unicorn/bindings/java/samples/Sample_m68k.java

178 lines
6.9 KiB
Java

/*
Java bindings for the Unicorn Emulator Engine
Copyright(c) 2015 Chris Eagle
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Unicorn Emulator Engine */
/* By Loi Anh Tuan, 2015 */
/* Sample code to demonstrate how to emulate m68k code */
import unicorn.*;
public class Sample_m68k {
// code to be emulated
public static final byte[] M68K_CODE = {118,-19}; // movq #-19, %d3
// memory address where emulation starts
public static final int ADDRESS = 0x10000;
public static final long toInt(byte val[]) {
long res = 0;
for (int i = 0; i < val.length; i++) {
long v = val[i] & 0xff;
res = res + (v << (i * 8));
}
return res;
}
public static final byte[] toBytes(long val) {
byte[] res = new byte[8];
for (int i = 0; i < 8; i++) {
res[i] = (byte)(val & 0xff);
val >>>= 8;
}
return res;
}
// callback for tracing basic blocks
private static class MyBlockHook implements BlockHook {
public void hook(Unicorn u, long address, int size, Object user_data) {
System.out.print(String.format(">>> Tracing basic block at 0x%x, block size = 0x%x\n", address, size));
}
}
// callback for tracing instruction
private static class MyCodeHook implements CodeHook {
public void hook(Unicorn u, long address, int size, Object user_data) {
System.out.print(String.format(">>> Tracing instruction at 0x%x, instruction size = 0x%x\n", address, size));
}
}
static void test_m68k()
{
byte[] d0 = toBytes(0x0000); // d0 data register
byte[] d1 = toBytes(0x0000); // d1 data register
byte[] d2 = toBytes(0x0000); // d2 data register
byte[] d3 = toBytes(0x0000); // d3 data register
byte[] d4 = toBytes(0x0000); // d4 data register
byte[] d5 = toBytes(0x0000); // d5 data register
byte[] d6 = toBytes(0x0000); // d6 data register
byte[] d7 = toBytes(0x0000); // d7 data register
byte[] a0 = toBytes(0x0000); // a0 address register
byte[] a1 = toBytes(0x0000); // a1 address register
byte[] a2 = toBytes(0x0000); // a2 address register
byte[] a3 = toBytes(0x0000); // a3 address register
byte[] a4 = toBytes(0x0000); // a4 address register
byte[] a5 = toBytes(0x0000); // a5 address register
byte[] a6 = toBytes(0x0000); // a6 address register
byte[] a7 = toBytes(0x0000); // a6 address register
byte[] pc = toBytes(0x0000); // program counter
byte[] sr = toBytes(0x0000); // status register
System.out.print("Emulate M68K code\n");
// Initialize emulator in M68K mode
Unicorn u = new Unicorn(Unicorn.UC_ARCH_M68K, Unicorn.UC_MODE_BIG_ENDIAN);
// map 2MB memory for this emulation
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
// write machine code to be emulated to memory
u.mem_write(ADDRESS, M68K_CODE);
// initialize machine registers
u.reg_write(Unicorn.UC_M68K_REG_D0, d0);
u.reg_write(Unicorn.UC_M68K_REG_D1, d1);
u.reg_write(Unicorn.UC_M68K_REG_D2, d2);
u.reg_write(Unicorn.UC_M68K_REG_D3, d3);
u.reg_write(Unicorn.UC_M68K_REG_D4, d4);
u.reg_write(Unicorn.UC_M68K_REG_D5, d5);
u.reg_write(Unicorn.UC_M68K_REG_D6, d6);
u.reg_write(Unicorn.UC_M68K_REG_D7, d7);
u.reg_write(Unicorn.UC_M68K_REG_A0, a0);
u.reg_write(Unicorn.UC_M68K_REG_A1, a1);
u.reg_write(Unicorn.UC_M68K_REG_A2, a2);
u.reg_write(Unicorn.UC_M68K_REG_A3, a3);
u.reg_write(Unicorn.UC_M68K_REG_A4, a4);
u.reg_write(Unicorn.UC_M68K_REG_A5, a5);
u.reg_write(Unicorn.UC_M68K_REG_A6, a6);
u.reg_write(Unicorn.UC_M68K_REG_A7, a7);
u.reg_write(Unicorn.UC_M68K_REG_PC, pc);
u.reg_write(Unicorn.UC_M68K_REG_SR, sr);
// tracing all basic blocks with customized callback
u.hook_add(new MyBlockHook(), 1, 0, null);
// tracing all instruction
u.hook_add(new MyCodeHook(), 1, 0, null);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
u.emu_start(ADDRESS, ADDRESS + M68K_CODE.length, 0, 0);
// now print out some registers
System.out.print(">>> Emulation done. Below is the CPU context\n");
d0 = u.reg_read(Unicorn.UC_M68K_REG_D0, 4);
d1 = u.reg_read(Unicorn.UC_M68K_REG_D1, 4);
d2 = u.reg_read(Unicorn.UC_M68K_REG_D2, 4);
d3 = u.reg_read(Unicorn.UC_M68K_REG_D3, 4);
d4 = u.reg_read(Unicorn.UC_M68K_REG_D4, 4);
d5 = u.reg_read(Unicorn.UC_M68K_REG_D5, 4);
d6 = u.reg_read(Unicorn.UC_M68K_REG_D6, 4);
d7 = u.reg_read(Unicorn.UC_M68K_REG_D7, 4);
a0 = u.reg_read(Unicorn.UC_M68K_REG_A0, 4);
a1 = u.reg_read(Unicorn.UC_M68K_REG_A1, 4);
a2 = u.reg_read(Unicorn.UC_M68K_REG_A2, 4);
a3 = u.reg_read(Unicorn.UC_M68K_REG_A3, 4);
a4 = u.reg_read(Unicorn.UC_M68K_REG_A4, 4);
a5 = u.reg_read(Unicorn.UC_M68K_REG_A5, 4);
a6 = u.reg_read(Unicorn.UC_M68K_REG_A6, 4);
a7 = u.reg_read(Unicorn.UC_M68K_REG_A7, 4);
pc = u.reg_read(Unicorn.UC_M68K_REG_PC, 4);
sr = u.reg_read(Unicorn.UC_M68K_REG_SR, 4);
System.out.print(String.format(">>> A0 = 0x%x\t\t>>> D0 = 0x%x\n", toInt(a0), toInt(d0)));
System.out.print(String.format(">>> A1 = 0x%x\t\t>>> D1 = 0x%x\n", toInt(a1), toInt(d1)));
System.out.print(String.format(">>> A2 = 0x%x\t\t>>> D2 = 0x%x\n", toInt(a2), toInt(d2)));
System.out.print(String.format(">>> A3 = 0x%x\t\t>>> D3 = 0x%x\n", toInt(a3), toInt(d3)));
System.out.print(String.format(">>> A4 = 0x%x\t\t>>> D4 = 0x%x\n", toInt(a4), toInt(d4)));
System.out.print(String.format(">>> A5 = 0x%x\t\t>>> D5 = 0x%x\n", toInt(a5), toInt(d5)));
System.out.print(String.format(">>> A6 = 0x%x\t\t>>> D6 = 0x%x\n", toInt(a6), toInt(d6)));
System.out.print(String.format(">>> A7 = 0x%x\t\t>>> D7 = 0x%x\n", toInt(a7), toInt(d7)));
System.out.print(String.format(">>> PC = 0x%x\n", toInt(pc)));
System.out.print(String.format(">>> SR = 0x%x\n", toInt(sr)));
u.close();
}
public static void main(String args[])
{
test_m68k();
}
}