/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "shared/helpers.h" #include "vertex-clipping.h" struct clip_context { struct clipper_vertex prev; struct clipper_vertex box[2]; struct clipper_vertex *vertices; }; WESTON_EXPORT_FOR_TESTS float clipper_float_difference(float a, float b) { /* https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ */ static const float max_diff = 4.0f * FLT_MIN; static const float max_rel_diff = 4.0e-5; float diff = a - b; float adiff = fabsf(diff); if (adiff <= max_diff) return 0.0f; a = fabsf(a); b = fabsf(b); if (adiff <= (a > b ? a : b) * max_rel_diff) return 0.0f; return diff; } /* A line segment (p1x, p1y)-(p2x, p2y) intersects the line x = x_arg. * Compute the y coordinate of the intersection. */ static float clip_intersect_y(float p1x, float p1y, float p2x, float p2y, float x_arg) { float a; float diff = clipper_float_difference(p1x, p2x); /* Practically vertical line segment, yet the end points have already * been determined to be on different sides of the line. Therefore * the line segment is part of the line and intersects everywhere. * Return the end point, so we use the whole line segment. */ if (diff == 0.0f) return p2y; a = (x_arg - p2x) / diff; return p2y + (p1y - p2y) * a; } /* A line segment (p1x, p1y)-(p2x, p2y) intersects the line y = y_arg. * Compute the x coordinate of the intersection. */ static float clip_intersect_x(float p1x, float p1y, float p2x, float p2y, float y_arg) { float a; float diff = clipper_float_difference(p1y, p2y); /* Practically horizontal line segment, yet the end points have already * been determined to be on different sides of the line. Therefore * the line segment is part of the line and intersects everywhere. * Return the end point, so we use the whole line segment. */ if (diff == 0.0f) return p2x; a = (y_arg - p2y) / diff; return p2x + (p1x - p2x) * a; } enum path_transition { PATH_TRANSITION_OUT_TO_OUT = 0, PATH_TRANSITION_OUT_TO_IN = 1, PATH_TRANSITION_IN_TO_OUT = 2, PATH_TRANSITION_IN_TO_IN = 3, }; static void clip_append_vertex(struct clip_context *ctx, float x, float y) { ctx->vertices->x = x; ctx->vertices->y = y; ctx->vertices++; } static enum path_transition path_transition_left_edge(struct clip_context *ctx, float x, float y) { return ((ctx->prev.x >= ctx->box[0].x) << 1) | (x >= ctx->box[0].x); } static enum path_transition path_transition_right_edge(struct clip_context *ctx, float x, float y) { return ((ctx->prev.x < ctx->box[1].x) << 1) | (x < ctx->box[1].x); } static enum path_transition path_transition_top_edge(struct clip_context *ctx, float x, float y) { return ((ctx->prev.y >= ctx->box[0].y) << 1) | (y >= ctx->box[0].y); } static enum path_transition path_transition_bottom_edge(struct clip_context *ctx, float x, float y) { return ((ctx->prev.y < ctx->box[1].y) << 1) | (y < ctx->box[1].y); } static void clip_polygon_leftright(struct clip_context *ctx, enum path_transition transition, float x, float y, float clip_x) { float yi; switch (transition) { case PATH_TRANSITION_IN_TO_IN: clip_append_vertex(ctx, x, y); break; case PATH_TRANSITION_IN_TO_OUT: yi = clip_intersect_y(ctx->prev.x, ctx->prev.y, x, y, clip_x); clip_append_vertex(ctx, clip_x, yi); break; case PATH_TRANSITION_OUT_TO_IN: yi = clip_intersect_y(ctx->prev.x, ctx->prev.y, x, y, clip_x); clip_append_vertex(ctx, clip_x, yi); clip_append_vertex(ctx, x, y); break; case PATH_TRANSITION_OUT_TO_OUT: /* nothing */ break; default: assert(0 && "bad enum path_transition"); } ctx->prev.x = x; ctx->prev.y = y; } static void clip_polygon_topbottom(struct clip_context *ctx, enum path_transition transition, float x, float y, float clip_y) { float xi; switch (transition) { case PATH_TRANSITION_IN_TO_IN: clip_append_vertex(ctx, x, y); break; case PATH_TRANSITION_IN_TO_OUT: xi = clip_intersect_x(ctx->prev.x, ctx->prev.y, x, y, clip_y); clip_append_vertex(ctx, xi, clip_y); break; case PATH_TRANSITION_OUT_TO_IN: xi = clip_intersect_x(ctx->prev.x, ctx->prev.y, x, y, clip_y); clip_append_vertex(ctx, xi, clip_y); clip_append_vertex(ctx, x, y); break; case PATH_TRANSITION_OUT_TO_OUT: /* nothing */ break; default: assert(0 && "bad enum path_transition"); } ctx->prev.x = x; ctx->prev.y = y; } struct polygon8 { struct clipper_vertex pos[8]; int n; }; static void clip_context_prepare(struct clip_context *ctx, const struct polygon8 *src, struct clipper_vertex *dst) { ctx->prev.x = src->pos[src->n - 1].x; ctx->prev.y = src->pos[src->n - 1].y; ctx->vertices = dst; } static int clip_polygon_left(struct clip_context *ctx, const struct polygon8 *src, struct clipper_vertex *dst) { enum path_transition trans; int i; if (src->n < 2) return 0; clip_context_prepare(ctx, src, dst); for (i = 0; i < src->n; i++) { trans = path_transition_left_edge(ctx, src->pos[i].x, src->pos[i].y); clip_polygon_leftright(ctx, trans, src->pos[i].x, src->pos[i].y, ctx->box[0].x); } return