/* * Copyright © 2012 Intel Corporation * Copyright © 2015 Samsung Electronics Co., Ltd * Copyright 2016, 2017 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include #include #include "test-config.h" #include "pixel-formats.h" #include "shared/weston-drm-fourcc.h" #include "shared/os-compatibility.h" #include "shared/string-helpers.h" #include "shared/xalloc.h" #include #include "weston-test-client-helper.h" #include "image-iter.h" #include "weston-output-capture-client-protocol.h" #define max(a, b) (((a) > (b)) ? (a) : (b)) #define min(a, b) (((a) > (b)) ? (b) : (a)) #define clip(x, a, b) min(max(x, a), b) int surface_contains(struct surface *surface, int x, int y) { /* test whether a global x,y point is contained in the surface */ int sx = surface->x; int sy = surface->y; int sw = surface->width; int sh = surface->height; return x >= sx && y >= sy && x < sx + sw && y < sy + sh; } static void frame_callback_handler(void *data, struct wl_callback *callback, uint32_t time) { int *done = data; *done = 1; wl_callback_destroy(callback); } static const struct wl_callback_listener frame_listener = { frame_callback_handler }; struct wl_callback * frame_callback_set(struct wl_surface *surface, int *done) { struct wl_callback *callback; *done = 0; callback = wl_surface_frame(surface); wl_callback_add_listener(callback, &frame_listener, done); return callback; } int frame_callback_wait_nofail(struct client *client, int *done) { while (!*done) { if (wl_display_dispatch(client->wl_display) < 0) return 0; } return 1; } void move_client(struct client *client, int x, int y) { struct surface *surface = client->surface; int done; client->surface->x = x; client->surface->y = y; weston_test_move_surface(client->test->weston_test, surface->wl_surface, surface->x, surface->y); /* The attach here is necessary because commit() will call configure * only on surfaces newly attached, and the one that sets the surface * position is the configure. */ wl_surface_attach(surface->wl_surface, surface->buffer->proxy, 0, 0); wl_surface_damage(surface->wl_surface, 0, 0, surface->width, surface->height); frame_callback_set(surface->wl_surface, &done); wl_surface_commit(surface->wl_surface); frame_callback_wait(client, &done); } static void pointer_handle_enter(void *data, struct wl_pointer *wl_pointer, uint32_t serial, struct wl_surface *wl_surface, wl_fixed_t x, wl_fixed_t y) { struct pointer *pointer = data; if (wl_surface) pointer->focus = wl_surface_get_user_data(wl_surface); else pointer->focus = NULL; pointer->serial = serial; pointer->x = wl_fixed_to_int(x); pointer->y = wl_fixed_to_int(y); testlog("test-client: got pointer enter %d %d, surface %p\n", pointer->x, pointer->y, pointer->focus); } static void pointer_handle_leave(void *data, struct wl_pointer *wl_pointer, uint32_t serial, struct wl_surface *wl_surface) { struct pointer *pointer = data; pointer->serial = serial; pointer->focus = NULL; testlog("test-client: got pointer leave, surface %p\n", wl_surface ? wl_surface_get_user_data(wl_surface) : NULL); } static void pointer_handle_motion(void *data, struct wl_pointer *wl_pointer, uint32_t time_msec, wl_fixed_t x, wl_fixed_t y) { struct pointer *pointer = data; pointer->x = wl_fixed_to_int(x); pointer->y = wl_fixed_to_int(y); pointer->motion_time_msec = time_msec; pointer->motion_time_timespec = pointer->input_timestamp; pointer->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got pointer motion %d %d\n", pointer->x, pointer->y); } static void pointer_handle_button(void *data, struct wl_pointer *wl_pointer, uint32_t serial, uint32_t time_msec, uint32_t button, uint32_t state) { struct pointer *pointer = data; pointer->serial = serial; pointer->button = button; pointer->state = state; pointer->button_time_msec = time_msec; pointer->button_time_timespec = pointer->input_timestamp; pointer->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got pointer button %u %u\n", button, state); } static void pointer_handle_axis(void *data, struct wl_pointer *wl_pointer, uint32_t time_msec, uint32_t axis, wl_fixed_t value) { struct pointer *pointer = data; pointer->axis = axis; pointer->axis_value = wl_fixed_to_double(value); pointer->axis_time_msec = time_msec; pointer->axis_time_timespec = pointer->input_timestamp; pointer->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got pointer axis %u %f\n", axis, wl_fixed_to_double(value)); } static void pointer_handle_frame(void *data, struct wl_pointer *wl_pointer) { testlog("test-client: got pointer frame\n"); } static void pointer_handle_axis_source(void *data, struct wl_pointer *wl_pointer, uint32_t source) { testlog("test-client: got pointer axis source %u\n", source); } static void pointer_handle_axis_stop(void *data, struct wl_pointer *wl_pointer, uint32_t time_msec, uint32_t axis) { struct pointer *pointer = data; pointer->axis = axis; pointer->axis_stop_time_msec = time_msec; pointer->axis_stop_time_timespec = pointer->input_timestamp; pointer->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got pointer axis stop %u\n", axis); } static void pointer_handle_axis_discrete(void *data, struct wl_pointer *wl_pointer, uint32_t axis, int32_t value) { testlog("test-client: got pointer axis discrete %u %d\n", axis, value); } static const struct wl_pointer_listener pointer_listener = { pointer_handle_enter, pointer_handle_leave, pointer_handle_motion, pointer_handle_button, pointer_handle_axis, pointer_handle_frame, pointer_handle_axis_source, pointer_handle_axis_stop, pointer_handle_axis_discrete, }; static void keyboard_handle_keymap(void *data, struct wl_keyboard *wl_keyboard, uint32_t format, int fd, uint32_t size) { close(fd); testlog("test-client: got keyboard keymap\n"); } static void keyboard_handle_enter(void *data, struct wl_keyboard *wl_keyboard, uint32_t serial, struct wl_surface *wl_surface, struct wl_array *keys) { struct keyboard *keyboard = data; if (wl_surface) keyboard->focus = wl_surface_get_user_data(wl_surface); else keyboard->focus = NULL; testlog("test-client: got keyboard enter, surface %p\n", keyboard->focus); } static void keyboard_handle_leave(void *data, struct