ae1b6ad89b
1. Add cmake support in CMakeLists.txt according to https://developer.android.com/ndk/guides/other_build_systems
2. Resolve symbols errors
3. Backport fixes from 438ed42311
> QEMU relies on two optimization for ppc64 and arm:
>
> 1. if(0) /* optimized code */
> 2. assert(0); /* optimized code */
>
> But the assert on mingw32 doesn't have noreturn attribute which prevents
> the second optimization and some code is reverted to the original code
> to fit in the first optimization.
>
> The assert implementation is copied from glib as qemu did.
Unfortunately, NDK also doesn't have an assert implementation qemu prefers.
2108 lines
63 KiB
C
2108 lines
63 KiB
C
/*
|
|
* Virtual page mapping
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "exec/cpu-defs.h"
|
|
#include "cpu.h"
|
|
|
|
#include "qemu/cutils.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/target_page.h"
|
|
#include "tcg/tcg.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "qemu/timer.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/ioport.h"
|
|
|
|
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
|
|
#include <linux/falloc.h>
|
|
#endif
|
|
|
|
#include "accel/tcg/translate-all.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
|
|
#include "qemu/range.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
typedef struct PhysPageEntry PhysPageEntry;
|
|
|
|
struct PhysPageEntry {
|
|
/* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
|
|
uint32_t skip : 6;
|
|
/* index into phys_sections (!skip) or phys_map_nodes (skip) */
|
|
uint32_t ptr : 26;
|
|
};
|
|
|
|
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
|
|
|
|
/* Size of the L2 (and L3, etc) page tables. */
|
|
#define ADDR_SPACE_BITS 64
|
|
|
|
#define P_L2_BITS 9
|
|
#define P_L2_SIZE (1 << P_L2_BITS)
|
|
|
|
#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
|
|
|
|
typedef PhysPageEntry Node[P_L2_SIZE];
|
|
|
|
typedef struct PhysPageMap {
|
|
unsigned sections_nb;
|
|
unsigned sections_nb_alloc;
|
|
unsigned nodes_nb;
|
|
unsigned nodes_nb_alloc;
|
|
Node *nodes;
|
|
MemoryRegionSection *sections;
|
|
} PhysPageMap;
|
|
|
|
struct AddressSpaceDispatch {
|
|
MemoryRegionSection *mru_section;
|
|
/* This is a multi-level map on the physical address space.
|
|
* The bottom level has pointers to MemoryRegionSections.
|
|
*/
|
|
PhysPageEntry phys_map;
|
|
PhysPageMap map;
|
|
struct uc_struct *uc;
|
|
};
|
|
|
|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
|
typedef struct subpage_t {
|
|
MemoryRegion iomem;
|
|
FlatView *fv;
|
|
hwaddr base;
|
|
uint16_t sub_section[];
|
|
} subpage_t;
|
|
|
|
#define PHYS_SECTION_UNASSIGNED 0
|
|
|
|
static void tcg_commit(MemoryListener *listener);
|
|
|
|
/**
|
|
* CPUAddressSpace: all the information a CPU needs about an AddressSpace
|
|
* @cpu: the CPU whose AddressSpace this is
|
|
* @as: the AddressSpace itself
|
|
* @memory_dispatch: its dispatch pointer (cached, RCU protected)
|
|
* @tcg_as_listener: listener for tracking changes to the AddressSpace
|
|
*/
|
|
struct CPUAddressSpace {
|
|
CPUState *cpu;
|
|
AddressSpace *as;
|
|
struct AddressSpaceDispatch *memory_dispatch;
|
|
MemoryListener tcg_as_listener;
|
|
};
|
|
|
|
|
|
static void phys_map_node_reserve(AddressSpaceDispatch *d, PhysPageMap *map, unsigned nodes)
|
|
{
|
|
if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
|
|
map->nodes_nb_alloc = MAX(d->uc->alloc_hint, map->nodes_nb + nodes);
|
|
map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
|
|
d->uc->alloc_hint = map->nodes_nb_alloc;
|
|
}
|
|
}
|
|
|
|
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
|
|
{
|
|
unsigned i;
|
|
uint32_t ret;
|
|
PhysPageEntry e;
|
|
PhysPageEntry *p;
|
|
|
|
ret = map->nodes_nb++;
|
|
p = map->nodes[ret];
|
|
assert(ret != PHYS_MAP_NODE_NIL);
|
|
assert(ret != map->nodes_nb_alloc);
|
|
|
|
e.skip = leaf ? 0 : 1;
|
|
e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
|
|
for (i = 0; i < P_L2_SIZE; ++i) {
|
|
memcpy(&p[i], &e, sizeof(e));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
|
|
hwaddr *index, uint64_t *nb, uint16_t leaf,
|
|
int level)
|
|
{
|
|
PhysPageEntry *p;
|
|
hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
|
|
|
|
if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
lp->ptr = phys_map_node_alloc(map, level == 0);
|
|
}
|
|
p = map->nodes[lp->ptr];
|
|
lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
|
|
while (*nb && lp < &p[P_L2_SIZE]) {
|
|
if ((*index & (step - 1)) == 0 && *nb >= step) {
|
|
lp->skip = 0;
|
|
lp->ptr = leaf;
|
|
*index += step;
|
|
*nb -= step;
|
|
} else {
|
|
phys_page_set_level(map, lp, index, nb, leaf, level - 1);
|
|
}
|
|
++lp;
|
|
}
|
|
}
|
|
|
|
static void phys_page_set(AddressSpaceDispatch *d,
|
|
hwaddr index, uint64_t nb,
|
|
uint16_t leaf)
|
|
{
|
|
#ifdef TARGET_ARM
|
|
struct uc_struct *uc = d->uc;
|
|
#endif
|
|
/* Wildly overreserve - it doesn't matter much. */
|
|
phys_map_node_reserve(d, &d->map, 3 * P_L2_LEVELS);
|
|
|
|
phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
|
}
|
|
|
|
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
|
|
* and update our entry so we can skip it and go directly to the destination.
|
|
*/
|
|
static void phys_page_compact(struct uc_struct *uc, PhysPageEntry *lp, Node *nodes)
|
|
{
|
|
unsigned valid_ptr = P_L2_SIZE;
|
|
int valid = 0;
|
|
PhysPageEntry *p;
|
|
int i;
|
|
|
|
if (lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
return;
|
|
}
|
|
|
|
p = nodes[lp->ptr];
|
|
for (i = 0; i < P_L2_SIZE; i++) {
|
|
if (p[i].ptr == PHYS_MAP_NODE_NIL) {
|
|
continue;
|
|
}
|
|
|
|
valid_ptr = i;
|
|
valid++;
|
|
if (p[i].skip) {
|
|
phys_page_compact(uc, &p[i], nodes);
|
|
}
|
|
}
|
|
|
|
/* We can only compress if there's only one child. */
|
|
if (valid != 1) {
|
|
return;
|
|
}
|
|
|
|
assert(valid_ptr < P_L2_SIZE);
|
|
|
|
/* Don't compress if it won't fit in the # of bits we have. */
|
|
if (P_L2_LEVELS >= (1 << 6) &&
|
|
lp->skip + p[valid_ptr].skip >= (1 << 6)) {
|
|
return;
|
|
}
|
|
|
|
lp->ptr = p[valid_ptr].ptr;
|
|
if (!p[valid_ptr].skip) {
|
|
/* If our only child is a leaf, make this a leaf. */
|
|
/* By design, we should have made this node a leaf to begin with so we
|
|
* should never reach here.
|
|
* But since it's so simple to handle this, let's do it just in case we
|
|
* change this rule.
|
|
*/
|
|
lp->skip = 0;
|
|
} else {
|
|
lp->skip += p[valid_ptr].skip;
|
|
}
|
|
}
|
|
|
|
void address_space_dispatch_compact(AddressSpaceDispatch *d)
|
|
{
|
|
if (d->phys_map.skip) {
|
|
phys_page_compact(d->uc, &d->phys_map, d->map.nodes);
|
|
}
|
|
}
|
|
|
|
static inline bool section_covers_addr(const MemoryRegionSection *section,
|
|
hwaddr addr)
|
|
{
|
|
/* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
|
|
* the section must cover the entire address space.
