/* * Copyright © 2020 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "config.h" #include #include #include #include #include #include "weston-test-client-helper.h" #include "weston-test-fixture-compositor.h" #include "image-iter.h" #include "shared/os-compatibility.h" #include "shared/weston-drm-fourcc.h" #include "shared/xalloc.h" static enum test_result_code fixture_setup(struct weston_test_harness *harness) { struct compositor_setup setup; compositor_setup_defaults(&setup); setup.renderer = WESTON_RENDERER_GL; setup.width = 324; setup.height = 264; setup.shell = SHELL_TEST_DESKTOP; setup.logging_scopes = "log,gl-shader-generator"; return weston_test_harness_execute_as_client(harness, &setup); } DECLARE_FIXTURE_SETUP(fixture_setup); struct yuv_buffer { void *data; size_t bytes; struct wl_buffer *proxy; int width; int height; }; struct yuv_case { uint32_t drm_format; const char *drm_format_name; struct yuv_buffer *(*create_buffer)(struct client *client, uint32_t drm_format, pixman_image_t *rgb_image); }; static struct yuv_buffer * yuv_buffer_create(struct client *client, size_t bytes, int width, int height, int stride_bytes, uint32_t drm_format) { struct wl_shm_pool *pool; struct yuv_buffer *buf; int fd; buf = xzalloc(sizeof *buf); buf->bytes = bytes; buf->width = width; buf->height = height; fd = os_create_anonymous_file(buf->bytes); assert(fd >= 0); buf->data = mmap(NULL, buf->bytes, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf->data == MAP_FAILED) { close(fd); assert(buf->data != MAP_FAILED); } pool = wl_shm_create_pool(client->wl_shm, fd, buf->bytes); buf->proxy = wl_shm_pool_create_buffer(pool, 0, buf->width, buf->height, stride_bytes, drm_format); wl_shm_pool_destroy(pool); close(fd); return buf; } static void yuv_buffer_destroy(struct yuv_buffer *buf) { wl_buffer_destroy(buf->proxy); assert(munmap(buf->data, buf->bytes) == 0); free(buf); } /* * Based on Rec. ITU-R BT.601-7 * * This is intended to be obvious and accurate, not fast. */ static void x8r8g8b8_to_ycbcr8_bt601(uint32_t xrgb, uint8_t *y_out, uint8_t *cb_out, uint8_t *cr_out) { double y, cb, cr; double r = (xrgb >> 16) & 0xff; double g = (xrgb >> 8) & 0xff; double b = (xrgb >> 0) & 0xff; /* normalize to [0.0, 1.0] */ r /= 255.0; g /= 255.0; b /= 255.0; /* Y normalized to [0.0, 1.0], Cb and Cr [-0.5, 0.5] */ y = 0.299 * r + 0.587 * g + 0.114 * b; cr = (r - y) / 1.402; cb = (b - y) / 1.772; /* limited range quantization to 8 bit */ *y_out = round(219.0 * y + 16.0); if (cr_out) *cr_out = round(224.0 * cr + 128.0); if (cb_out) *cb_out = round(224.0 * cb + 128.0); } /* * 3 plane YCbCr * plane 0: Y plane, [7:0] Y * plane 1: Cb plane, [7:0] Cb * plane 2: Cr plane, [7:0] Cr * YUV420: 2x2 subsampled Cb (1) and Cr (2) planes * YUV444: no subsampling */ static struct yuv_buffer * y_u_v_create_buffer(struct client *client, uint32_t drm_format, pixman_image_t *rgb_image) { struct image_header rgb = image_header_from(rgb_image); struct yuv_buffer *buf; size_t bytes; int x, y; uint32_t *rgb_row; uint8_t *y_base; uint8_t *u_base; uint8_t *v_base; uint8_t *y_row; uint8_t *u_row; uint8_t *v_row; uint32_t argb; int sub = (drm_format == DRM_FORMAT_YUV420) ? 