wl_keyboard *wl_keyboard, uint32_t serial, struct wl_surface *wl_surface) { struct keyboard *keyboard = data; keyboard->focus = NULL; testlog("test-client: got keyboard leave, surface %p\n", wl_surface ? wl_surface_get_user_data(wl_surface) : NULL); } static void keyboard_handle_key(void *data, struct wl_keyboard *wl_keyboard, uint32_t serial, uint32_t time_msec, uint32_t key, uint32_t state) { struct keyboard *keyboard = data; keyboard->key = key; keyboard->state = state; keyboard->key_time_msec = time_msec; keyboard->key_time_timespec = keyboard->input_timestamp; keyboard->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got keyboard key %u %u\n", key, state); } static void keyboard_handle_modifiers(void *data, struct wl_keyboard *wl_keyboard, uint32_t serial, uint32_t mods_depressed, uint32_t mods_latched, uint32_t mods_locked, uint32_t group) { struct keyboard *keyboard = data; keyboard->mods_depressed = mods_depressed; keyboard->mods_latched = mods_latched; keyboard->mods_locked = mods_locked; keyboard->group = group; testlog("test-client: got keyboard modifiers %u %u %u %u\n", mods_depressed, mods_latched, mods_locked, group); } static void keyboard_handle_repeat_info(void *data, struct wl_keyboard *wl_keyboard, int32_t rate, int32_t delay) { struct keyboard *keyboard = data; keyboard->repeat_info.rate = rate; keyboard->repeat_info.delay = delay; testlog("test-client: got keyboard repeat_info %d %d\n", rate, delay); } static const struct wl_keyboard_listener keyboard_listener = { keyboard_handle_keymap, keyboard_handle_enter, keyboard_handle_leave, keyboard_handle_key, keyboard_handle_modifiers, keyboard_handle_repeat_info, }; static void touch_handle_down(void *data, struct wl_touch *wl_touch, uint32_t serial, uint32_t time_msec, struct wl_surface *surface, int32_t id, wl_fixed_t x_w, wl_fixed_t y_w) { struct touch *touch = data; touch->down_x = wl_fixed_to_int(x_w); touch->down_y = wl_fixed_to_int(y_w); touch->id = id; touch->down_time_msec = time_msec; touch->down_time_timespec = touch->input_timestamp; touch->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got touch down %d %d, surf: %p, id: %d\n", touch->down_x, touch->down_y, surface, id); } static void touch_handle_up(void *data, struct wl_touch *wl_touch, uint32_t serial, uint32_t time_msec, int32_t id) { struct touch *touch = data; touch->up_id = id; touch->up_time_msec = time_msec; touch->up_time_timespec = touch->input_timestamp; touch->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got touch up, id: %d\n", id); } static void touch_handle_motion(void *data, struct wl_touch *wl_touch, uint32_t time_msec, int32_t id, wl_fixed_t x_w, wl_fixed_t y_w) { struct touch *touch = data; touch->x = wl_fixed_to_int(x_w); touch->y = wl_fixed_to_int(y_w); touch->motion_time_msec = time_msec; touch->motion_time_timespec = touch->input_timestamp; touch->input_timestamp = (struct timespec) { 0 }; testlog("test-client: got touch motion, %d %d, id: %d\n", touch->x, touch->y, id); } static void touch_handle_frame(void *data, struct wl_touch *wl_touch) { struct touch *touch = data; ++touch->frame_no; testlog("test-client: got touch frame (%d)\n", touch->frame_no); } static void touch_handle_cancel(void *data, struct wl_touch *wl_touch) { struct touch *touch = data; ++touch->cancel_no; testlog("test-client: got touch cancel (%d)\n", touch->cancel_no); } static const struct wl_touch_listener touch_listener = { touch_handle_down, touch_handle_up, touch_handle_motion, touch_handle_frame, touch_handle_cancel, }; static void surface_enter(void *data, struct wl_surface *wl_surface, struct wl_output *output) { struct surface *surface = data; surface->output = wl_output_get_user_data(output); testlog("test-client: got surface enter output %p\n", surface->output); } static void surface_leave(void *data, struct wl_surface *wl_surface, struct wl_output *output) { struct surface *surface = data; surface->output = NULL; testlog("test-client: got surface leave output %p\n", wl_output_get_user_data(output)); } static const struct wl_surface_listener surface_listener = { surface_enter, surface_leave }; struct buffer * create_shm_buffer(struct client *client, int width, int height, uint32_t drm_format) { const struct pixel_format_info *pfmt; struct wl_shm *shm = client->wl_shm; struct buffer *buf; size_t stride_bytes; struct wl_shm_pool *pool; int fd; void *data; size_t bytes_pp; assert(width > 0); assert(height > 0); pfmt = pixel_format_get_info(drm_format); assert(pfmt); assert(pixel_format_get_plane_count(pfmt) == 1); buf = xzalloc(sizeof *buf); bytes_pp = pfmt->bpp / 8; stride_bytes = width * bytes_pp; /* round up to multiple of 4 bytes for Pixman */ stride_bytes = (stride_bytes + 3) & ~3u; assert(stride_bytes / bytes_pp >= (unsigned)width); buf->len = stride_bytes * height; assert(buf->len / stride_bytes == (unsigned)height); fd = os_create_anonymous_file(buf->len); assert(fd >= 0); data = mmap(NULL, buf->len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (data == MAP_FAILED) { close(fd); assert(data != MAP_FAILED); } pool = wl_shm_create_pool(shm, fd, buf->len); buf->proxy = wl_shm_pool_create_buffer(pool, 0, width, height, stride_bytes, pixel_format_get_shm_format(pfmt)); wl_shm_pool_destroy(pool); close(fd); buf->image = pixman_image_create_bits(pfmt->pixman_format, width, height, data, stride_bytes); assert(buf->proxy); assert(buf->image); return buf; } struct buffer * create_shm_buffer_a8r8g8b8(struct client *client, int width, int height) { assert(client->has_argb); return create_shm_buffer(client, width, height, DRM_FORMAT_ARGB8888); } static struct buffer * create_pixman_buffer(int width, int height, pixman_format_code_t pixman_format) { struct buffer *buf; assert(width > 0); assert(height > 0); buf = xzalloc(sizeof *buf); buf->image = pixman_image_create_bits(pixman_format, width, height, NULL, 0); assert(buf->image); return buf; } void buffer_destroy(struct buffer *buf) { void *pixels; pixels = pixman_image_get_data(buf->image); if (buf->proxy) { wl_buffer_destroy(buf->proxy); assert(munmap(pixels, buf->len) == 0); } assert(pixman_image_unref(buf->image)); free(buf); } static