|
|
*/
|
|
return int128_gethi(section->size) ||
|
|
range_covers_byte(section->offset_within_address_space,
|
|
int128_getlo(section->size), addr);
|
|
}
|
|
|
|
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
|
|
{
|
|
#ifdef TARGET_ARM
|
|
struct uc_struct *uc = d->uc;
|
|
#endif
|
|
PhysPageEntry lp = d->phys_map, *p;
|
|
Node *nodes = d->map.nodes;
|
|
MemoryRegionSection *sections = d->map.sections;
|
|
hwaddr index = addr >> TARGET_PAGE_BITS;
|
|
int i;
|
|
|
|
for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
|
|
if (lp.ptr == PHYS_MAP_NODE_NIL) {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
p = nodes[lp.ptr];
|
|
lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
}
|
|
|
|
if (section_covers_addr(§ions[lp.ptr], addr)) {
|
|
return §ions[lp.ptr];
|
|
} else {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
|
|
hwaddr addr,
|
|
bool resolve_subpage)
|
|
{
|
|
#ifdef TARGET_ARM
|
|
struct uc_struct *uc = d->uc;
|
|
#endif
|
|
MemoryRegionSection *section = d->mru_section;
|
|
subpage_t *subpage;
|
|
|
|
if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
|
|
!section_covers_addr(section, addr)) {
|
|
section = phys_page_find(d, addr);
|
|
d->mru_section = section;
|
|
}
|
|
if (resolve_subpage && section->mr->subpage) {
|
|
subpage = container_of(section->mr, subpage_t, iomem);
|
|
section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
|
|
}
|
|
return section;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
static MemoryRegionSection *
|
|
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
Int128 diff;
|
|
|
|
section = address_space_lookup_region(d, addr, resolve_subpage);
|
|
/* Compute offset within MemoryRegionSection */
|
|
addr -= section->offset_within_address_space;
|
|
|
|
/* Compute offset within MemoryRegion */
|
|
*xlat = addr + section->offset_within_region;
|
|
|
|
mr = section->mr;
|
|
|
|
/* MMIO registers can be expected to perform full-width accesses based only
|
|
* on their address, without considering adjacent registers that could
|
|
* decode to completely different MemoryRegions. When such registers
|
|
* exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
|
|
* regions overlap wildly. For this reason we cannot clamp the accesses
|
|
* here.
|
|
*
|
|
* If the length is small (as is the case for address_space_ldl/stl),
|
|
* everything works fine. If the incoming length is large, however,
|
|
* the caller really has to do the clamping through memory_access_size.
|
|
*/
|
|
if (memory_region_is_ram(mr)) {
|
|
diff = int128_sub(section->size, int128_make64(addr));
|
|
*plen = int128_get64(int128_min(diff, int128_make64(*plen)));
|
|
}
|
|
return section;
|
|
}
|
|
|
|
/**
|
|
* address_space_translate_iommu - translate an address through an IOMMU
|
|
* memory region and then through the target address space.
|
|
*
|
|
* @iommu_mr: the IOMMU memory region that we start the translation from
|
|
* @addr: the address to be translated through the MMU
|
|
* @xlat: the translated address offset within the destination memory region.
|
|
* It cannot be %NULL.
|
|
* @plen_out: valid read/write length of the translated address. It
|
|
* cannot be %NULL.
|
|
* @page_mask_out: page mask for the translated address. This
|
|
* should only be meaningful for IOMMU translated
|
|
* addresses, since there may be huge pages that this bit
|
|
* would tell. It can be %NULL if we don't care about it.
|
|
* @is_write: whether the translation operation is for write
|
|
* @is_mmio: whether this can be MMIO, set true if it can
|
|
* @target_as: the address space targeted by the IOMMU
|
|
* @attrs: transaction attributes
|
|
*
|
|
* This function is called from RCU critical section. It is the common
|
|
* part of flatview_do_translate and address_space_translate_cached.
|
|
*/
|
|
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
|
|
hwaddr *xlat,
|
|
hwaddr *plen_out,
|
|
hwaddr *page_mask_out,
|
|
bool is_write,
|
|
bool is_mmio,
|
|
AddressSpace **target_as,
|
|
MemTxAttrs attrs)
|
|
{
|
|
MemoryRegionSection *section;
|
|
hwaddr page_mask = (hwaddr)-1;
|
|
MemoryRegion *mr = MEMORY_REGION(iommu_mr);
|
|
|
|
do {
|
|
hwaddr addr = *xlat;
|
|
IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
|
|
int iommu_idx = 0;
|
|
IOMMUTLBEntry iotlb;
|
|
|
|
if (imrc->attrs_to_index) {
|
|
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
|
|
}
|
|
|
|
iotlb = imrc->translate(iommu_mr, addr, is_write ?
|
|
IOMMU_WO : IOMMU_RO, iommu_idx);
|
|
|
|
if (!(iotlb.perm & (1 << is_write))) {
|
|
goto unassigned;
|
|
}
|
|
|
|
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
|
|
| (addr & iotlb.addr_mask));
|
|
page_mask &= iotlb.addr_mask;
|
|
*plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
|
|
*target_as = iotlb.target_as;
|
|
|
|
section = address_space_translate_internal(
|
|
address_space_to_dispatch(iotlb.target_as), addr, xlat,
|
|
plen_out, is_mmio);
|
|
|
|
iommu_mr = memory_region_get_iommu(section->mr);
|
|
} while (unlikely(iommu_mr));
|
|
|
|
if (page_mask_out) {
|
|
*page_mask_out = page_mask;
|
|
}
|
|
return *section;
|
|
|
|
unassigned:
|
|
return (MemoryRegionSection) { .mr = &(mr->uc->io_mem_unassigned) };
|
|
}
|
|
|
|
/**
|
|
* flatview_do_translate - translate an address in FlatView
|
|
*
|
|
* @fv: the flat view that we want to translate on
|
|
* @addr: the address to be translated in above address space
|
|
* @xlat: the translated address offset within memory region. It
|
|
* cannot be @NULL.
|
|
* @plen_out: valid read/write length of the translated address. It
|
|
* can be @NULL when we don't care about it.
|
|
* @page_mask_out: page mask for the translated address. This
|
|
* should only be meaningful for IOMMU translated
|
|
* addresses, since there may be huge pages that this bit
|
|
* would tell. It can be @NULL if we don't care about it.
|
|
* @is_write: whether the translation operation is for write
|
|
* @is_mmio: whether this can be MMIO, set true if it can
|
|
* @target_as: the address space targeted by the IOMMU
|
|
* @attrs: memory transaction attributes
|
|
*
|
|
* This function is called from RCU critical section
|
|
*/
|
|
static MemoryRegionSection flatview_do_translate(struct uc_struct *uc, FlatView *fv,
|
|
hwaddr addr,
|
|
hwaddr *xlat,
|
|
hwaddr *plen_out,
|
|
hwaddr *page_mask_out,
|
|
bool is_write,
|
|
bool is_mmio,
|
|
AddressSpace **target_as,
|
|
MemTxAttrs attrs)
|
|
{
|
|
MemoryRegionSection *section;
|
|
IOMMUMemoryRegion *iommu_mr;
|
|
hwaddr plen = (hwaddr)(-1);
|
|
|
|
if (!plen_out) {
|
|
plen_out = &plen;
|
|
}
|
|
|
|
section = address_space_translate_internal(
|
|
flatview_to_dispatch(fv), addr, xlat,
|
|
plen_out, is_mmio);
|
|
|
|
iommu_mr = memory_region_get_iommu(section->mr);
|
|
if (unlikely(iommu_mr)) {
|
|
return address_space_translate_iommu(iommu_mr, xlat,
|
|
plen_out, page_mask_out,
|
|
is_write, is_mmio,
|
|
target_as, attrs);
|
|
}
|
|
if (page_mask_out) {
|
|
/* Not behind an IOMMU, use default page size. */
|
|
*page_mask_out = ~TARGET_PAGE_MASK;
|
|
}
|
|
|
|
return *section;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
MemoryRegion *flatview_translate(struct uc_struct *uc, FlatView *fv, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool is_write,
|
|
MemTxAttrs attrs)
|
|
{
|
|
MemoryRegion *mr;
|
|
MemoryRegionSection section;
|
|
AddressSpace *as = NULL;
|
|
|
|
/* This can be MMIO, so setup MMIO bit. */
|
|
section = flatview_do_translate(uc, fv, addr, xlat, plen, NULL,
|
|
is_write, true, &as, attrs);
|
|
mr = section.mr;
|
|
|
|
return mr;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
MemoryRegionSection *
|
|
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
|
|
hwaddr *xlat, hwaddr *plen,
|
|
MemTxAttrs attrs, int *prot)
|
|
{
|
|
MemoryRegionSection *section;
|
|
IOMMUMemoryRegion *iommu_mr;
|
|
IOMMUMemoryRegionClass *imrc;
|
|
IOMMUTLBEntry iotlb;
|
|
int iommu_idx;
|
|
AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
|
|
|
|
for (;;) {
|
|
section = address_space_translate_internal(d, addr, &addr, plen, false);
|
|
|
|
iommu_mr = memory_region_get_iommu(section->mr);
|
|
if (!iommu_mr) {
|
|
break;
|
|
}
|
|
|
|
imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
|
|
|
|
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
|
|
|
|
// tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
|
|
|
|
/* We need all the permissions, so pass IOMMU_NONE so the IOMMU
|
|
* doesn't short-cut its translation table walk.
