weston/tests/alpha-blending-test.c
Marius Vlad 1e16a5eb2d tests: Add the ability the specify the output name
In preparation of having multiple outputs available we should be able to
specify by its name. We just use the default one if none was set-up at all.

Signed-off-by: Marius Vlad <marius.vlad@collabora.com>
2023-01-25 17:55:39 +00:00

363 lines
9.8 KiB
C

/*
* Copyright 2020 Collabora, Ltd.
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <math.h>
#include <stdio.h>
#include "weston-test-client-helper.h"
#include "weston-test-fixture-compositor.h"
#include "image-iter.h"
#include "color_util.h"
struct setup_args {
struct fixture_metadata meta;
enum weston_renderer_type renderer;
bool color_management;
};
static const int ALPHA_STEPS = 256;
static const int BLOCK_WIDTH = 3;
static const struct setup_args my_setup_args[] = {
{
.renderer = WESTON_RENDERER_PIXMAN,
.color_management = false,
.meta.name = "pixman"
},
{
.renderer = WESTON_RENDERER_GL,
.color_management = false,
.meta.name = "GL"
},
{
.renderer = WESTON_RENDERER_GL,
.color_management = true,
.meta.name = "GL sRGB EOTF"
},
};
static enum test_result_code
fixture_setup(struct weston_test_harness *harness, const struct setup_args *arg)
{
struct compositor_setup setup;
compositor_setup_defaults(&setup);
setup.renderer = arg->renderer;
setup.width = BLOCK_WIDTH * ALPHA_STEPS;
setup.height = 16;
setup.shell = SHELL_TEST_DESKTOP;
if (arg->color_management) {
weston_ini_setup(&setup,
cfgln("[core]"),
cfgln("color-management=true"));
}
return weston_test_harness_execute_as_client(harness, &setup);
}
DECLARE_FIXTURE_SETUP_WITH_ARG(fixture_setup, my_setup_args, meta);
static uint32_t
premult_color(uint32_t a, uint32_t r, uint32_t g, uint32_t b)
{
uint32_t c = 0;
c |= a << 24;
c |= (a * r / 255) << 16;
c |= (a * g / 255) << 8;
c |= a * b / 255;
return c;
}
static void
fill_alpha_pattern(struct buffer *buf)
{
struct image_header ih = image_header_from(buf->image);
int y;
assert(ih.pixman_format == PIXMAN_a8r8g8b8);
assert(ih.width == BLOCK_WIDTH * ALPHA_STEPS);
for (y = 0; y < ih.height; y++) {
uint32_t *row = image_header_get_row_u32(&ih, y);
uint32_t step;
for (step = 0; step < (uint32_t)ALPHA_STEPS; step++) {
uint32_t alpha = step * 255 / (ALPHA_STEPS - 1);
uint32_t color;
int i;
color = premult_color(alpha, 0, 255 - alpha, 255);
for (i = 0; i < BLOCK_WIDTH; i++)
*row++ = color;
}
}
}
enum blend_space {
BLEND_NONLINEAR,
BLEND_LINEAR,
};
static void
compare_sRGB_blend_a8r8g8b8(uint32_t bg32, uint32_t fg32, uint32_t dst32,
struct rgb_diff_stat *diffstat,
enum blend_space space)
{
struct color_float bg = a8r8g8b8_to_float(bg32);
struct color_float fg = a8r8g8b8_to_float(fg32);
struct color_float dst = a8r8g8b8_to_float(dst32);
struct color_float ref;
int i;
bg = color_float_unpremult(bg);
fg = color_float_unpremult(fg);
dst = color_float_unpremult(dst);
if (space == BLEND_LINEAR) {
sRGB_linearize(&bg);
sRGB_linearize(&fg);
}
for (i = 0; i < COLOR_CHAN_NUM; i++)
ref.rgb[i] = (1.0f - fg.a) * bg.rgb[i] + fg.a * fg.rgb[i];
if (space == BLEND_LINEAR)
sRGB_delinearize(&ref);
rgb_diff_stat_update(diffstat, &ref, &dst, &fg);
}
static uint8_t
red(uint32_t v)
{
return (v >> 16) & 0xff;
}
static uint8_t
blue(uint32_t v)
{
return v & 0xff;
}
static bool
pixels_monotonic(const uint32_t *row, int x)
{
bool ret = true;
if (red(row[x + 1]) > red(row[x])) {
testlog("pixel %d -> next: red value increases\n", x);
ret = false;
}
if (blue(row[x + 1]) < blue(row[x])) {
testlog("pixel %d -> next: blue value decreases\n", x);
ret = false;
}
return ret;
}
static void *
get_middle_row(struct buffer *buf)
{
struct image_header ih = image_header_from(buf->image);
assert(ih.width >= BLOCK_WIDTH * ALPHA_STEPS);
assert(ih.height >= BLOCK_WIDTH);
return image_header_get_row_u32(&ih, (BLOCK_WIDTH - 1) / 2);
}
static bool
check_blend_pattern(struct buffer *bg, struct buffer *fg, struct buffer *shot,
enum blend_space space)
{
FILE *dump = NULL;
#if 0
/*
* This file can be loaded in Octave for visualization. Find the script
* in tests/visualization/weston_plot_rgb_diff_stat.m and call it with
*
* weston_plot_rgb_diff_stat('alpha_blend-f01-dump.txt', 255, 8)
*/
dump = fopen_dump_file("dump");
#endif
/*
* Allow for +/- 1.5 code points of error in non-linear 8-bit channel
* value. This is necessary for the BLEND_LINEAR case.
*
* With llvmpipe, we could go as low as +/- 0.65 code points of error
* and still pass.
*