void shm_format(void *data, struct wl_shm *wl_shm, uint32_t format) { struct client *client = data; if (format == WL_SHM_FORMAT_ARGB8888) client->has_argb = 1; } struct wl_shm_listener shm_listener = { shm_format }; static void test_handle_pointer_position(void *data, struct weston_test *weston_test, wl_fixed_t x, wl_fixed_t y) { struct test *test = data; test->pointer_x = wl_fixed_to_int(x); test->pointer_y = wl_fixed_to_int(y); testlog("test-client: got global pointer %d %d\n", test->pointer_x, test->pointer_y); } static const struct weston_test_listener test_listener = { test_handle_pointer_position, }; static void input_destroy(struct input *inp) { if (inp->pointer) { wl_pointer_release(inp->pointer->wl_pointer); free(inp->pointer); } if (inp->keyboard) { wl_keyboard_release(inp->keyboard->wl_keyboard); free(inp->keyboard); } if (inp->touch) { wl_touch_release(inp->touch->wl_touch); free(inp->touch); } wl_list_remove(&inp->link); wl_seat_release(inp->wl_seat); free(inp->seat_name); free(inp); } static void input_update_devices(struct input *input) { struct pointer *pointer; struct keyboard *keyboard; struct touch *touch; struct wl_seat *seat = input->wl_seat; enum wl_seat_capability caps = input->caps; if ((caps & WL_SEAT_CAPABILITY_POINTER) && !input->pointer) { pointer = xzalloc(sizeof *pointer); pointer->wl_pointer = wl_seat_get_pointer(seat); wl_pointer_set_user_data(pointer->wl_pointer, pointer); wl_pointer_add_listener(pointer->wl_pointer, &pointer_listener, pointer); input->pointer = pointer; } else if (!(caps & WL_SEAT_CAPABILITY_POINTER) && input->pointer) { wl_pointer_destroy(input->pointer->wl_pointer); free(input->pointer); input->pointer = NULL; } if ((caps & WL_SEAT_CAPABILITY_KEYBOARD) && !input->keyboard) { keyboard = xzalloc(sizeof *keyboard); keyboard->wl_keyboard = wl_seat_get_keyboard(seat); wl_keyboard_set_user_data(keyboard->wl_keyboard, keyboard); wl_keyboard_add_listener(keyboard->wl_keyboard, &keyboard_listener, keyboard); input->keyboard = keyboard; } else if (!(caps & WL_SEAT_CAPABILITY_KEYBOARD) && input->keyboard) { wl_keyboard_destroy(input->keyboard->wl_keyboard); free(input->keyboard); input->keyboard = NULL; } if ((caps & WL_SEAT_CAPABILITY_TOUCH) && !input->touch) { touch = xzalloc(sizeof *touch); touch->wl_touch = wl_seat_get_touch(seat); wl_touch_set_user_data(touch->wl_touch, touch); wl_touch_add_listener(touch->wl_touch, &touch_listener, touch); input->touch = touch; } else if (!(caps & WL_SEAT_CAPABILITY_TOUCH) && input->touch) { wl_touch_destroy(input->touch->wl_touch); free(input->touch); input->touch = NULL; } } static void seat_handle_capabilities(void *data, struct wl_seat *seat, enum wl_seat_capability caps) { struct input *input = data; input->caps = caps; /* we will create/update the devices only with the right (test) seat. * If we haven't discovered which seat is the test seat, just * store capabilities and bail out */ if (input->seat_name && strcmp(input->seat_name, "test-seat") == 0) input_update_devices(input); testlog("test-client: got seat %p capabilities: %x\n", input, caps); } static void seat_handle_name(void *data, struct wl_seat *seat, const char *name) { struct input *input = data; input->seat_name = strdup(name); assert(input->seat_name && "No memory"); /* We only update the devices and set client input for the test seat */ if (strcmp(name, "test-seat") == 0) { assert(!input->client->input && "Multiple test seats detected!"); input_update_devices(input); input->client->input = input; } testlog("test-client: got seat %p name: \'%s\'\n", input, name); } static const struct wl_seat_listener seat_listener = { seat_handle_capabilities, seat_handle_name, }; static void output_handle_geometry(void *data, struct wl_output *wl_output, int x, int y, int physical_width, int physical_height, int subpixel, const char *make, const char *model, int32_t transform) { struct output *output = data; output->x = x; output->y = y; } static void output_handle_mode(void *data, struct wl_output *wl_output, uint32_t flags, int width, int height, int refresh) { struct output *output = data; if (flags & WL_OUTPUT_MODE_CURRENT) { output->width = width; output->height = height; } } static void output_handle_scale(void *data, struct wl_output *wl_output, int scale) { struct output *output = data; output->scale = scale; } static void output_handle_name(void *data, struct wl_output *wl_output, const char *name) { struct output *output = data; output->name = strdup(name); } static void output_handle_description(void *data, struct wl_output *wl_output, const char *desc) { struct output *output = data; output->desc = strdup(desc); } static void output_handle_done(void *data, struct wl_output *wl_output) { struct output *output = data; output->initialized = 1; } static const struct wl_output_listener output_listener = { output_handle_geometry, output_handle_mode, output_handle_done, output_handle_scale, output_handle_name, output_handle_description, }; static void output_destroy(struct output *output) { assert(wl_proxy_get_version((struct wl_proxy *)output->wl_output) >= 3); wl_output_release(output->wl_output); wl_list_remove(&output->link); free(output->name); free(output->desc); free(output); } static void handle_global(void *data, struct wl_registry *registry, uint32_t id, const char *interface, uint32_t version) { struct client *client = data; struct output *output; struct test *test; struct global *global; struct input *input; global = xzalloc(sizeof *global); global->name = id; global->interface = strdup(interface); assert(interface); global->version = version; wl_list_insert(client->global_list.prev, &global->link); /* We deliberately bind all globals with the maximum (advertised) * version, because this test suite must be kept up-to-date with * Weston. We must always implement at least the version advertised * by Weston. This is not ok for normal clients, but it is ok in * this test suite. */ if (strcmp(interface, "wl_compositor") == 0) { client->wl_compositor = wl_registry_bind(registry, id, &wl_compositor_interface, version); } else if (strcmp(interface, "wl_seat") == 