|
|
*/
|
|
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
|
|
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
|
|
| (addr & iotlb.addr_mask));
|
|
/* Update the caller's prot bits to remove permissions the IOMMU
|
|
* is giving us a failure response for. If we get down to no
|
|
* permissions left at all we can give up now.
|
|
*/
|
|
if (!(iotlb.perm & IOMMU_RO)) {
|
|
*prot &= ~(PAGE_READ | PAGE_EXEC);
|
|
}
|
|
if (!(iotlb.perm & IOMMU_WO)) {
|
|
*prot &= ~PAGE_WRITE;
|
|
}
|
|
|
|
if (!*prot) {
|
|
goto translate_fail;
|
|
}
|
|
|
|
d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
|
|
}
|
|
|
|
assert(!(memory_region_get_iommu(section->mr) != NULL));
|
|
*xlat = addr;
|
|
// Unicorn:
|
|
// If there is no memory mapped but still we start emulation, we will get
|
|
// a default memory region section and it would be marked as an IO memory
|
|
// in cputlb which prevents further fecthing and execution.
|
|
//
|
|
// The reason we set prot to 0 here is not to setting protection but to notify
|
|
// the outer function to add a new **blank** tlb which will never be hitted.
|
|
if (!memory_region_is_ram(section->mr) && section == &d->map.sections[PHYS_SECTION_UNASSIGNED]) {
|
|
*prot = 0;
|
|
}
|
|
return section;
|
|
|
|
translate_fail:
|
|
return &d->map.sections[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
|
|
CPUState *qemu_get_cpu(struct uc_struct *uc, int index)
|
|
{
|
|
CPUState *cpu = uc->cpu;
|
|
if (cpu->cpu_index == index) {
|
|
return cpu;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void cpu_address_space_init(CPUState *cpu, int asidx, MemoryRegion *mr)
|
|
{
|
|
/* Target code should have set num_ases before calling us */
|
|
assert(asidx < cpu->num_ases);
|
|
|
|
if (!cpu->cpu_ases) {
|
|
cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
|
|
cpu->cpu_ases[0].cpu = cpu;
|
|
cpu->cpu_ases[0].as = &(cpu->uc->address_space_memory);
|
|
cpu->cpu_ases[0].tcg_as_listener.commit = tcg_commit;
|
|
memory_listener_register(&(cpu->cpu_ases[0].tcg_as_listener), cpu->cpu_ases[0].as);
|
|
}
|
|
/* arm security memory */
|
|
if (asidx > 0) {
|
|
cpu->cpu_ases[asidx].cpu = cpu;
|
|
cpu->cpu_ases[asidx].as = &(cpu->uc->address_space_memory);
|
|
cpu->cpu_ases[asidx].tcg_as_listener.commit = tcg_commit;
|
|
memory_listener_register(&(cpu->cpu_ases[asidx].tcg_as_listener), cpu->cpu_ases[asidx].as);
|
|
}
|
|
}
|
|
|
|
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
|
|
{
|
|
/* only one AddressSpace. */
|
|
return cpu->cpu_ases[0].as;
|
|
}
|
|
|
|
void cpu_exec_unrealizefn(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
void cpu_exec_initfn(CPUState *cpu)
|
|
{
|
|
cpu->num_ases = 1;
|
|
cpu->as = &(cpu->uc->address_space_memory);
|
|
cpu->memory = cpu->uc->system_memory;
|
|
}
|
|
|
|
void cpu_exec_realizefn(CPUState *cpu)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
|
|
cc->tcg_initialize(cpu->uc);
|
|
tlb_init(cpu);
|
|
}
|
|
|
|
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 1;
|
|
|
|
mr = address_space_translate(as, addr, &addr, &l, false, attrs);
|
|
if (!memory_region_is_ram(mr)) {
|
|
return;
|
|
}
|
|
|
|
ram_addr = memory_region_get_ram_addr(mr) + addr;
|
|
tb_invalidate_phys_page_range(as->uc, ram_addr, ram_addr + 1);
|
|
}
|
|
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
/*
|
|
* There may not be a virtual to physical translation for the pc
|
|
* right now, but there may exist cached TB for this pc.
|
|
* Flush the whole TB cache to force re-translation of such TBs.
|
|
* This is heavyweight, but we're debugging anyway.
|
|
*/
|
|
tb_flush(cpu);
|
|
}
|
|
|
|
/* Add a watchpoint. */
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
#if 0
|
|
CPUWatchpoint *wp;
|
|
|
|
/* forbid ranges which are empty or run off the end of the address space */
|
|
if (len == 0 || (addr + len - 1) < addr) {
|
|
error_report("tried to set invalid watchpoint at %"
|
|
VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
|
|
return -EINVAL;
|
|
}
|
|
wp = g_malloc(sizeof(*wp));
|
|
|
|
wp->vaddr = addr;
|
|
wp->len = len;
|
|
wp->flags = flags;
|
|
|
|
/* keep all GDB-injected watchpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
|
|
}
|
|
|
|
tlb_flush_page(cpu, addr);
|
|
|
|
if (watchpoint)
|
|
*watchpoint = wp;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific watchpoint by reference. */
|
|
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
|
|
{
|
|
#if 0
|
|
QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
|
|
|
|
tlb_flush_page(cpu, watchpoint->vaddr);
|
|
|
|
g_free(watchpoint);
|
|
#endif
|
|
}
|
|
|
|
/* Remove all matching watchpoints. */
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
#if 0
|
|
CPUWatchpoint *wp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
|
|
if (wp->flags & mask) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Return flags for watchpoints that match addr + prot. */
|
|
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
|
|
{
|
|
#if 0
|
|
CPUWatchpoint *wp;
|
|
int ret = 0;
|
|
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
|
|
ret |= wp->flags;
|
|
}
|
|
}
|
|
return ret;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
|
|
}
|
|
|
|
breakpoint_invalidate(cpu, pc);
|
|
|
|
if (breakpoint) {
|
|
*breakpoint = bp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
|
|
|
|
breakpoint_invalidate(cpu, breakpoint->pc);
|
|
|
|
g_free(breakpoint);
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
|
|
if (bp->flags & mask) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_abort(CPUState *cpu, const char *fmt, ...)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
static RAMBlock *qemu_get_ram_block(struct uc_struct *uc, ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
block = uc->ram_list.mru_block;
|
|
if (block && addr - block->offset < block->max_length) {
|
|
return block;
|
|
}
|
|
RAMBLOCK_FOREACH(block) {
|
|
if (addr - block->offset < block->max_length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
found:
|
|
uc->ram_list.mru_block = block;
|
|
return block;
|
|
}
|
|
|
|
/* Note: start and end must be within the same ram block. */
|
|
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
|
|
MemoryRegionSection *section)
|
|
{
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
|
|
return section - d->map.sections;
|
|
}
|
|
|
|
static int subpage_register(struct uc_struct *uc, subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section);
|
|
static subpage_t *subpage_init(struct uc_struct *, FlatView *fv, hwaddr base);
|
|
|
|
static void *(*phys_mem_alloc)(struct uc_struct *uc, size_t size, uint64_t *align) =
|
|
qemu_anon_ram_alloc;
|
|
|
|
static uint16_t phys_section_add(struct uc_struct *uc, PhysPageMap *map,
|
|
MemoryRegionSection *section)
|
|
{
|
|
/* The physical section number is ORed with a page-aligned
|
|
* pointer to produce the iotlb entries. Thus it should
|
|
* never overflow into the page-aligned value.
