
|
|
/* LU decomposition with partial pivoting */
|
|
for (k = 0; k < 4; ++k) {
|
|
pivot = find_pivot(&A[k * 4], k);
|
|
if (pivot != k) {
|
|
swap_unsigned(&p[k], &p[pivot]);
|
|
swap_rows(&A[k], &A[pivot]);
|
|
}
|
|
|
|
pv = A[k * 4 + k];
|
|
if (fabs(pv) < 1e-9)
|
|
return -1; /* zero pivot, not invertible */
|
|
|
|
for (i = k + 1; i < 4; ++i) {
|
|
A[i + k * 4] /= pv;
|
|
|
|
for (j = k + 1; j < 4; ++j)
|
|
A[i + j * 4] -= A[i + k * 4] * A[k + j * 4];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
inverse_transform(const double *LU, const unsigned *p, float *v)
|
|
{
|
|
/* Solve A * x = v, when we have P * A = L * U.
|
|
* P * A * x = P * v => L * U * x = P * v
|
|
* Let U * x = b, then L * b = P * v.
|
|
*/
|
|
double b[4];
|
|
unsigned j;
|
|
|
|
/* Forward substitution, column version, solves L * b = P * v */
|
|
/* The diagonal of L is all ones, and not explicitly stored. */
|
|
b[0] = v[p[0]];
|
|
b[1] = (double)v[p[1]] - b[0] * LU[1 + 0 * 4];
|
|
b[2] = (double)v[p[2]] - b[0] * LU[2 + 0 * 4];
|
|
b[3] = (double)v[p[3]] - b[0] * LU[3 + 0 * 4];
|
|
b[2] -= b[1] * LU[2 + 1 * 4];
|
|
b[3] -= b[1] * LU[3 + 1 * 4];
|
|
b[3] -= b[2] * LU[3 + 2 * 4];
|
|
|
|
/* backward substitution, column version, solves U * y = b */
|
|
#if 1
|
|
/* hand-unrolled, 25% faster for whole function */
|
|
b[3] /= LU[3 + 3 * 4];
|
|
b[0] -= b[3] * LU[0 + 3 * 4];
|
|
b[1] -= b[3] * LU[1 + 3 * 4];
|
|
b[2] -= b[3] * LU[2 + 3 * 4];
|
|
|
|
b[2] /= LU[2 + 2 * 4];
|
|
b[0] -= b[2] * LU[0 + 2 * 4];
|
|
b[1] -= b[2] * LU[1 + 2 * 4];
|
|
|
|
b[1] /= LU[1 + 1 * 4];
|
|
b[0] -= b[1] * LU[0 + 1 * 4];
|
|
|
|
b[0] /= LU[0 + 0 * 4];
|
|
#else
|
|
for (j = 3; j > 0; --j) {
|
|
unsigned k;
|
|
b[j] /= LU[j + j * 4];
|
|
for (k = 0; k < j; ++k)
|
|
b[k] -= b[j] * LU[k + j * 4];
|
|
}
|
|
|
|
b[0] /= LU[0 + 0 * 4];
|
|
#endif
|
|
|
|
/* the result */
|
|
for (j = 0; j < 4; ++j)
|
|
v[j] = b[j];
|
|
}
|
|
|
|
WL_EXPORT int
|
|
weston_matrix_invert(struct weston_matrix *inverse,
|
|
const struct weston_matrix *matrix)
|
|
{
|
|
double LU[16]; /* column-major */
|
|
unsigned perm[4]; /* permutation */
|
|
unsigned c;
|
|
|
|
if (matrix_invert(LU, perm, matrix) < 0)
|
|
return -1;
|
|
|
|
weston_matrix_init(inverse);
|
|
for (c = 0; c < 4; ++c)
|
|
inverse_transform(LU, perm, &inverse->d[c * 4]);
|
|
inverse->type = matrix->type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
near_zero(float a)
|
|
{
|
|
if (fabs(a) > 0.00001)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static float
|
|
get_el(const struct weston_matrix *matrix, int row, int col)
|
|
{
|
|
assert(row >= 0 && row <= 3);
|
|
assert(col >= 0 && col <= 3);
|
|
|
|
return matrix->d[col * 4 + row];
|
|
}
|
|
|
|
static bool
|
|
near_zero_at(const struct weston_matrix *matrix, int row, int col)
|
|
{
|
|
return near_zero(get_el(matrix, row, col));
|
|
}
|
|
|
|
static bool
|
|
near_one_at(const struct weston_matrix *matrix, int row, int col)
|
|
{
|
|
return near_zero(get_el(matrix, row, col) - 1.0);
|
|
}
|
|
|
|
static bool
|
|
near_pm_one_at(const struct weston_matrix *matrix, int row, int col)
|
|
{
|
|
return near_zero(fabs(get_el(matrix, row, col)) - 1.0);
|
|
}
|
|
|
|
static bool
|
|
near_int_at(const struct weston_matrix *matrix, int row, int col)
|
|
{
|
|
float el = get_el(matrix, row, col);
|
|
|
|
return near_zero(roundf(el) - el);
|
|
}
|
|
|
|
/* Lazy decompose the matrix to figure out whether its operations will
|
|
* cause an image to look ugly without some kind of filtering.