0) { input = xzalloc(sizeof *input); input->client = client; input->global_name = global->name; input->wl_seat = wl_registry_bind(registry, id, &wl_seat_interface, version); wl_seat_add_listener(input->wl_seat, &seat_listener, input); wl_list_insert(&client->inputs, &input->link); } else if (strcmp(interface, "wl_shm") == 0) { client->wl_shm = wl_registry_bind(registry, id, &wl_shm_interface, version); wl_shm_add_listener(client->wl_shm, &shm_listener, client); } else if (strcmp(interface, "wl_output") == 0) { output = xzalloc(sizeof *output); output->wl_output = wl_registry_bind(registry, id, &wl_output_interface, version); wl_output_add_listener(output->wl_output, &output_listener, output); wl_list_insert(&client->output_list, &output->link); client->output = output; } else if (strcmp(interface, "weston_test") == 0) { test = xzalloc(sizeof *test); test->weston_test = wl_registry_bind(registry, id, &weston_test_interface, version); weston_test_add_listener(test->weston_test, &test_listener, test); client->test = test; } } static struct global * client_find_global_with_name(struct client *client, uint32_t name) { struct global *global; wl_list_for_each(global, &client->global_list, link) { if (global->name == name) return global; } return NULL; } static struct input * client_find_input_with_name(struct client *client, uint32_t name) { struct input *input; wl_list_for_each(input, &client->inputs, link) { if (input->global_name == name) return input; } return NULL; } static void global_destroy(struct global *global) { wl_list_remove(&global->link); free(global->interface); free(global); } static void handle_global_remove(void *data, struct wl_registry *registry, uint32_t name) { struct client *client = data; struct global *global; struct input *input; global = client_find_global_with_name(client, name); assert(global && "Request to remove unknown global"); if (strcmp(global->interface, "wl_seat") == 0) { input = client_find_input_with_name(client, name); if (input) { if (client->input == input) client->input = NULL; input_destroy(input); } } /* XXX: handle wl_output */ global_destroy(global); } static const struct wl_registry_listener registry_listener = { handle_global, handle_global_remove, }; void expect_protocol_error(struct client *client, const struct wl_interface *intf, uint32_t code) { int err; uint32_t errcode, failed = 0; const struct wl_interface *interface; unsigned int id; /* if the error has not come yet, make it happen */ wl_display_roundtrip(client->wl_display); err = wl_display_get_error(client->wl_display); assert(err && "Expected protocol error but nothing came"); assert(err == EPROTO && "Expected protocol error but got local error"); errcode = wl_display_get_protocol_error(client->wl_display, &interface, &id); /* check error */ if (errcode != code) { testlog("Should get error code %d but got %d\n", code, errcode); failed = 1; } /* this should be definitely set */ assert(interface); if (strcmp(intf->name, interface->name) != 0) { testlog("Should get interface '%s' but got '%s'\n", intf->name, interface->name); failed = 1; } if (failed) { testlog("Expected other protocol error\n"); abort(); } /* all OK */ testlog("Got expected protocol error on '%s' (object id: %d) " "with code %d\n", interface->name, id, errcode); client->errored_ok = true; } static void log_handler(const char *fmt, va_list args) { fprintf(stderr, "libwayland: "); vfprintf(stderr, fmt, args); } struct client * create_client(void) { struct client *client; wl_log_set_handler_client(log_handler); /* connect to display */ client = xzalloc(sizeof *client); client->wl_display = wl_display_connect(NULL); assert(client->wl_display); wl_list_init(&client->global_list); wl_list_init(&client->inputs); wl_list_init(&client->output_list); /* setup registry so we can bind to interfaces */ client->wl_registry = wl_display_get_registry(client->wl_display); wl_registry_add_listener(client->wl_registry, ®istry_listener, client); /* this roundtrip makes sure we have all globals and we bound to them */ client_roundtrip(client); /* this roundtrip makes sure we got all wl_shm.format and wl_seat.* * events */ client_roundtrip(client); /* must have WL_SHM_FORMAT_ARGB32 */ assert(client->has_argb); /* must have weston_test interface */ assert(client->test); /* must have an output */ assert(client->output); /* the output must be initialized */ assert(client->output->initialized == 1); /* must have seat set */ assert(client->input); return client; } struct surface * create_test_surface(struct client *client) { struct surface *surface; surface = xzalloc(sizeof *surface); surface->client = client; surface->wl_surface = wl_compositor_create_surface(client->wl_compositor); assert(surface->wl_surface); wl_surface_add_listener(surface->wl_surface, &surface_listener, surface); wl_surface_set_user_data(surface->wl_surface, surface); return surface; } void surface_destroy(struct surface *surface) { if (surface->wl_surface) wl_surface_destroy(surface->wl_surface); if (surface->buffer) buffer_destroy(surface->buffer); free(surface); } void surface_set_opaque_rect(struct surface *surface, const struct rectangle *rect) { struct wl_region *region; region = wl_compositor_create_region(surface->client->wl_compositor); wl_region_add(region, rect->x, rect->y, rect->width, rect->height); wl_surface_set_opaque_region(surface->wl_surface, region); wl_region_destroy(region); } struct client * create_client_and_test_surface(int x, int y, int width, int height) { struct client *client; struct surface *surface; pixman_color_t color = { 16384, 16384, 16384, 16384 }; /* uint16_t */ pixman_image_t *solid; client = create_client(); /* initialize the client surface */ surface = create_test_surface(client); client->surface = surface; surface->width = width; surface->height = height; surface->buffer = create_shm_buffer_a8r8g8b8(client, width, height); solid = pixman_image_create_solid_fill(&color); pixman_image_composite32(PIXMAN_OP_SRC, solid, /* src */ NULL, /* mask */ surface->buffer->image, /* dst */ 0, 0, /* src x,y */ 0, 0, /* mask x,y */ 0, 0, /* dst x,y */ width, height); pixman_image_unref(solid); move_client(client, x, y); return client; } void client_destroy(struct client *client) { int ret; if (client->surface) surface_destroy(client->surface); while (!wl_list_empty(&client->inputs)) { input_destroy(container_of(client->inputs.next, struct input, link)); } while (!wl_list_empty(&client->output_list)) { output_destroy(container_of(client->output_list.next, struct output, link)); } while (!wl_list_empty(&client->global_list)) { global_destroy(container_of(client->global_list.next, struct global, link)); } if (client->test) { weston_test_destroy(client->test->weston_test); free(client->test); } if (client->wl_shm) wl_shm_destroy(client->wl_shm); if (client->wl_compositor) wl_compositor_destroy(client->wl_compositor); if (client->wl_registry) wl_registry_destroy(client->wl_registry); if (client->wl_display) { ret = wl_display_roundtrip(client->wl_display); assert(client->errored_ok || ret >= 0); wl_display_disconnect(client->wl_display); } free(client); } static const char* output_path(void) { char *path = getenv("WESTON_TEST_OUTPUT_PATH"); if (!path) return "."; return path; } char* screenshot_output_filename(const char *basename, uint32_t seq) { char *filename; if (asprintf(&filename, "%s/%s-%02d.png", output_path(), basename, seq) < 0) return NULL; return filename; } static const char* reference_path(void) { char *path = getenv("WESTON_TEST_REFERENCE_PATH"); if (!path) return WESTON_TEST_REFERENCE_PATH; return path; } char* screenshot_reference_filename(const char *basename, uint32_t seq) { char *filename; if (asprintf(&filename, "%s/%s-%02d.png", reference_path(), basename, seq) < 0) return NULL; return filename; } char * image_filename(const char *basename) { char *filename; if (asprintf(&filename, "%s/%s.png", reference_path(), basename) < 0) assert(0); return filename; } /** Open a writable file * * \param suffix Custom file name suffix. * \return FILE pointer, or NULL on failure. * * The file name consists of output path, test name, and the given suffix. * If environment variable WESTON_TEST_OUTPUT_PATH is set, it is used as the * directory path, otherwise the current directory is used. * * The file will be writable. If it exists, it is truncated, otherwise it is * created. Failures are logged. */ FILE * fopen_dump_file(const char *suffix) { char *fname; FILE *fp; str_printf(&fname, "%s/%s-%s.txt", output_path(), get_test_name(), suffix); fp = fopen(fname, "w"); if (!fp) { testlog("Error: failed to open file '%s' for writing: %s\n", fname, strerror(errno)); } free(fname); return fp; } struct format_map_entry { cairo_format_t cairo; pixman_format_code_t pixman; }; static const struct format_map_entry format_map[] = { { CAIRO_FORMAT_ARGB32, PIXMAN_a8r8g8b8 }, { CAIRO_FORMAT_RGB24, PIXMAN_x8r8g8b8 }, { CAIRO_FORMAT_A8, PIXMAN_a8 }, { CAIRO_FORMAT_RGB16_565, PIXMAN_r5g6b5 }, }; static pixman_format_code_t format_cairo2pixman(cairo_format_t fmt) { unsigned i; for (i = 0; i < ARRAY_LENGTH(format_map); i++) if (format_map[i].cairo == fmt) return format_map[i].pixman; assert(0 && "unknown Cairo pixel format"); } static cairo_format_t format_pixman2cairo(pixman_format_code_t fmt) { unsigned i; for (i = 0; i < ARRAY_LENGTH(format_map); i++) if (format_map[i].pixman == fmt) return format_map[i].cairo; assert(0 && "unknown Pixman pixel format"); } /** * Validate range * * \param r Range to validate or NULL. * \return The given range, or {0, 0} for NULL. * * Will abort if range is invalid, that is a > b. */ static struct range range_get(const struct range *r) { if (!r) return (struct range){ 0, 0 }; assert(r->a <= r->b); return *r; } /** * Compute the ROI for image comparisons * * \param ih_a A header for an image. * \param ih_b A header for another image. * \param clip_rect Explicit ROI, or NULL for using the whole * image area. * * \return The region of interest (ROI) that is guaranteed to be inside both * images. * * If clip_rect is given, it must fall inside of both images. * If clip_rect is NULL, the images must be of the same size. * If any precondition is violated, this function aborts with an error. * * The ROI is given as pixman_box32_t, where x2,y2 are non-inclusive. */ static pixman_box32_t image_check_get_roi(const struct image_header *ih_a, const struct image_header *ih_b, const struct rectangle *clip_rect) { pixman_box32_t box; if (clip_rect) { box.x1 = clip_rect->x; box.y1 = clip_rect->y; box.x2 = clip_rect->x + clip_rect->width; box.y2 = clip_rect->y + clip_rect->height; } else { box.x1 = 0; box.y1 = 0; box.x2 = max(ih_a->width, ih_b->width); box.y2 = max(ih_a->height, ih_b->height); } assert(box.x1 >= 0); assert(box.y1 >= 0); assert(box.x2 > box.x1); assert(box.y2 > box.y1); assert(box.x2 <= ih_a->width); assert(box.x2 <= ih_b->width); assert(box.y2 <= ih_a->height); assert(box.y2 <= ih_b->height); return box; } struct pixel_diff_stat { struct pixel_diff_stat_channel { int min_diff; int max_diff; } ch[4]; }; static void testlog_pixel_diff_stat(const struct pixel_diff_stat *stat) { int i; testlog("Image difference statistics:\n"); for (i = 0; i < 4; i++) { testlog("\tch %d: [%d, %d]\n", i, stat->ch[i].min_diff, stat->ch[i].max_diff); } } static bool fuzzy_match_pixels(uint32_t pix_a, uint32_t pix_b, const struct range *fuzz, struct pixel_diff_stat *stat) { bool ret = true; int shift; int i; for (shift = 0, i = 0; i < 4; shift += 8, i++) { int val_a = (pix_a >> shift) & 0xffu; int val_b = (pix_b >> shift) & 0xffu; int d = val_b - val_a; stat->ch[i].min_diff = min(stat->ch[i].min_diff, d); stat->ch[i].max_diff = max(stat->ch[i].max_diff, d); if (d < fuzz->a || d > fuzz->b) ret = false; } return ret; } /** * Test if a given region within two images are pixel-identical * * Returns true if the two images pixel-wise identical, and false otherwise. * * \param img_a First image. * \param img_b Second image. * \param clip_rect The region of interest, or NULL for comparing the whole * images. * \param prec Per-channel allowed difference, or NULL for identical match * required. * * This function hard-fails if clip_rect is not inside both images. If clip_rect * is given, the images do not