|
|
*/
|
|
assert(map->sections_nb < TARGET_PAGE_SIZE);
|
|
|
|
if (map->sections_nb == map->sections_nb_alloc) {
|
|
map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
|
|
map->sections = g_renew(MemoryRegionSection, map->sections,
|
|
map->sections_nb_alloc);
|
|
}
|
|
map->sections[map->sections_nb] = *section;
|
|
return map->sections_nb++;
|
|
}
|
|
|
|
static void phys_section_destroy(MemoryRegion *mr)
|
|
{
|
|
bool have_sub_page = mr->subpage;
|
|
|
|
if (have_sub_page) {
|
|
subpage_t *subpage = container_of(mr, subpage_t, iomem);
|
|
// object_unref(OBJECT(&subpage->iomem));
|
|
g_free(subpage);
|
|
}
|
|
}
|
|
|
|
static void phys_sections_free(PhysPageMap *map)
|
|
{
|
|
while (map->sections_nb > 0) {
|
|
MemoryRegionSection *section = &map->sections[--map->sections_nb];
|
|
phys_section_destroy(section->mr);
|
|
}
|
|
g_free(map->sections);
|
|
g_free(map->nodes);
|
|
}
|
|
|
|
static void register_subpage(struct uc_struct *uc, FlatView *fv, MemoryRegionSection *section)
|
|
{
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
|
|
subpage_t *subpage;
|
|
hwaddr base = section->offset_within_address_space
|
|
& TARGET_PAGE_MASK;
|
|
MemoryRegionSection *existing = phys_page_find(d, base);
|
|
MemoryRegionSection subsection = {
|
|
.offset_within_address_space = base,
|
|
.size = int128_make64(TARGET_PAGE_SIZE),
|
|
};
|
|
hwaddr start, end;
|
|
|
|
assert(existing->mr->subpage || existing->mr == &(section->mr->uc->io_mem_unassigned));
|
|
|
|
if (!(existing->mr->subpage)) {
|
|
subpage = subpage_init(uc, fv, base);
|
|
subsection.fv = fv;
|
|
subsection.mr = &subpage->iomem;
|
|
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
|
|
phys_section_add(uc, &d->map, &subsection));
|
|
} else {
|
|
subpage = container_of(existing->mr, subpage_t, iomem);
|
|
}
|
|
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
|
|
end = start + int128_get64(section->size) - 1;
|
|
subpage_register(uc, subpage, start, end,
|
|
phys_section_add(uc, &d->map, section));
|
|
}
|
|
|
|
|
|
static void register_multipage(struct uc_struct *uc, FlatView *fv,
|
|
MemoryRegionSection *section)
|
|
{
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
uint16_t section_index = phys_section_add(uc, &d->map, section);
|
|
uint64_t num_pages = int128_get64(int128_rshift(section->size,
|
|
TARGET_PAGE_BITS));
|
|
|
|
assert(num_pages);
|
|
phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
|
|
}
|
|
|
|
/*
|
|
* The range in *section* may look like this:
|
|
*
|
|
* |s|PPPPPPP|s|
|
|
*
|
|
* where s stands for subpage and P for page.
|
|
*/
|
|
void flatview_add_to_dispatch(struct uc_struct *uc, FlatView *fv, MemoryRegionSection *section)
|
|
{
|
|
MemoryRegionSection remain = *section;
|
|
Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
|
|
|
|
/* register first subpage */
|
|
if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
|
|
uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
|
|
- remain.offset_within_address_space;
|
|
|
|
MemoryRegionSection now = remain;
|
|
now.size = int128_min(int128_make64(left), now.size);
|
|
register_subpage(uc, fv, &now);
|
|
if (int128_eq(remain.size, now.size)) {
|
|
return;
|
|
}
|
|
remain.size = int128_sub(remain.size, now.size);
|
|
remain.offset_within_address_space += int128_get64(now.size);
|
|
remain.offset_within_region += int128_get64(now.size);
|
|
}
|
|
|
|
/* register whole pages */
|
|
if (int128_ge(remain.size, page_size)) {
|
|
MemoryRegionSection now = remain;
|
|
now.size = int128_and(now.size, int128_neg(page_size));
|
|
register_multipage(uc, fv, &now);
|
|
if (int128_eq(remain.size, now.size)) {
|
|
return;
|
|
}
|
|
remain.size = int128_sub(remain.size, now.size);
|
|
remain.offset_within_address_space += int128_get64(now.size);
|
|
remain.offset_within_region += int128_get64(now.size);
|
|
}
|
|
|
|
/* register last subpage */
|
|
register_subpage(uc, fv, &remain);
|
|
}
|
|
|
|
/* Allocate space within the ram_addr_t space that governs the
|
|
* dirty bitmaps.
|
|
* Called with the ramlist lock held.
|
|
*/
|
|
static ram_addr_t find_ram_offset(struct uc_struct *uc, ram_addr_t size)
|
|
{
|
|
RAMBlock *block, *next_block;
|
|
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
|
|
|
|
assert(size != 0); /* it would hand out same offset multiple times */
|
|
|
|
if (QLIST_EMPTY(&uc->ram_list.blocks)) {
|
|
return 0;
|
|
}
|
|
|
|
RAMBLOCK_FOREACH(block) {
|
|
ram_addr_t candidate, next = RAM_ADDR_MAX;
|
|
|
|
/* Align blocks to start on a 'long' in the bitmap
|
|
* which makes the bitmap sync'ing take the fast path.
|
|
*/
|
|
candidate = block->offset + block->max_length;
|
|
candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
|
|
|
|
/* Search for the closest following block
|
|
* and find the gap.
|
|
*/
|
|
RAMBLOCK_FOREACH(next_block) {
|
|
if (next_block->offset >= candidate) {
|
|
next = MIN(next, next_block->offset);
|
|
}
|
|
}
|
|
|
|
/* If it fits remember our place and remember the size
|
|
* of gap, but keep going so that we might find a smaller
|
|
* gap to fill so avoiding fragmentation.
|
|
*/
|
|
if (next - candidate >= size && next - candidate < mingap) {
|
|
offset = candidate;
|
|
mingap = next - candidate;
|
|
}
|
|
}
|
|
|
|
if (offset == RAM_ADDR_MAX) {
|
|
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
|
|
(uint64_t)size);
|
|
abort();
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
void *qemu_ram_get_host_addr(RAMBlock *rb)
|
|
{
|
|
return rb->host;
|
|
}
|
|
|
|
ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
|
|
{
|
|
return rb->offset;
|
|
}
|
|
|
|
ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
|
|
{
|
|
return rb->used_length;
|
|
}
|
|
|
|
bool qemu_ram_is_shared(RAMBlock *rb)
|
|
{
|
|
return rb->flags & RAM_SHARED;
|
|
}
|
|
|
|
size_t qemu_ram_pagesize(RAMBlock *rb)
|
|
{
|
|
return rb->page_size;
|
|
}
|
|
|
|
static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block)
|
|
{
|
|
RAMBlock *block;
|
|
RAMBlock *last_block = NULL;
|
|
|
|
new_block->offset = find_ram_offset(uc, new_block->max_length);
|
|
|
|
if (!new_block->host) {
|
|
new_block->host = phys_mem_alloc(uc, new_block->max_length,
|
|
&new_block->mr->align);
|
|
if (!new_block->host) {
|
|
// error_setg_errno(errp, errno,
|
|
// "cannot set up guest memory '%s'",
|
|
// memory_region_name(new_block->mr));
|
|
return;
|
|
}
|
|
// memory_try_enable_merging(new_block->host, new_block->max_length);
|
|
}
|
|
|
|
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
|
|
* QLIST (which has an RCU-friendly variant) does not have insertion at
|
|
* tail, so save the last element in last_block.