ctx->vertices - dst; } static int clip_polygon_right(struct clip_context *ctx, const struct polygon8 *src, struct clipper_vertex *dst) { enum path_transition trans; int i; if (src->n < 2) return 0; clip_context_prepare(ctx, src, dst); for (i = 0; i < src->n; i++) { trans = path_transition_right_edge(ctx, src->pos[i].x, src->pos[i].y); clip_polygon_leftright(ctx, trans, src->pos[i].x, src->pos[i].y, ctx->box[1].x); } return ctx->vertices - dst; } static int clip_polygon_top(struct clip_context *ctx, const struct polygon8 *src, struct clipper_vertex *dst) { enum path_transition trans; int i; if (src->n < 2) return 0; clip_context_prepare(ctx, src, dst); for (i = 0; i < src->n; i++) { trans = path_transition_top_edge(ctx, src->pos[i].x, src->pos[i].y); clip_polygon_topbottom(ctx, trans, src->pos[i].x, src->pos[i].y, ctx->box[0].y); } return ctx->vertices - dst; } static int clip_polygon_bottom(struct clip_context *ctx, const struct polygon8 *src, struct clipper_vertex *dst) { enum path_transition trans; int i; if (src->n < 2) return 0; clip_context_prepare(ctx, src, dst); for (i = 0; i < src->n; i++) { trans = path_transition_bottom_edge(ctx, src->pos[i].x, src->pos[i].y); clip_polygon_topbottom(ctx, trans, src->pos[i].x, src->pos[i].y, ctx->box[1].y); } return ctx->vertices - dst; } /* General purpose clipping function. Compute the boundary vertices of the * intersection of a 'polygon' and a clipping 'box'. 'polygon' points to an * array of 4 vertices defining a convex polygon of any winding order. 'box' * points to an array of 2 vertices where the values of the 1st vertex are less * than or equal to the values of the 2nd vertex. Up to 8 resulting vertices, * using 'polygon' winding order, are written to 'vertices'. The return value is * the number of vertices created. * * Based on Sutherland-Hodgman algorithm: * https://www.codeguru.com/cplusplus/polygon-clipping/ */ static int clip(const struct clipper_vertex polygon[4], const struct clipper_vertex box[2], struct clipper_vertex *restrict vertices) { struct clip_context ctx; struct polygon8 p, tmp; int i, n; memcpy(ctx.box, box, 2 * sizeof *box); memcpy(p.pos, polygon, 4 * sizeof *polygon); p.n = 4; tmp.n = clip_polygon_left(&ctx, &p, tmp.pos); p.n = clip_polygon_right(&ctx, &tmp, p.pos); tmp.n = clip_polygon_top(&ctx, &p, tmp.pos); p.n = clip_polygon_bottom(&ctx, &tmp, p.pos); /* Get rid of duplicate vertices */ vertices[0] = p.pos[0]; n = 1; for (i = 1; i < p.n; i++) { if (clipper_float_difference(vertices[n - 1].x, p.pos[i].x) == 0.0f && clipper_float_difference(vertices[n - 1].y, p.pos[i].y) == 0.0f) continue; vertices[n] = p.pos[i]; n++; } if (clipper_float_difference(vertices[n - 1].x, p.pos[0].x) == 0.0f && clipper_float_difference(vertices[n - 1].y, p.pos[0].y) == 0.0f) n--; return n; } WESTON_EXPORT_FOR_TESTS void clipper_quad_init(struct clipper_quad *quad, const struct clipper_vertex polygon[4], bool axis_aligned) { int i; memcpy(quad->polygon, polygon, 4 * sizeof *polygon); quad->axis_aligned = axis_aligned; if (axis_aligned) return; /* Find axis-aligned bounding box. */ quad->bbox[0].x = quad->bbox[1].x = polygon[0].x; quad->bbox[0].y = quad->bbox[1].y = polygon[0].y; for (i = 1; i < 4; i++) { quad->bbox[0].x = MIN(quad->bbox[0].x, polygon[i].x); quad->bbox[1].x = MAX(quad->bbox[1].x, polygon[i].x); quad->bbox[0].y = MIN(quad->bbox[0].y, polygon[i].y); quad->bbox[1].y = MAX(quad->bbox[1].y, polygon[i].y); } } WESTON_EXPORT_FOR_TESTS int clipper_quad_clip(struct clipper_quad *quad, const struct clipper_vertex box[2], struct clipper_vertex *restrict vertices) { int i, n; /* Aligned case: quad edges are parallel to clipping box edges, there * will be either four or zero edges. We just need to clamp the quad * edges to the clipping box edges and test for non-zero area: */ if (quad->axis_aligned) { for (i = 0; i < 4; i++) { vertices[i].x = CLIP(quad->polygon[i].x, box[0].x, box[1].x); vertices[i].y = CLIP(quad->polygon[i].y, box[0].y, box[1].y); } if ((vertices[0].x != vertices[2].x) && (vertices[0].y != vertices[2].y)) return 4; else return 0; } /* Unaligned case: first, simple bounding box check to discard early a * quad that does not intersect with the clipping box: */ if ((quad->bbox[0].x >= box[1].x) || (quad->bbox[1].x <= box[0].x) || (quad->bbox[0].y >= box[1].y) || (quad->bbox[1].y <= box[0].y)) return 0; /* Then use our general purpose clipping algorithm: */ n = clip(quad->polygon, box, vertices); if (n < 3) return 0; return n; } WESTON_EXPORT_FOR_TESTS int clipper_quad_clip_box32(struct clipper_quad *quad, const struct pixman_box32 *box, struct clipper_vertex *restrict vertices) { struct clipper_vertex box_vertices[2] = { { box->x1, box->y1 }, { box->x2, box->y2 } }; return clipper_quad_clip(quad, box_vertices, vertices); }