* AMD Polaris 11 would be ok with +/- 1.0 code points error threshold
* if not for one particular case of blending (a=254, r=0) into r=255,
* which results in error of 1.29 code points.
*/
const float tolerance = 1.5f / 255.f;
uint32_t *bg_row = get_middle_row(bg);
uint32_t *fg_row = get_middle_row(fg);
uint32_t *shot_row = get_middle_row(shot);
struct rgb_diff_stat diffstat = { .dump = dump, };
bool ret = true;
int x;
for (x = 0; x < BLOCK_WIDTH * ALPHA_STEPS - 1; x++) {
if (!pixels_monotonic(shot_row, x))
ret = false;
compare_sRGB_blend_a8r8g8b8(bg_row[x], fg_row[x], shot_row[x],
&diffstat, space);
}
if (diffstat.two_norm.max > tolerance)
ret = false;
rgb_diff_stat_print(&diffstat, __func__, 8);
if (dump)
fclose(dump);
return ret;
}
/*
* Test that alpha blending is roughly correct, and that an alpha ramp
* results in a strictly monotonic color ramp. This should ensure that any
* animation that varies alpha never goes "backwards" as that is easily
* noticeable.
*
* The background is a constant color. On top of that, there is an
* alpha-blended gradient with ramps in both alpha and color. Sub-surface
* ensures the correct positioning and stacking.
*
* The gradient consists of ALPHA_STEPS number of blocks. Block size is
* BLOCK_WIDTH x BLOCK_WIDTH and a block has a uniform color.
*
* In the blending result over x axis:
* - red goes from 1.0 to 0.0, monotonic
* - green is not monotonic
* - blue goes from 0.0 to 1.0, monotonic
*
* This test has two modes: BLEND_NONLINEAR and BLEND_LINEAR.
*
* BLEND_NONLINEAR does blending with pixel values as is, which are non-linear,
* and therefore result in "physically incorrect" blending result. Yet, people
* have accustomed to seeing this effect. This mode hits pipeline_premult()
* in fragment.glsl.
*
* BLEND_LINEAR has sRGB encoded pixels (non-linear). These are converted to
* linear light (optical) values, blended, and converted back to non-linear
* (electrical) values. This results in "physically more correct" blending
* result for some value of "physical". This mode hits pipeline_straight()
* in fragment.glsl, and tests even more things:
* - gl-renderer implementation of 1D LUT is correct
* - color-lcms instantiates the correct sRGB EOTF and inverse LUTs
* - color space conversions do not happen when both content and output are
* using their default color spaces
* - blending through gl-renderer shadow framebuffer
*/
TEST(alpha_blend)
{
const int width = BLOCK_WIDTH * ALPHA_STEPS;
const int height = BLOCK_WIDTH;
const pixman_color_t background_color = {
.red = 0xffff,
.green = 0x8080,
.blue = 0x0000,
.alpha = 0xffff
};
const struct setup_args *args;
struct client *client;
struct buffer *bg;
struct buffer *fg;
struct wl_subcompositor *subco;
struct wl_surface *surf;
struct wl_subsurface *sub;
struct buffer *shot;
bool match;
int seq_no;
enum blend_space space;
args = &my_setup_args[get_test_fixture_index()];
if (args->color_management) {
seq_no = 1;
space = BLEND_LINEAR;
} else {
seq_no = 0;
space = BLEND_NONLINEAR;
}
client = create_client();
subco = bind_to_singleton_global(client, &wl_subcompositor_interface, 1);
/* background window content */
bg = create_shm_buffer_a8r8g8b8(client, width, height);
fill_image_with_color(bg->image, &background_color);
/* background window, main surface */
client->surface = create_test_surface(client);
client->surface->width = width;
client->surface->height = height;
client->surface->buffer = bg; /* pass ownership */
surface_set_opaque_rect(client->surface,
&(struct rectangle){ 0, 0, width, height });
/* foreground blended content */
fg = create_shm_buffer_a8r8g8b8(client, width, height);
fill_alpha_pattern(fg);
/* foreground window, sub-surface */
surf = wl_compositor_create_surface(client->wl_compositor);
sub = wl_subcompositor_get_subsurface(subco, surf, client->surface->wl_surface);
/* sub-surface defaults to position 0, 0, top-most, synchronized */
wl_surface_attach(surf, fg->proxy, 0, 0);
wl_surface_damage(surf, 0, 0, width, height);
wl_surface_commit(surf);
/* attach, damage, commit background window */
move_client(client, 0, 0);
shot = capture_screenshot_of_output(client, NULL);
assert(shot);
match = verify_image(shot->image, "alpha_blend", seq_no, NULL, seq_no);
assert(check_blend_pattern(bg, fg, shot, space));
assert(match);
buffer_destroy(shot);
wl_subsurface_destroy(sub);
wl_surface_destroy(surf);
buffer_destroy(fg);
wl_subcompositor_destroy(subco);
client_destroy(client); /* destroys bg */
}