|
|
*/
|
|
RAMBLOCK_FOREACH(block) {
|
|
last_block = block;
|
|
if (block->max_length < new_block->max_length) {
|
|
break;
|
|
}
|
|
}
|
|
if (block) {
|
|
QLIST_INSERT_BEFORE(block, new_block, next);
|
|
} else if (last_block) {
|
|
QLIST_INSERT_AFTER(last_block, new_block, next);
|
|
} else { /* list is empty */
|
|
QLIST_INSERT_HEAD(&uc->ram_list.blocks, new_block, next);
|
|
}
|
|
uc->ram_list.mru_block = NULL;
|
|
|
|
/* Write list before version */
|
|
//smp_wmb();
|
|
|
|
cpu_physical_memory_set_dirty_range(new_block->offset,
|
|
new_block->used_length,
|
|
DIRTY_CLIENTS_ALL);
|
|
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc_from_ptr(struct uc_struct *uc, ram_addr_t size, void *host,
|
|
MemoryRegion *mr)
|
|
{
|
|
RAMBlock *new_block;
|
|
ram_addr_t max_size = size;
|
|
|
|
size = HOST_PAGE_ALIGN(uc, size);
|
|
max_size = HOST_PAGE_ALIGN(uc, max_size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
if (new_block == NULL)
|
|
return NULL;
|
|
new_block->mr = mr;
|
|
new_block->used_length = size;
|
|
new_block->max_length = max_size;
|
|
assert(max_size >= size);
|
|
new_block->page_size = uc->qemu_real_host_page_size;
|
|
new_block->host = host;
|
|
if (host) {
|
|
new_block->flags |= RAM_PREALLOC;
|
|
}
|
|
ram_block_add(mr->uc, new_block);
|
|
|
|
return new_block;
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc(struct uc_struct *uc, ram_addr_t size, MemoryRegion *mr)
|
|
{
|
|
return qemu_ram_alloc_from_ptr(uc, size, NULL, mr);
|
|
}
|
|
|
|
static void reclaim_ramblock(struct uc_struct *uc, RAMBlock *block)
|
|
{
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
} else if (false) {
|
|
} else {
|
|
qemu_anon_ram_free(uc, block->host, block->max_length);
|
|
}
|
|
g_free(block);
|
|
}
|
|
|
|
void qemu_ram_free(struct uc_struct *uc, RAMBlock *block)
|
|
{
|
|
if (!block) {
|
|
return;
|
|
}
|
|
|
|
//if (block->host) {
|
|
// ram_block_notify_remove(block->host, block->max_length);
|
|
//}
|
|
|
|
QLIST_REMOVE(block, next);
|
|
uc->ram_list.mru_block = NULL;
|
|
/* Write list before version */
|
|
//smp_wmb();
|
|
// call_rcu(block, reclaim_ramblock, rcu);
|
|
reclaim_ramblock(uc, block);
|
|
}
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
* This should not be used for general purpose DMA. Use address_space_map
|
|
* or address_space_rw instead. For local memory (e.g. video ram) that the
|
|
* device owns, use memory_region_get_ram_ptr.
|
|
*
|
|
* Called within RCU critical section.
|
|
*/
|
|
void *qemu_map_ram_ptr(struct uc_struct *uc, RAMBlock *ram_block, ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = ram_block;
|
|
|
|
if (block == NULL) {
|
|
block = qemu_get_ram_block(uc, addr);
|
|
addr -= block->offset;
|
|
}
|
|
|
|
return ramblock_ptr(block, addr);
|
|
}
|
|
|
|
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
|
|
* but takes a size argument.
|
|
*
|
|
* Called within RCU critical section.
|
|
*/
|
|
static void *qemu_ram_ptr_length(struct uc_struct *uc, RAMBlock *ram_block, ram_addr_t addr,
|
|
hwaddr *size, bool lock)
|
|
{
|
|
RAMBlock *block = ram_block;
|
|
if (*size == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (block == NULL) {
|
|
block = qemu_get_ram_block(uc, addr);
|
|
addr -= block->offset;
|
|
}
|
|
*size = MIN(*size, block->max_length - addr);
|
|
|
|
return ramblock_ptr(block, addr);
|
|
}
|
|
|
|
/* Return the offset of a hostpointer within a ramblock */
|
|
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
|
|
{
|
|
ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
|
|
assert((uintptr_t)host >= (uintptr_t)rb->host);
|
|
assert(res < rb->max_length);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Translates a host ptr back to a RAMBlock, a ram_addr and an offset
|
|
* in that RAMBlock.
|
|
*
|
|
* ptr: Host pointer to look up
|
|
* round_offset: If true round the result offset down to a page boundary
|
|
* *ram_addr: set to result ram_addr
|
|
* *offset: set to result offset within the RAMBlock
|
|
*
|
|
* Returns: RAMBlock (or NULL if not found)
|
|
*
|
|
* By the time this function returns, the returned pointer is not protected
|
|
* by RCU anymore. If the caller is not within an RCU critical section and
|
|
* does not hold the iothread lock, it must have other means of protecting the
|
|
* pointer, such as a reference to the region that includes the incoming
|
|
* ram_addr_t.
|
|
*/
|
|
RAMBlock *qemu_ram_block_from_host(struct uc_struct *uc, void *ptr,
|
|
bool round_offset, ram_addr_t *offset)
|
|
{
|
|
RAMBlock *block;
|
|
uint8_t *host = ptr;
|
|
|
|
block = uc->ram_list.mru_block;
|
|
if (block && block->host && host - block->host < block->max_length) {
|
|
goto found;
|
|
}
|
|
|
|
RAMBLOCK_FOREACH(block) {
|
|
/* This case append when the block is not mapped. */
|
|
if (block->host == NULL) {
|
|
continue;
|
|
}
|
|
if (host - block->host < block->max_length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
*offset = (host - block->host);
|
|
if (round_offset) {
|
|
*offset &= TARGET_PAGE_MASK;
|
|
}
|
|
return block;
|
|
}
|
|
|
|
/* Some of the softmmu routines need to translate from a host pointer
|
|
(typically a TLB entry) back to a ram offset. */
|
|
ram_addr_t qemu_ram_addr_from_host(struct uc_struct *uc, void *ptr)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
|
|
block = qemu_ram_block_from_host(uc, ptr, false, &offset);
|
|
if (!block) {
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
|
|
return block->offset + offset;
|
|
}
|
|
|
|
/* Generate a debug exception if a watchpoint has been hit. */
|
|
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
|
|
MemTxAttrs attrs, int flags, uintptr_t ra)
|
|
{
|
|
}
|
|
|
|
static MemTxResult flatview_read(struct uc_struct *uc, FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs, void *buf, hwaddr len);
|
|
static MemTxResult flatview_write(struct uc_struct *, FlatView *fv, hwaddr addr, MemTxAttrs attrs,
|
|
const void *buf, hwaddr len);
|
|
static bool flatview_access_valid(struct uc_struct *uc, FlatView *fv, hwaddr addr, hwaddr len,
|
|
bool is_write, MemTxAttrs attrs);
|
|
|
|
static MemTxResult subpage_read(struct uc_struct *uc, void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned len, MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[8];
|
|
MemTxResult res;
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
|
|
subpage, len, addr);
|
|
#endif
|
|
res = flatview_read(uc, subpage->fv, addr + subpage->base, attrs, buf, len);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
*data = ldn_p(buf, len);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult subpage_write(struct uc_struct *uc, void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned len, MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[8];
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx
|
|
" value %"PRIx64"\n",
|
|
__func__, subpage, len, addr, value);
|
|
#endif
|
|
stn_p(buf, len, value);
|
|
return flatview_write(uc, subpage->fv, addr + subpage->base, attrs, buf, len);
|
|
}
|
|
|
|
static bool subpage_accepts(struct uc_struct *uc, void *opaque, hwaddr addr,
|
|
unsigned len, bool is_write,
|
|
MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
|