|
|
*
|
|
* while this is a 3D transformation matrix, we only concern ourselves
|
|
* with 2D for this test. We do use some small rounding to try to catch
|
|
* sequences of operations that lead back to a matrix that doesn't
|
|
* require filters.
|
|
*
|
|
* We assume the matrix won't be used to transform a vector with w != 1.0
|
|
*
|
|
* Filtering will be necessary when:
|
|
* a non-integral translation is applied
|
|
* non-affine (perspective) translation is in use
|
|
* any scaling (other than -1) is in use
|
|
* a rotation that isn't a multiple of 90 degrees about Z is present
|
|
*/
|
|
WL_EXPORT bool
|
|
weston_matrix_needs_filtering(const struct weston_matrix *matrix)
|
|
{
|
|
/* check for non-integral X/Y translation - ignore Z */
|
|
if (!near_int_at(matrix, 0, 3) ||
|
|
!near_int_at(matrix, 1, 3))
|
|
return true;
|
|
|
|
/* Any transform matrix that matches this will be non-affine. */
|
|
if (!near_zero_at(matrix, 3, 0) ||
|
|
!near_zero_at(matrix, 3, 1) ||
|
|
!near_zero_at(matrix, 3, 2) ||
|
|
!near_pm_one_at(matrix, 3, 3))
|
|
return true;
|
|
|
|
/* Check for anything that could come from a rotation that isn't
|
|
* around the Z axis:
|
|
* [ ? ? 0 ? ]
|
|
* [ ? ? 0 ? ]
|
|
* [ 0 0 ±1 ? ]
|
|
* [ ? ? ? 1 ]
|
|
* It's not clear that we'd realistically see a -1 in [2][2], but
|
|
* it wouldn't require filtering if we did, so allow it.
|
|
*/
|
|
if (!near_zero_at(matrix, 0, 2) ||
|
|
!near_zero_at(matrix, 1, 2) ||
|
|
!near_zero_at(matrix, 2, 0) ||
|
|
!near_zero_at(matrix, 2, 1) ||
|
|
!near_pm_one_at(matrix, 2, 2))
|
|
return true;
|
|
|
|
/* We've culled the low hanging fruit, now let's match the only
|
|
* matrices left we don't have to filter, before defaulting to
|
|
* filtering.
|
|
*
|
|
* These are a combination of testing rotation and scaling at once: */
|
|
if (near_pm_one_at(matrix, 0, 0)) {
|
|
/* This could be a multiple of 90 degree rotation about Z,
|
|
* possibly with a flip, if the matrix is of the form:
|
|
* [ ±1 0 0 ? ]
|
|
* [ 0 ±1 0 ? ]
|
|
* [ 0 0 1 ? ]
|
|
* [ 0 0 0 1 ]
|
|
* Forcing ±1 excludes non-unity scale.
|
|
*/
|
|
if (near_zero_at(matrix, 1, 0) &&
|
|
near_zero_at(matrix, 0, 1) &&
|
|
near_pm_one_at(matrix, 1, 1))
|
|
return false;
|
|
}
|
|
if (near_zero_at(matrix, 0, 0)) {
|
|
/* This could be a multiple of 90 degree rotation about Z,
|
|
* possibly with a flip, if the matrix is of the form:
|
|
* [ 0 ±1 0 ? ]
|
|
* [ ±1 0 0 ? ]
|
|
* [ 0 0 1 ? ]
|
|
* [ 0 0 0 1 ]
|
|
* Forcing ±1 excludes non-unity scale.
|
|
*/
|
|
if (near_zero_at(matrix, 1, 1) &&
|
|
near_pm_one_at(matrix, 1, 0) &&
|
|
near_pm_one_at(matrix, 0, 1))
|
|
return false;
|
|
}
|
|
|
|
/* The matrix wasn't "simple" enough to classify with dumb
|
|
* heuristics, so recommend filtering */
|
|
return true;
|
|
}
|
|
|
|
/** Examine a matrix to see if it applies a standard output transform.
|
|
*
|
|
* \param mat matrix to examine
|
|
* \param[out] transform the transform, if applicable
|
|
* \return true if a standard transform is present
|
|
|
|
* Note that the check only considers rotations and flips.
|
|
* If any other scale or translation is present, those may have to
|
|
* be dealt with by the caller in some way.
|
|
*/
|
|
WL_EXPORT bool
|
|
weston_matrix_to_transform(const struct weston_matrix *mat,
|
|
enum wl_output_transform *transform)
|
|
{
|
|
/* As a first pass we can eliminate any matrix that doesn't have
|
|
* zeroes in these positions:
|
|
* [ ? ? 0 ? ]
|
|
* [ ? ? 0 ? ]
|
|
* [ 0 0 ? ? ]
|
|
* [ 0 0 0 ? ]
|
|
* As they will be non-affine, or rotations about axes
|
|
* other than Z.
