weston/tests/color_util.c
Vitaly Prosyak 264a18f01a tests: shared color processing functions
Added pixel pipeline processing as following:
tone curve(EOTF) + 3x3 matrix + tone curve(INV_EOTF)

Co-authored-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Signed-off-by: Vitaly Prosyak <vitaly.prosyak@amd.com>
2022-02-12 23:19:02 -05:00

245 lines
5.2 KiB
C

/*
* Copyright 2020 Collabora, Ltd.
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <math.h>
#include "color_util.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "shared/helpers.h"
struct color_tone_curve {
enum transfer_fn fn;
enum transfer_fn inv_fn;
/* LCMS2 API */
int internal_type;
double param[5];
};
const struct color_tone_curve arr_curves[] = {
{
.fn = TRANSFER_FN_SRGB_EOTF,
.inv_fn = TRANSFER_FN_SRGB_EOTF_INVERSE,
.internal_type = 4,
.param = { 2.4, 1. / 1.055, 0.055 / 1.055, 1. / 12.92, 0.04045 } ,
},
{
.fn = TRANSFER_FN_ADOBE_RGB_EOTF,
.inv_fn = TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE,
.internal_type = 1,
.param = { 563./256., 0.0, 0.0, 0.0 , 0.0 } ,
},
{
.fn = TRANSFER_FN_POWER2_4_EOTF,
.inv_fn = TRANSFER_FN_POWER2_4_EOTF_INVERSE,
.internal_type = 1,
.param = { 2.4, 0.0, 0.0, 0.0 , 0.0 } ,
}
};
bool
find_tone_curve_type(enum transfer_fn fn, int *type, double params[5])
{
const int size_arr = ARRAY_LENGTH(arr_curves);
const struct color_tone_curve *curve;
for (curve = &arr_curves[0]; curve < &arr_curves[size_arr]; curve++ ) {
if (curve->fn == fn )
*type = curve->internal_type;
else if (curve->inv_fn == fn)
*type = -curve->internal_type;
else
continue;
memcpy(params, curve->param, sizeof(curve->param));
return true;
}
return false;
}
/**
* NaN comes out as is
*This function is not intended for hiding NaN.
*/
static float
ensure_unit_range(float v)
{
const float tol = 1e-5f;
const float lim_lo = -tol;
const float lim_hi = 1.0f + tol;
assert(v >= lim_lo);
if (v < 0.0f)
return 0.0f;
assert(v <= lim_hi);
if (v > 1.0f)
return 1.0f;
return v;
}
static float
sRGB_EOTF(float e)
{
e = ensure_unit_range(e);
if (e <= 0.04045)
return e / 12.92;
else
return pow((e + 0.055) / 1.055, 2.4);
}
static float
sRGB_EOTF_inv(float o)
{
o = ensure_unit_range(o);
if (o <= 0.04045 / 12.92)
return o * 12.92;
else
return pow(o, 1.0 / 2.4) * 1.055 - 0.055;
}
static float
AdobeRGB_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 563./256.);
}
static float
AdobeRGB_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 256./563.);
}
static float
Power2_4_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 2.4);
}
static float
Power2_4_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 1./2.4);
}
void
sRGB_linearize(struct color_float *cf)
{
cf->r = sRGB_EOTF(cf->r);
cf->g = sRGB_EOTF(cf->g);
cf->b = sRGB_EOTF(cf->b);
}
static float
apply_tone_curve(enum transfer_fn fn, float r)
{
float ret = 0;
switch(fn) {
case TRANSFER_FN_SRGB_EOTF:
ret = sRGB_EOTF(r);
break;
case TRANSFER_FN_SRGB_EOTF_INVERSE:
ret = sRGB_EOTF_inv(r);
break;
case TRANSFER_FN_ADOBE_RGB_EOTF:
ret = AdobeRGB_EOTF(r);
break;
case TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE:
ret = AdobeRGB_EOTF_inv(r);
break;
case TRANSFER_FN_POWER2_4_EOTF:
ret = Power2_4_EOTF(r);
break;
case TRANSFER_FN_POWER2_4_EOTF_INVERSE:
ret = Power2_4_EOTF_inv(r);
break;
}
return ret;
}
void
sRGB_delinearize(struct color_float *cf)
{
cf->r = sRGB_EOTF_inv(cf->r);
cf->g = sRGB_EOTF_inv(cf->g);
cf->b = sRGB_EOTF_inv(cf->b);
}
struct color_float
a8r8g8b8_to_float(uint32_t v)
{
struct color_float cf;
cf.a = ((v >> 24) & 0xff) / 255.f;
cf.r = ((v >> 16) & 0xff) / 255.f;
cf.g = ((v >> 8) & 0xff) / 255.f;
cf.b = ((v >> 0) & 0xff) / 255.f;
return cf;
}
void
process_pixel_using_pipeline(enum transfer_fn pre_curve,
const struct lcmsMAT3 *mat,
enum transfer_fn post_curve,
const struct color_float *in,
struct color_float *out)
{
int i, j;
float rgb_in[3];
float out_blend[3];
float tmp;
rgb_in[0] = in->r;
rgb_in[1] = in->g;
rgb_in[2] = in->b;
for (i = 0; i < 3; i++)
rgb_in[i] = apply_tone_curve(pre_curve, rgb_in[i]);
for (i = 0; i < 3; i++) {
tmp = 0.0f;
for (j = 0; j < 3; j++)
tmp += rgb_in[j] * mat->v[j].n[i];
out_blend[i] = tmp;
}
for (i = 0; i < 3; i++)
out_blend[i] = apply_tone_curve(post_curve, out_blend[i]);
out->r = out_blend[0];
out->g = out_blend[1];
out->b = out_blend[2];
}