|
__func__, subpage, is_write ? 'w' : 'r', len, addr);
|
|
#endif
|
|
|
|
return flatview_access_valid(uc, subpage->fv, addr + subpage->base,
|
|
len, is_write, attrs);
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ops = {
|
|
.read_with_attrs = subpage_read,
|
|
.write_with_attrs = subpage_write,
|
|
.impl.min_access_size = 1,
|
|
.impl.max_access_size = 8,
|
|
.valid.min_access_size = 1,
|
|
.valid.max_access_size = 8,
|
|
.valid.accepts = subpage_accepts,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int subpage_register(struct uc_struct *uc, subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section)
|
|
{
|
|
int idx, eidx;
|
|
|
|
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
|
return -1;
|
|
idx = SUBPAGE_IDX(start);
|
|
eidx = SUBPAGE_IDX(end);
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
|
|
__func__, mmio, start, end, idx, eidx, section);
|
|
#endif
|
|
for (; idx <= eidx; idx++) {
|
|
mmio->sub_section[idx] = section;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static subpage_t *subpage_init(struct uc_struct *uc, FlatView *fv, hwaddr base)
|
|
{
|
|
subpage_t *mmio;
|
|
|
|
/* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
|
|
mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
|
|
mmio->fv = fv;
|
|
mmio->base = base;
|
|
memory_region_init_io(fv->root->uc, &mmio->iomem, &subpage_ops, mmio,
|
|
TARGET_PAGE_SIZE);
|
|
mmio->iomem.subpage = true;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
|
|
mmio, base, TARGET_PAGE_SIZE);
|
|
#endif
|
|
|
|
return mmio;
|
|
}
|
|
|
|
static uint16_t dummy_section(struct uc_struct *uc, PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
|
|
{
|
|
assert(fv);
|
|
MemoryRegionSection section = {
|
|
.fv = fv,
|
|
.mr = mr,
|
|
.offset_within_address_space = 0,
|
|
.offset_within_region = 0,
|
|
.size = int128_2_64(),
|
|
};
|
|
|
|
return phys_section_add(uc, map, §ion);
|
|
}
|
|
|
|
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
|
|
hwaddr index, MemTxAttrs attrs)
|
|
{
|
|
#ifdef TARGET_ARM
|
|
struct uc_struct *uc = cpu->uc;
|
|
#endif
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
|
|
AddressSpaceDispatch *d = cpuas->memory_dispatch;
|
|
MemoryRegionSection *sections = d->map.sections;
|
|
|
|
return §ions[index & ~TARGET_PAGE_MASK];
|
|
}
|
|
|
|
static void io_mem_init(struct uc_struct *uc)
|
|
{
|
|
memory_region_init_io(uc, &uc->io_mem_unassigned, &unassigned_mem_ops, NULL,
|
|
UINT64_MAX);
|
|
}
|
|
|
|
AddressSpaceDispatch *address_space_dispatch_new(struct uc_struct *uc, FlatView *fv)
|
|
{
|
|
AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
|
|
#ifndef NDEBUG
|
|
uint16_t n;
|
|
|
|
n = dummy_section(uc, &d->map, fv, &(uc->io_mem_unassigned));
|
|
assert(n == PHYS_SECTION_UNASSIGNED);
|
|
#else
|
|
dummy_section(uc, &d->map, fv, &(uc->io_mem_unassigned));
|
|
#endif
|
|
|
|
d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
|
|
d->uc = uc;
|
|
|
|
return d;
|
|
}
|
|
|
|
void address_space_dispatch_free(AddressSpaceDispatch *d)
|
|
{
|
|
phys_sections_free(&d->map);
|
|
g_free(d);
|
|
}
|
|
|
|
static void tcg_commit(MemoryListener *listener)
|
|
{
|
|
CPUAddressSpace *cpuas;
|
|
AddressSpaceDispatch *d;
|
|
|
|
/* since each CPU stores ram addresses in its TLB cache, we must
|
|
reset the modified entries */
|
|
cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
|
|
cpu_reloading_memory_map();
|
|
/* The CPU and TLB are protected by the iothread lock.
|
|
* We reload the dispatch pointer now because cpu_reloading_memory_map()
|
|
* may have split the RCU critical section.
|
|
*/
|
|
d = address_space_to_dispatch(cpuas->as);
|
|
cpuas->memory_dispatch = d;
|
|
tlb_flush(cpuas->cpu);
|
|
}
|
|
|
|
static void memory_map_init(struct uc_struct *uc)
|
|
{
|
|
uc->system_memory = g_malloc(sizeof(*(uc->system_memory)));
|
|
memory_region_init(uc, uc->system_memory, UINT64_MAX);
|
|
address_space_init(uc, &uc->address_space_memory, uc->system_memory);
|
|
|
|
uc->system_io = g_malloc(sizeof(*(uc->system_io)));
|
|
memory_region_init_io(uc, uc->system_io, &unassigned_io_ops, NULL, 65536);
|
|
address_space_init(uc, &uc->address_space_io, uc->system_io);
|
|
}
|
|
|
|
/* physical memory access (slow version, mainly for debug) */
|
|
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
|
|
hwaddr length)
|
|
{
|
|
}
|
|
|
|
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
|
|
{
|
|
unsigned access_size_max = mr->ops->valid.max_access_size;
|
|
|
|
/* Regions are assumed to support 1-4 byte accesses unless
|
|
otherwise specified. */
|
|
if (access_size_max == 0) {
|
|
access_size_max = 4;
|
|
}
|
|
|
|
/* Bound the maximum access by the alignment of the address. */
|
|
if (!mr->ops->impl.unaligned) {
|
|
#ifdef _MSC_VER
|
|
unsigned align_size_max = addr & (0ULL - addr);
|
|
#else
|
|
unsigned align_size_max = addr & -addr;
|
|
#endif
|
|
if (align_size_max != 0 && align_size_max < access_size_max) {
|
|
access_size_max = align_size_max;
|
|
}
|
|
}
|
|
|
|
/* Don't attempt accesses larger than the maximum. */
|
|
if (l > access_size_max) {
|
|
l = access_size_max;
|
|
}
|
|
l = pow2floor(l);
|
|
|
|
return l;
|
|
}
|
|
|
|
static bool prepare_mmio_access(MemoryRegion *mr)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/* Called within RCU critical section. */
|
|
static MemTxResult flatview_write_continue(struct uc_struct *uc, FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const void *ptr,
|
|
hwaddr len, hwaddr addr1,
|
|
hwaddr l, MemoryRegion *mr)
|
|
{
|
|
uint8_t *ram_ptr;
|
|
uint64_t val;
|
|
MemTxResult result = MEMTX_OK;
|
|
bool release_lock = false;
|
|
const uint8_t *buf = ptr;
|
|
|
|
for (;;) {
|
|
if (!memory_access_is_direct(mr, true)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
l = memory_access_size(mr, l, addr1);
|
|
/* XXX: could force current_cpu to NULL to avoid
|
|
potential bugs */
|
|
val = ldn_he_p(buf, l);
|
|
result |= memory_region_dispatch_write(uc, mr, addr1, val,
|
|
size_memop(l), attrs);
|
|
} else {
|
|
/* RAM case */
|
|
ram_ptr = qemu_ram_ptr_length(fv->root->uc, mr->ram_block, addr1, &l, false);
|
|
memcpy(ram_ptr, buf, l);
|
|
}
|
|
|
|
if (release_lock) {
|
|
release_lock = false;
|
|
}
|
|
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
|
|
if (!len) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
mr = flatview_translate(uc, fv, addr, &addr1, &l, true, attrs);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Called from RCU critical section. */
|
|
static MemTxResult flatview_write(struct uc_struct *uc, FlatView *fv, hwaddr addr, MemTxAttrs attrs,
|
|
const void *buf, hwaddr len)
|
|
{
|
|
hwaddr l;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
MemTxResult result = MEMTX_OK;
|
|
|
|
l = len;
|
|
mr = flatview_translate(uc, fv, addr, &addr1, &l, true, attrs);
|
|
result = flatview_write_continue(uc, fv, addr, attrs, buf, len,
|
|
addr1, l, mr);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Called within RCU critical section. */
|
|
MemTxResult flatview_read_continue(struct uc_struct *uc, FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs, void *ptr,
|
|
hwaddr len, hwaddr addr1, hwaddr l,
|
|
MemoryRegion *mr)