|
|
*/
|
|
if (!near_zero_at(mat, 2, 0) ||
|
|
!near_zero_at(mat, 3, 0) ||
|
|
!near_zero_at(mat, 2, 1) ||
|
|
!near_zero_at(mat, 3, 1) ||
|
|
!near_zero_at(mat, 0, 2) ||
|
|
!near_zero_at(mat, 1, 2) ||
|
|
!near_zero_at(mat, 3, 2))
|
|
return false;
|
|
|
|
/* Enforce the form:
|
|
* [ ? ? 0 ? ]
|
|
* [ ? ? 0 ? ]
|
|
* [ 0 0 ? ? ]
|
|
* [ 0 0 0 1 ]
|
|
* While we could scale all the elements by a constant to make
|
|
* 3,3 == 1, we choose to be lazy and not bother. A matrix
|
|
* that doesn't fit this form seems likely to be too complicated
|
|
* to pass the other checks.
|
|
*/
|
|
if (!near_one_at(mat, 3, 3))
|
|
return false;
|
|
|
|
if (near_zero_at(mat, 0, 0)) {
|
|
if (!near_zero_at(mat, 1, 1))
|
|
return false;
|
|
|
|
/* We now have a matrix like:
|
|
* [ 0 A 0 ? ]
|
|
* [ B 0 0 ? ]
|
|
* [ 0 0 ? ? ]
|
|
* [ 0 0 0 1 ]
|
|
* When transforming a vector with a matrix of this form, the X
|
|
* and Y coordinates are effectively exchanged, so we have a
|
|
* 90 or 270 degree rotation (not 0 or 180), and could have
|
|
* a flip depending on the signs of A and B.
|
|
*
|
|
* We don't require A and B to have the same absolute value,
|
|
* so there may be independent scales in the X or Y dimensions.
|
|
*/
|
|
if (get_el(mat, 0, 1) > 0) {
|
|
/* A is positive */
|
|
|
|
if (get_el(mat, 1, 0) > 0)
|
|
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_90;
|
|
else
|
|
*transform = WL_OUTPUT_TRANSFORM_90;
|
|
} else {
|
|
/* A is negative */
|
|
|
|
if (get_el(mat, 1, 0) > 0)
|
|
*transform = WL_OUTPUT_TRANSFORM_270;
|
|
else
|
|
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_270;
|
|
}
|
|
} else if (near_zero_at(mat, 1, 0)) {
|
|
if (!near_zero_at(mat, 0, 1))
|
|
return false;
|
|
|
|
/* We now have a matrix like:
|
|
* [ A 0 0 ? ]
|
|
* [ 0 B 0 ? ]
|
|
* [ 0 0 ? ? ]
|
|
* [ 0 0 0 1 ]
|
|
* This case won't exchange the X and Y inputs, so the
|
|
* transform is 0 or 180 degrees. We could have a flip
|
|
* depending on the signs of A and B.
|
|
*
|
|
* We don't require A and B to have the same absolute value,
|
|
* so there may be independent scales in the X or Y dimensions.
|
|
*/
|
|
if (get_el(mat, 0, 0) > 0) {
|
|
/* A is positive */
|
|
|
|
if (get_el(mat, 1, 1) > 0)
|
|
*transform = WL_OUTPUT_TRANSFORM_NORMAL;
|
|
else
|
|
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_180;
|
|
} else {
|
|
/* A is negative */
|
|
|
|
if (get_el(mat, 1, 1) > 0)
|
|
*transform = WL_OUTPUT_TRANSFORM_FLIPPED;
|
|
else
|
|
*transform = WL_OUTPUT_TRANSFORM_180;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
WL_EXPORT void
|
|
weston_matrix_init_transform(struct weston_matrix *matrix,
|
|
enum wl_output_transform transform,
|
|
int x, int y, int width, int height,
|
|
int scale)
|
|
{
|
|
weston_matrix_init(matrix);
|
|
|
|
weston_matrix_translate(matrix, -x, -y, 0);
|
|
|
|
switch (transform) {
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
|
|
weston_matrix_scale(matrix, -1, 1, 1);
|
|
weston_matrix_translate(matrix, width, 0, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (transform) {
|
|
default:
|
|
case WL_OUTPUT_TRANSFORM_NORMAL:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED:
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_90:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
|
|
weston_matrix_rotate_xy(matrix, 0, -1);
|
|
weston_matrix_translate(matrix, 0, width, 0);
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_180:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
|
|
weston_matrix_rotate_xy(matrix, -1, 0);
|
|
weston_matrix_translate(matrix,
|
|
width, height, 0);
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_270:
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
|
|
weston_matrix_rotate_xy(matrix, 0, 1);
|
|
weston_matrix_translate(matrix, height, 0, 0);
|
|
break;
|
|
}
|
|
|
|
weston_matrix_scale(matrix, scale, scale, 1);
|
|
}
|