have to match in size, otherwise size mismatch * will be a hard failure. * * The per-pixel, per-channel difference is computed as img_b - img_a which is * required to be in the range [prec->a, prec->b] inclusive. The difference is * signed. All four channels are compared the same way, without any special * meaning on alpha channel. */ bool check_images_match(pixman_image_t *img_a, pixman_image_t *img_b, const struct rectangle *clip_rect, const struct range *prec) { struct range fuzz = range_get(prec); struct pixel_diff_stat diffstat = {}; struct image_header ih_a = image_header_from(img_a); struct image_header ih_b = image_header_from(img_b); pixman_box32_t box; int x, y; uint32_t *pix_a; uint32_t *pix_b; box = image_check_get_roi(&ih_a, &ih_b, clip_rect); for (y = box.y1; y < box.y2; y++) { pix_a = image_header_get_row_u32(&ih_a, y) + box.x1; pix_b = image_header_get_row_u32(&ih_b, y) + box.x1; for (x = box.x1; x < box.x2; x++) { if (!fuzzy_match_pixels(*pix_a, *pix_b, &fuzz, &diffstat)) return false; pix_a++; pix_b++; } } return true; } /** * Tint a color * * \param src Source pixel as x8r8g8b8. * \param add The tint as x8r8g8b8, x8 must be zero; r8, g8 and b8 must be * no greater than 0xc0 to avoid overflow to another channel. * \return The tinted pixel color as x8r8g8b8, x8 guaranteed to be 0xff. * * The source pixel RGB values are divided by 4, and then the tint is added. * To achieve colors outside of the range of src, a tint color channel must be * at least 0x40. (0xff / 4 = 0x3f, 0xff - 0x3f = 0xc0) */ static uint32_t tint(uint32_t src, uint32_t add) { uint32_t v; v = ((src & 0xfcfcfcfc) >> 2) | 0xff000000; return v + add; } /** * Create a visualization of image differences. * * \param img_a First image, which is used as the basis for the output. * \param img_b Second image. * \param clip_rect The region of interest, or NULL for comparing the whole * images. * \param prec Per-channel allowed difference, or NULL for identical match * required. * \return A new image with the differences highlighted. * * Regions outside of the region of interest are shaded with black, matching * pixels are shaded with green, and differing pixels are shaded with * bright red. * * This function hard-fails if clip_rect is not inside both images. If clip_rect * is given, the images do not have to match in size, otherwise size mismatch * will be a hard failure. * * The per-pixel, per-channel difference is computed as img_b - img_a which is * required to be in the range [prec->a, prec->b] inclusive. The difference is * signed. All four channels are compared the same way, without any special * meaning on alpha channel. */ pixman_image_t * visualize_image_difference(pixman_image_t *img_a, pixman_image_t *img_b, const struct rectangle *clip_rect, const struct range *prec) { struct range fuzz = range_get(prec); struct pixel_diff_stat diffstat = {}; pixman_image_t *diffimg; pixman_image_t *shade; struct image_header ih_a = image_header_from(img_a); struct image_header ih_b = image_header_from(img_b); struct image_header ih_d; pixman_box32_t box; int x, y; uint32_t *pix_a; uint32_t *pix_b; uint32_t *pix_d; pixman_color_t shade_color = { 0, 0, 0, 32768 }; box = image_check_get_roi(&ih_a, &ih_b, clip_rect); diffimg = pixman_image_create_bits_no_clear(PIXMAN_x8r8g8b8, ih_a.width, ih_a.height, NULL, 0); ih_d = image_header_from(diffimg); /* Fill diffimg with a black-shaded copy of img_a, and then fill * the clip_rect area with original img_a. */ shade = pixman_image_create_solid_fill(&shade_color); pixman_image_composite32(PIXMAN_OP_SRC, img_a, shade, diffimg, 0, 0, 0, 0, 0, 0, ih_a.width, ih_a.height); pixman_image_unref(shade); pixman_image_composite32(PIXMAN_OP_SRC, img_a, NULL, diffimg, box.x1, box.y1, 0, 0, box.x1, box.y1, box.x2 - box.x1, box.y2 - box.y1); for (y = box.y1; y < box.y2; y++) { pix_a = image_header_get_row_u32(&ih_a, y) + box.x1; pix_b = image_header_get_row_u32(&ih_b, y) + box.x1; pix_d = image_header_get_row_u32(&ih_d, y) + box.x1; for (x = box.x1; x < box.x2; x++) { if (fuzzy_match_pixels(*pix_a, *pix_b, &fuzz, &diffstat)) *pix_d = tint(*pix_d, 0x00008000); /* green */ else *pix_d = tint(*pix_d, 0x00c00000); /* red */ pix_a++; pix_b++; pix_d++; } } testlog_pixel_diff_stat(&diffstat); return diffimg; } /** * Write an image into a PNG file. * * \param image The image. * \param fname The name and path for the file. * * \returns true if successfully saved file; false otherwise. * * \note Only image formats directly supported by Cairo are accepted, not all * Pixman formats. */ bool write_image_as_png(pixman_image_t *image, const char *fname) { cairo_surface_t *cairo_surface; cairo_status_t status; struct image_header ih = image_header_from(image); cairo_format_t fmt = format_pixman2cairo(ih.pixman_format); cairo_surface = cairo_image_surface_create_for_data(ih.data, fmt, ih.width, ih.height, ih.stride_bytes); status = cairo_surface_write_to_png(cairo_surface, fname); if (status != CAIRO_STATUS_SUCCESS) { testlog("Failed to save image '%s': %s\n", fname, cairo_status_to_string(status)); return false; } cairo_surface_destroy(cairo_surface); return true; } pixman_image_t * image_convert_to_a8r8g8b8(pixman_image_t *image) { pixman_image_t *ret; struct image_header ih = image_header_from(image); if (ih.pixman_format == PIXMAN_a8r8g8b8) return pixman_image_ref(image); ret = pixman_image_create_bits_no_clear(PIXMAN_a8r8g8b8, ih.width, ih.height, NULL, 0); assert(ret); pixman_image_composite32(PIXMAN_OP_SRC, image, NULL, ret, 0, 0, 0, 0, 0, 0, ih.width, ih.height); return ret; } static void destroy_cairo_surface(pixman_image_t *image, void *data) { cairo_surface_t *surface = data; cairo_surface_destroy(surface); } /** * Load an image from a PNG file * * Reads a PNG image from disk using the given filename (and path) * and returns as a Pixman image. Use pixman_image_unref() to free it. * * The returned image is always in PIXMAN_a8r8g8b8 format. * * @returns Pixman image, or NULL in case of error. */ pixman_image_t * load_image_from_png(const char *fname) { pixman_image_t *image; pixman_image_t *converted; cairo_format_t