|
|
{
|
|
uint8_t *ram_ptr;
|
|
uint64_t val;
|
|
MemTxResult result = MEMTX_OK;
|
|
bool release_lock = false;
|
|
uint8_t *buf = ptr;
|
|
|
|
for (;;) {
|
|
if (!memory_access_is_direct(mr, false)) {
|
|
/* I/O case */
|
|
release_lock |= prepare_mmio_access(mr);
|
|
l = memory_access_size(mr, l, addr1);
|
|
result |= memory_region_dispatch_read(uc, mr, addr1, &val,
|
|
size_memop(l), attrs);
|
|
stn_he_p(buf, l, val);
|
|
} else {
|
|
/* RAM case */
|
|
ram_ptr = qemu_ram_ptr_length(fv->root->uc, mr->ram_block, addr1, &l, false);
|
|
memcpy(buf, ram_ptr, l);
|
|
}
|
|
|
|
if (release_lock) {
|
|
release_lock = false;
|
|
}
|
|
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
|
|
if (!len) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
mr = flatview_translate(uc, fv, addr, &addr1, &l, false, attrs);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Called from RCU critical section. */
|
|
static MemTxResult flatview_read(struct uc_struct *uc, FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs, void *buf, hwaddr len)
|
|
{
|
|
hwaddr l;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
|
|
l = len;
|
|
mr = flatview_translate(uc, fv, addr, &addr1, &l, false, attrs);
|
|
return flatview_read_continue(uc, fv, addr, attrs, buf, len,
|
|
addr1, l, mr);
|
|
}
|
|
|
|
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, void *buf, hwaddr len)
|
|
{
|
|
MemTxResult result = MEMTX_OK;
|
|
FlatView *fv;
|
|
|
|
if (len > 0) {
|
|
fv = address_space_to_flatview(as);
|
|
result = flatview_read(as->uc, fv, addr, attrs, buf, len);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const void *buf, hwaddr len)
|
|
{
|
|
MemTxResult result = MEMTX_OK;
|
|
FlatView *fv;
|
|
|
|
if (len > 0) {
|
|
fv = address_space_to_flatview(as);
|
|
result = flatview_write(as->uc, fv, addr, attrs, buf, len);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
|
void *buf, hwaddr len, bool is_write)
|
|
{
|
|
if (is_write) {
|
|
return address_space_write(as, addr, attrs, buf, len);
|
|
} else {
|
|
return address_space_read_full(as, addr, attrs, buf, len);
|
|
}
|
|
}
|
|
|
|
bool cpu_physical_memory_rw(AddressSpace *as, hwaddr addr, void *buf,
|
|
hwaddr len, bool is_write)
|
|
{
|
|
MemTxResult result = address_space_rw(as, addr, MEMTXATTRS_UNSPECIFIED,
|
|
buf, len, is_write);
|
|
if (result == MEMTX_OK) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
enum write_rom_type {
|
|
WRITE_DATA,
|
|
FLUSH_CACHE,
|
|
};
|
|
|
|
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
|
|
hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const void *ptr,
|
|
hwaddr len,
|
|
enum write_rom_type type)
|
|
{
|
|
hwaddr l;
|
|
uint8_t *ram_ptr;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
const uint8_t *buf = ptr;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
|
|
|
|
if (!memory_region_is_ram(mr)) {
|
|
l = memory_access_size(mr, l, addr1);
|
|
} else {
|
|
/* ROM/RAM case */
|
|
ram_ptr = qemu_map_ram_ptr(as->uc, mr->ram_block, addr1);
|
|
switch (type) {
|
|
case WRITE_DATA:
|
|
memcpy(ram_ptr, buf, l);
|
|
break;
|
|
case FLUSH_CACHE:
|
|
flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
|
|
break;
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
/* used for ROM loading : can write in RAM and ROM */
|
|
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const void *buf, hwaddr len)
|
|
{
|
|
return address_space_write_rom_internal(as, addr, attrs,
|
|
buf, len, WRITE_DATA);
|
|
}
|
|
|
|
void cpu_flush_icache_range(AddressSpace *as, hwaddr start, hwaddr len)
|
|
{
|
|
}
|
|
|
|
void cpu_exec_init_all(struct uc_struct *uc)
|
|
{
|
|
/* The data structures we set up here depend on knowing the page size,
|
|
* so no more changes can be made after this point.
|
|
* In an ideal world, nothing we did before we had finished the
|
|
* machine setup would care about the target page size, and we could
|
|
* do this much later, rather than requiring board models to state
|
|
* up front what their requirements are.
|
|
*/
|
|
finalize_target_page_bits(uc);
|
|
memory_map_init(uc);
|
|
io_mem_init(uc);
|
|
}
|
|
|
|
static bool flatview_access_valid(struct uc_struct *uc, FlatView *fv, hwaddr addr, hwaddr len,
|
|
bool is_write, MemTxAttrs attrs)
|
|
{
|
|
MemoryRegion *mr;
|
|
hwaddr l, xlat;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = flatview_translate(uc, fv, addr, &xlat, &l, is_write, attrs);
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
l = memory_access_size(mr, l, addr);
|
|
if (!memory_region_access_valid(uc, mr, xlat, l, is_write, attrs)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
len -= l;
|
|
addr += l;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
|
|
hwaddr len, bool is_write,
|
|
MemTxAttrs attrs)
|
|
{
|
|
FlatView *fv;
|
|
bool result;
|
|
|
|
fv = address_space_to_flatview(as);
|
|
result = flatview_access_valid(as->uc, fv, addr, len, is_write, attrs);
|
|
return result;
|
|
}
|
|
|
|
static hwaddr
|
|
flatview_extend_translation(struct uc_struct *uc, FlatView *fv, hwaddr addr,
|
|
hwaddr target_len,
|
|
MemoryRegion *mr, hwaddr base, hwaddr len,
|
|
bool is_write, MemTxAttrs attrs)
|
|
{
|
|
hwaddr done = 0;
|
|
hwaddr xlat;
|
|
MemoryRegion *this_mr;
|
|
|
|
for (;;) {
|
|
target_len -= len;
|
|
addr += len;
|
|
done += len;
|
|
if (target_len == 0) {
|
|
return done;
|
|
}
|
|
|
|
len = target_len;
|
|
this_mr = flatview_translate(uc, fv, addr, &xlat,
|
|
&len, is_write, attrs);
|
|
if (this_mr != mr || xlat != base + done) {
|
|
return done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Map a physical memory region into a host virtual address.
|
|
* May map a subset of the requested range, given by and returned in *plen.
|
|
* May return NULL if resources needed to perform the mapping are exhausted.
|
|
* Use only for reads OR writes - not for read-modify-write operations.
|
|
* Use cpu_register_map_client() to know when retrying the map operation is
|
|
* likely to succeed.
|
|
*/
|
|
void *address_space_map(AddressSpace *as,
|
|
hwaddr addr,
|
|
hwaddr *plen,
|
|
bool is_write,
|
|
MemTxAttrs attrs)
|
|
{
|
|
hwaddr len = *plen;
|
|
hwaddr l, xlat;
|
|
MemoryRegion *mr;
|
|
void *ptr;
|
|
FlatView *fv;
|
|
struct uc_struct *uc = as->uc;
|
|
|
|
if (len == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
l = len;
|
|
fv = address_space_to_flatview(as);
|
|
mr = flatview_translate(uc, fv, addr, &xlat, &l, is_write, attrs);
|
|
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
/* Avoid unbounded allocations */
|
|
l = MIN(l, TARGET_PAGE_SIZE);
|
|
mr->uc->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
|
|
mr->uc->bounce.addr = addr;
|
|
mr->uc->bounce.len = l;
|
|
|
|
mr->uc->bounce.mr = mr;
|
|
if (!is_write) {
|
|
flatview_read(as->uc, fv, addr, MEMTXATTRS_UNSPECIFIED,
|
|
mr->uc->bounce.buffer, l);
|
|
}
|
|
|
|
*plen = l;
|
|
return mr->uc->bounce.buffer;
|
|
}
|
|
|
|
|
|
*plen = flatview_extend_translation(as->uc, fv, addr, len, mr, xlat,
|
|
l, is_write, attrs);
|
|
ptr = qemu_ram_ptr_length(as->uc, mr->ram_block, xlat, plen, true);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/* Unmaps a memory region previously mapped by address_space_map().