2 : 1; assert(drm_format == DRM_FORMAT_YUV420 || drm_format == DRM_FORMAT_YUV444); /* Full size Y plus quarter U and V */ bytes = rgb.width * rgb.height + (rgb.width / sub) * (rgb.height / sub) * 2; buf = yuv_buffer_create(client, bytes, rgb.width, rgb.height, rgb.width, drm_format); y_base = buf->data; u_base = y_base + rgb.width * rgb.height; v_base = u_base + (rgb.width / sub) * (rgb.height / sub); for (y = 0; y < rgb.height; y++) { rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2); y_row = y_base + y * rgb.width; u_row = u_base + (y / sub) * (rgb.width / sub); v_row = v_base + (y / sub) * (rgb.width / sub); for (x = 0; x < rgb.width; x++) { /* * Sub-sample the source image instead, so that U and V * sub-sampling does not require proper * filtering/averaging/siting. */ argb = *(rgb_row + x / 2 * 2); /* * A stupid way of "sub-sampling" chroma. This does not * do the necessary filtering/averaging/siting or * alternate Cb/Cr rows. */ if ((y & (sub - 1)) == 0 && (x & (sub - 1)) == 0) { x8r8g8b8_to_ycbcr8_bt601(argb, y_row + x, u_row + x / sub, v_row + x / sub); } else { x8r8g8b8_to_ycbcr8_bt601(argb, y_row + x, NULL, NULL); } } } return buf; } /* * 2 plane YCbCr * plane 0 = Y plane, [7:0] Y * plane 1 = Cr:Cb plane, [15:0] Cr:Cb little endian * 2x2 subsampled Cr:Cb plane */ static struct yuv_buffer * nv12_create_buffer(struct client *client, uint32_t drm_format, pixman_image_t *rgb_image) { struct image_header rgb = image_header_from(rgb_image); struct yuv_buffer *buf; size_t bytes; int x, y; uint32_t *rgb_row; uint8_t *y_base; uint16_t *uv_base; uint8_t *y_row; uint16_t *uv_row; uint32_t argb; uint8_t cr; uint8_t cb; assert(drm_format == DRM_FORMAT_NV12); /* Full size Y, quarter UV */ bytes = rgb.width * rgb.height + (rgb.width / 2) * (rgb.height / 2) * sizeof(uint16_t); buf = yuv_buffer_create(client, bytes, rgb.width, rgb.height, rgb.width, drm_format); y_base = buf->data; uv_base = (uint16_t *)(y_base + rgb.width * rgb.height); for (y = 0; y < rgb.height; y++) { rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2); y_row = y_base + y * rgb.width; uv_row = uv_base + (y / 2) * (rgb.width / 2); for (x = 0; x < rgb.width; x++) { /* * Sub-sample the source image instead, so that U and V * sub-sampling does not require proper * filtering/averaging/siting. */ argb = *(rgb_row + x / 2 * 2); /* * A stupid way of "sub-sampling" chroma. This does not * do the necessary filtering/averaging/siting. */ if ((y & 1) == 0 && (x & 1) == 0) { x8r8g8b8_to_ycbcr8_bt601(argb, y_row + x, &cb, &cr); *(uv_row + x / 2) = ((uint16_t)cr << 8) | cb; } else { x8r8g8b8_to_ycbcr8_bt601(argb, y_row + x, NULL, NULL); } } } return buf; } /* * Packed YCbCr * * [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian * 2x1 subsampled Cr:Cb plane */ static struct yuv_buffer * yuyv_create_buffer(struct client *client, uint32_t drm_format, pixman_image_t *rgb_image) { struct image_header rgb = image_header_from(rgb_image); struct yuv_buffer *buf; size_t bytes; int x, y; uint32_t *rgb_row; uint32_t *yuv_base; uint32_t *yuv_row; uint8_t cr; uint8_t cb; uint8_t y0; assert(drm_format == DRM_FORMAT_YUYV); /* Full size Y, horizontally subsampled UV, 2 pixels in 32 bits */ bytes = rgb.width / 2 * rgb.height * sizeof(uint32_t); buf = yuv_buffer_create(client, bytes, rgb.width, rgb.height, rgb.width / 2 * sizeof(uint32_t), drm_format); yuv_base = buf->data; for (y = 0; y < rgb.height; y++) { rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2); yuv_row = yuv_base + y * (rgb.width / 2); for (x = 0; x < rgb.width; x += 2) { /* * Sub-sample the source image instead, so that U and V * sub-sampling does not require proper * filtering/averaging/siting. */ x8r8g8b8_to_ycbcr8_bt601(*(rgb_row + x), &y0, &cb, &cr); *(yuv_row + x / 2) = ((uint32_t)cr << 24) | ((uint32_t)y0 << 16) | ((uint32_t)cb << 8) | ((uint32_t)y0 << 0); } } return buf; } /* * Packed YCbCr * * [31:0] X:Y:Cb:Cr 8:8:8:8 little endian * full resolution chroma */ static struct yuv_buffer * xyuv8888_create_buffer(struct client *client, uint32_t drm_format, pixman_image_t *rgb_image) { struct image_header rgb = image_header_from(rgb_image); struct yuv_buffer *buf; size_t bytes; int x, y; uint32_t *rgb_row; uint32_t *yuv_base; uint32_t *yuv_row; uint8_t cr; uint8_t cb; uint8_t y0; assert(drm_format == DRM_FORMAT_XYUV8888); /* Full size, 32 bits per pixel */ bytes = rgb.width * rgb.height * sizeof(uint32_t); buf = yuv_buffer_create(client, bytes, rgb.width, rgb.height, rgb.width * sizeof(uint32_t), drm_format); yuv_base = buf->data; for (y = 0; y < rgb.height; y++) { rgb_row = image_header_get_row_u32(&rgb, y / 2 * 2); yuv_row = yuv_base + y * rgb.width; for (x = 0; x < rgb.width; x++) { /* * 2x2 sub-sample the source image to get the same * result as the other YUV variants, so we can use the * same reference image for checking. */ x8r8g8b8_to_ycbcr8_bt601(*(rgb_row + x / 2 * 2), &y0, &cb, &cr); /* * The unused byte is intentionally set to "garbage" * to catch any accidental use of it in the compositor. */ *(yuv_row + x) = ((uint32_t)x << 24) | ((uint32_t)y0 << 16) | ((uint32_t)cb << 8) | ((uint32_t)cr << 0); } } return buf; } static void show_window_with_yuv(struct client *client, struct yuv_buffer *buf) { struct surface *surface = client->surface; int done; weston_test_move_surface(client->test->weston_test, surface->wl_surface, 4, 4); wl_surface_attach(surface->wl_surface, buf->proxy, 0, 0); wl_surface_damage(surface->wl_surface, 0, 0, buf->width, buf->height); frame_callback_set(surface->wl_surface, &done); wl_surface_commit(surface->wl_surface); frame_callback_wait(client, &done); } static const struct yuv_case yuv_cases[] = { #define FMT(x) DRM_FORMAT_ ##x, #x { FMT(YUV420), y_u_v_create_buffer }, { FMT(YUV444), y_u_v_create_buffer }, { FMT(NV12), nv12_create_buffer }, { FMT(YUYV), yuyv_create_buffer }, { FMT(XYUV8888), xyuv8888_create_buffer }, #undef FMT }; /* * Test that various YUV pixel formats result in correct coloring on screen. */ TEST_P(yuv_buffer_shm, yuv_cases) { const struct yuv_case *my_case = data; char *fname; pixman_image_t *img; struct client *client; struct yuv_buffer *buf; bool match; testlog("%s: format %s\n", get_test_name(), my_case->drm_format_name); /* * This test image is 256 x 256 pixels. * * Therefore this test does NOT exercise: * - odd image dimensions * - non-square image * - row padding * - unaligned row stride * - different alignments or padding in sub-sampled planes * * The reason to not test these is that GL-renderer seems to be more * or less broken. * * The source image is effectively further downscaled to 128 x 128 * before sampled and converted to 256 x 256 YUV, so that * sub-sampling for U and V does not require proper algorithms. * Therefore, this test also does not test: * - chroma siting (chroma sample positioning) */ fname = image_filename("chocolate-cake"); img = load_image_from_png(fname); free(fname); assert(img); client = create_client(); client->surface = create_test_surface(client); buf = my_case->create_buffer(client, my_case->drm_format, img); show_window_with_yuv(client, buf); match = verify_screen_content(client, "yuv-buffer", 0, NULL, 0, NULL); assert(match); yuv_buffer_destroy(buf); pixman_image_unref(img); client_destroy(client); }