cairo_fmt; pixman_format_code_t pixman_fmt; cairo_surface_t *reference_cairo_surface; cairo_status_t status; int width; int height; int stride; void *data; reference_cairo_surface = cairo_image_surface_create_from_png(fname); cairo_surface_flush(reference_cairo_surface); status = cairo_surface_status(reference_cairo_surface); if (status != CAIRO_STATUS_SUCCESS) { testlog("Could not open %s: %s\n", fname, cairo_status_to_string(status)); cairo_surface_destroy(reference_cairo_surface); return NULL; } cairo_fmt = cairo_image_surface_get_format(reference_cairo_surface); pixman_fmt = format_cairo2pixman(cairo_fmt); width = cairo_image_surface_get_width(reference_cairo_surface); height = cairo_image_surface_get_height(reference_cairo_surface); stride = cairo_image_surface_get_stride(reference_cairo_surface); data = cairo_image_surface_get_data(reference_cairo_surface); /* The Cairo surface will own the data, so we keep it around. */ image = pixman_image_create_bits_no_clear(pixman_fmt, width, height, data, stride); assert(image); pixman_image_set_destroy_function(image, destroy_cairo_surface, reference_cairo_surface); converted = image_convert_to_a8r8g8b8(image); pixman_image_unref(image); return converted; } struct output_capturer { int width; int height; uint32_t drm_format; struct weston_capture_v1 *factory; struct weston_capture_source_v1 *source; bool complete; }; static void output_capturer_handle_format(void *data, struct weston_capture_source_v1 *proxy, uint32_t drm_format) { struct output_capturer *capt = data; capt->drm_format = drm_format; } static void output_capturer_handle_size(void *data, struct weston_capture_source_v1 *proxy, int32_t width, int32_t height) { struct output_capturer *capt = data; capt->width = width; capt->height = height; } static void output_capturer_handle_complete(void *data, struct weston_capture_source_v1 *proxy) { struct output_capturer *capt = data; capt->complete = true; } static void output_capturer_handle_retry(void *data, struct weston_capture_source_v1 *proxy) { assert(0 && "output capture retry in tests indicates a race"); } static void output_capturer_handle_failed(void *data, struct weston_capture_source_v1 *proxy, const char *msg) { testlog("output capture failed: %s", msg ? msg : "?"); assert(0 && "output capture failed"); } static const struct weston_capture_source_v1_listener output_capturer_source_handlers = { .format = output_capturer_handle_format, .size = output_capturer_handle_size, .complete = output_capturer_handle_complete, .retry = output_capturer_handle_retry, .failed = output_capturer_handle_failed, }; struct buffer * client_capture_output(struct client *client, struct output *output, enum weston_capture_v1_source src) { struct output_capturer capt = {}; struct buffer *buf; capt.factory = bind_to_singleton_global(client, &weston_capture_v1_interface, 1); capt.source = weston_capture_v1_create(capt.factory, output->wl_output, src); weston_capture_source_v1_add_listener(capt.source, &output_capturer_source_handlers, &capt); client_roundtrip(client); buf = create_shm_buffer(client, capt.width, capt.height, capt.drm_format); weston_capture_source_v1_capture(capt.source, buf->proxy); while (!capt.complete) assert(wl_display_dispatch(client->wl_display) >= 0); weston_capture_source_v1_destroy(capt.source); weston_capture_v1_destroy(capt.factory); return buf; } /** * Take screenshot of a single output * * Requests a screenshot from the server of the output specified * in output_name. This implies that the compositor goes through an output * repaint to provide the screenshot before this function returns. This * function is therefore both a server roundtrip and a wait for a repaint. * * The resulting buffer shall contain a copy of the framebuffer contents, * the output area only, that is, without borders (output decorations). * The shot is in output physical pixels, with the output scale and * orientation rather than scale=1 or orientation=normal. The pixel format * is ensured to be PIXMAN_a8r8g8b8. * * @param client a client instance, as created by create_client() * @param output_name the name of the output, as specified by wl_output.name * @returns A new buffer object, that should be freed with buffer_destroy(). */ struct buffer * capture_screenshot_of_output(struct client *client, const char *output_name) { struct image_header ih; struct buffer *shm; struct buffer *buf; struct output *output = NULL; if (output_name) { struct output *output_iter; wl_list_for_each(output_iter, &client->output_list, link) { if (!strcmp(output_name, output_iter->name)) { output = output_iter; break; } } assert(output); } else { output = client->output; } shm = client_capture_output(client, output, WESTON_CAPTURE_V1_SOURCE_FRAMEBUFFER); ih = image_header_from(shm->image); if (ih.pixman_format == PIXMAN_a8r8g8b8) return shm; buf = create_pixman_buffer(ih.width, ih.height, PIXMAN_a8r8g8b8); pixman_image_composite32(PIXMAN_OP_SRC, shm->image, NULL, buf->image, 0, 0, 0, 0, 0, 0, ih.width, ih.height); buffer_destroy(shm); return buf; } static void write_visual_diff(pixman_image_t *ref_image, pixman_image_t *shot, const struct rectangle *clip, const char *test_name, int seq_no, const struct range *fuzz) { char *fname; char *ext_test_name; pixman_image_t *diff; int ret; ret = asprintf(&ext_test_name, "%s-diff", test_name); assert(ret >= 0); fname = screenshot_output_filename(ext_test_name, seq_no); diff = visualize_image_difference(ref_image, shot, clip, fuzz); write_image_as_png(diff, fname); pixman_image_unref(diff); free(fname); free(ext_test_name); } /** * Verify image contents * * Compares the contents of the given shot to the given reference * image over the given clip rectangle, reports whether they match to the * test log, and if they do not match writes a visual diff into a PNG file * and the screenshot into another PNG file named with get_test_name() and * seq_no. * * The shot image size and the reference image size must both contain * the clip rectangle. * * This function uses the pixel value allowed fuzz appropriate for GL-renderer * with 8 bits per channel data. * * \param shot The image to be verified, usually a screenshot. * \param ref_image The reference image file basename, without sequence number * and .png suffix. * \param ref_seq_no The reference image sequence number. * \param clip The region of interest, or NULL for comparing the whole * images. * \param seq_no Test sequence number, for writing output files. * \return True if the shot matches the reference image, false otherwise. * * For bootstrapping, ref_image can be NULL or the file can be missing. * In that case the screenshot file is written but no comparison is performed, * and false is returned. * * \sa verify_screen_content */ bool verify_image(pixman_image_t *shot, const char *ref_image, int ref_seq_no, const struct rectangle *clip, int seq_no) { const char *test_name = get_test_name(); const struct range gl_fuzz = { -3, 4 }; pixman_image_t *ref = NULL; char *ref_fname = NULL; char *shot_fname; bool match = false; shot_fname = screenshot_output_filename(test_name, seq_no); if (ref_image) { ref_fname = screenshot_reference_filename(ref_image, ref_seq_no); ref = load_image_from_png(ref_fname); } if (ref) { match = check_images_match(ref, shot, clip, &gl_fuzz); testlog("Verify reference image %s vs. shot %s: %s\n", ref_fname, shot_fname, match ? "PASS" : "FAIL"); if (!match) { write_visual_diff(ref, shot, clip, test_name, seq_no, &gl_fuzz); } pixman_image_unref(ref); } else { testlog("No reference image, shot %s: FAIL\n", shot_fname); } if (!match) write_image_as_png(shot, shot_fname); free(ref_fname); free(shot_fname); return match; } /** * Take a screenshot and verify its contents * * Takes a screenshot and calls verify_image() with it. * * \param client The client, for connecting to the compositor. * \param ref_image See verify_image(). * \param ref_seq_no See verify_image(). * \param clip See verify_image(). * \param seq_no See verify_image(). * \param output_name the output name as specified by wl_output.name. If NULL, * this is the last wl_output advertised by wl_registry. * \return True if the screen contents matches the reference image, * false otherwise. */ bool verify_screen_content(struct client *client, const char *ref_image, int ref_seq_no, const struct rectangle *clip, int seq_no, const char *output_name) { struct buffer *shot; bool match; shot = capture_screenshot_of_output(client, output_name); assert(shot); match = verify_image(shot->image, ref_image, ref_seq_no, clip, seq_no); buffer_destroy(shot); return match; } /** * Create a wl_buffer from a PNG file * * Loads the named PNG file from the directory of reference images, * creates a wl_buffer with scale times the image dimensions in pixels, * and copies the image content into the buffer using nearest-neighbor filter. * * \param client The client, for the Wayland connection. * \param basename The PNG file name without .png suffix. * \param scale Upscaling factor >= 1. */ struct buffer * client_buffer_from_image_file(struct client *client, const char *basename, int scale) { struct buffer *buf; char *fname; pixman_image_t *img; int buf_w, buf_h; pixman_transform_t scaling; assert(scale >= 1); fname = image_filename(basename); img = load_image_from_png(fname); free(fname); assert(img); buf_w = scale * pixman_image_get_width(img); buf_h = scale * pixman_image_get_height(img); buf = create_shm_buffer_a8r8g8b8(client, buf_w, buf_h); pixman_transform_init_scale(&scaling, pixman_fixed_1 / scale, pixman_fixed_1 / scale); pixman_image_set_transform(img, &scaling); pixman_image_set_filter(img, PIXMAN_FILTER_NEAREST, NULL, 0); pixman_image_composite32(PIXMAN_OP_SRC, img, /* src */ NULL, /* mask */ buf->image, /* dst */ 0, 0, /* src x,y */ 0, 0, /* mask x,y */ 0, 0, /* dst x,y */ buf_w, buf_h); pixman_image_unref(img); return buf; } /** * Bind to a singleton global in wl_registry * * \param client Client whose registry and globals to use. * \param iface The Wayland interface to look for. * \param version The version to bind the interface with. * \return A struct wl_proxy, which you need to cast to the proper type. * * Asserts that the global being searched for is a singleton and is found. * * Binds with the exact version given, does not take compositor interface * version into account. */ void * bind_to_singleton_global(struct client *client, const struct wl_interface *iface, int version) { struct global *tmp; struct global *g = NULL; struct wl_proxy *proxy; wl_list_for_each(tmp, &client->global_list, link) { if (strcmp(tmp->interface, iface->name)) continue; assert(!g && "multiple singleton objects"); g = tmp; } assert(g && "singleton not found"); proxy = wl_registry_bind(client->wl_registry, g->name, iface, version); assert(proxy); return proxy; } /** * Create a wp_viewport for the client surface * * \param client The client->surface to use. * \return A fresh viewport object. */ struct wp_viewport * client_create_viewport(struct client *client) { struct wp_viewporter *viewporter; struct wp_viewport *viewport; viewporter = bind_to_singleton_global(client, &wp_viewporter_interface, 1); viewport = wp_viewporter_get_viewport(viewporter, client->surface->wl_surface); assert(viewport); wp_viewporter_destroy(viewporter); return viewport; } /** * Fill the image with the given color * * \param image The image to write to. * \param color The color to use. */ void fill_image_with_color(pixman_image_t *image, const pixman_color_t *color) { pixman_image_t *solid; int width; int height; width = pixman_image_get_width(image); height = pixman_image_get_height(image); solid = pixman_image_create_solid_fill(color); pixman_image_composite32(PIXMAN_OP_SRC, solid, /* src */ NULL, /* mask */ image, /* dst */ 0, 0, /* src x,y */ 0, 0, /* mask x,y */ 0, 0, /* dst x,y */ width, height); pixman_image_unref(solid); } /** * Convert 8-bit RGB to opaque Pixman color * * \param tmp Pixman color struct to fill in. * \param r Red value, 0 - 255. * \param g Green value, 0 - 255. * \param b Blue value, 0 - 255. * \return tmp */ pixman_color_t * color_rgb888(pixman_color_t *tmp, uint8_t r, uint8_t g, uint8_t b) { tmp->alpha = 65535; tmp->red = (r << 8) + r; tmp->green = (g << 8) + g; tmp->blue = (b << 8) + b; return tmp; }