|
|
* Will also mark the memory as dirty if is_write is true. access_len gives
|
|
* the amount of memory that was actually read or written by the caller.
|
|
*/
|
|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
bool is_write, hwaddr access_len)
|
|
{
|
|
if (buffer != as->uc->bounce.buffer) {
|
|
MemoryRegion *mr;
|
|
ram_addr_t addr1;
|
|
|
|
mr = memory_region_from_host(as->uc, buffer, &addr1);
|
|
assert(mr != NULL);
|
|
if (is_write) {
|
|
invalidate_and_set_dirty(mr, addr1, access_len);
|
|
}
|
|
return;
|
|
}
|
|
if (is_write) {
|
|
address_space_write(as, as->uc->bounce.addr, MEMTXATTRS_UNSPECIFIED,
|
|
as->uc->bounce.buffer, access_len);
|
|
}
|
|
qemu_vfree(as->uc->bounce.buffer);
|
|
as->uc->bounce.buffer = NULL;
|
|
}
|
|
|
|
void *cpu_physical_memory_map(AddressSpace *as, hwaddr addr,
|
|
hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
return address_space_map(as, addr, plen, is_write,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
}
|
|
|
|
void cpu_physical_memory_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
bool is_write, hwaddr access_len)
|
|
{
|
|
address_space_unmap(as, buffer, len, is_write, access_len);
|
|
}
|
|
|
|
#define ARG1_DECL AddressSpace *as
|
|
#define ARG1 as
|
|
#ifdef UNICORN_ARCH_POSTFIX
|
|
#define SUFFIX UNICORN_ARCH_POSTFIX
|
|
#else
|
|
#define SUFFIX
|
|
#endif
|
|
#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
|
|
#include "memory_ldst.inc.c"
|
|
|
|
/* Called from RCU critical section. This function has the same
|
|
* semantics as address_space_translate, but it only works on a
|
|
* predefined range of a MemoryRegion that was mapped with
|
|
* address_space_cache_init.
|
|
*/
|
|
static inline MemoryRegion *address_space_translate_cached(
|
|
MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool is_write, MemTxAttrs attrs)
|
|
{
|
|
MemoryRegionSection section;
|
|
MemoryRegion *mr;
|
|
IOMMUMemoryRegion *iommu_mr;
|
|
AddressSpace *target_as;
|
|
|
|
assert(!cache->ptr);
|
|
*xlat = addr + cache->xlat;
|
|
|
|
mr = cache->mrs.mr;
|
|
iommu_mr = memory_region_get_iommu(mr);
|
|
if (!iommu_mr) {
|
|
/* MMIO region. */
|
|
return mr;
|
|
}
|
|
|
|
section = address_space_translate_iommu(iommu_mr, xlat, plen,
|
|
NULL, is_write, true,
|
|
&target_as, attrs);
|
|
return section.mr;
|
|
}
|
|
|
|
#define ARG1_DECL MemoryRegionCache *cache
|
|
#define ARG1 cache
|
|
#ifdef UNICORN_ARCH_POSTFIX
|
|
#define SUFFIX glue(_cached_slow, UNICORN_ARCH_POSTFIX)
|
|
#else
|
|
#define SUFFIX _cached_slow
|
|
#endif
|
|
#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
|
|
#include "memory_ldst.inc.c"
|
|
|
|
/* virtual memory access for debug (includes writing to ROM) */
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
void *ptr, target_ulong len, bool is_write)
|
|
{
|
|
#ifdef TARGET_ARM
|
|
struct uc_struct *uc = cpu->uc;
|
|
#endif
|
|
hwaddr phys_addr;
|
|
target_ulong l, page;
|
|
uint8_t *buf = ptr;
|
|
|
|
while (len > 0) {
|
|
int asidx;
|
|
MemTxAttrs attrs;
|
|
|
|
page = addr & TARGET_PAGE_MASK;
|
|
phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
|
|
asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
/* if no physical page mapped, return an error */
|
|
if (phys_addr == -1)
|
|
return -1;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
phys_addr += (addr & ~TARGET_PAGE_MASK);
|
|
if (is_write) {
|
|
address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
|
|
attrs, buf, l);
|
|
} else {
|
|
address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
|
|
l);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allows code that needs to deal with migration bitmaps etc to still be built
|
|
* target independent.
|
|
*/
|
|
size_t qemu_target_page_size(struct uc_struct *uc)
|
|
{
|
|
return TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
int qemu_target_page_bits(struct uc_struct *uc)
|
|
{
|
|
return TARGET_PAGE_BITS;
|
|
}
|
|
|
|
int qemu_target_page_bits_min(void)
|
|
{
|
|
return TARGET_PAGE_BITS_MIN;
|
|
}
|
|
|
|
bool target_words_bigendian(void)
|
|
{
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool cpu_physical_memory_is_io(AddressSpace *as, hwaddr phys_addr)
|
|
{
|
|
MemoryRegion*mr;
|
|
hwaddr l = 1;
|
|
bool res;
|
|
|
|
mr = address_space_translate(as,
|
|
phys_addr, &phys_addr, &l, false,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
|
|
res = !memory_region_is_ram(mr);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Unmap pages of memory from start to start+length such that
|
|
* they a) read as 0, b) Trigger whatever fault mechanism
|
|
* the OS provides for postcopy.
|
|
* The pages must be unmapped by the end of the function.
|
|
* Returns: 0 on success, none-0 on failure
|
|
*
|
|
*/
|
|
int ram_block_discard_range(struct uc_struct *uc, RAMBlock *rb, uint64_t start, size_t length)
|
|
{
|
|
int ret = -1;
|
|
|
|
uint8_t *host_startaddr = rb->host + start;
|
|
|
|
if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
|
|
//error_report("ram_block_discard_range: Unaligned start address: %p",
|
|
// host_startaddr);
|
|
goto err;
|
|
}
|
|
|
|
if ((start + length) <= rb->used_length) {
|
|
bool need_madvise;
|
|
if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
|
|
//error_report("ram_block_discard_range: Unaligned length: %zx",
|
|
// length);
|
|
goto err;
|
|
}
|
|
|
|
errno = ENOTSUP; /* If we are missing MADVISE etc */
|
|
|
|
/* The logic here is messy;
|
|
* madvise DONTNEED fails for hugepages
|
|
* fallocate works on hugepages and shmem
|
|
*/
|
|
need_madvise = (rb->page_size == uc->qemu_host_page_size);
|
|
if (need_madvise) {
|
|
/* For normal RAM this causes it to be unmapped,
|
|
* for shared memory it causes the local mapping to disappear
|
|
* and to fall back on the file contents (which we just
|
|
* fallocate'd away).
|
|
*/
|
|
#if defined(CONFIG_MADVISE)
|
|
ret = madvise(host_startaddr, length, MADV_DONTNEED);
|
|
if (ret) {
|
|
ret = -errno;
|
|
//error_report("ram_block_discard_range: Failed to discard range "
|
|
// "%s:%" PRIx64 " +%zx (%d)",
|
|
// rb->idstr, start, length, ret);
|
|
goto err;
|
|
}
|
|
#else
|
|
ret = -ENOSYS;
|
|
//error_report("ram_block_discard_range: MADVISE not available"
|
|
// "%s:%" PRIx64 " +%zx (%d)",
|
|
// rb->idstr, start, length, ret);
|
|
goto err;
|
|
#endif
|
|
}
|
|
} else {
|
|
//error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
|
|
// "/%zx/" RAM_ADDR_FMT")",
|
|
// rb->idstr, start, length, rb->used_length);
|
|
}
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
bool ramblock_is_pmem(RAMBlock *rb)
|
|
{
|
|
return rb->flags & RAM_PMEM;
|
|
}
|
|
|
|
void page_size_init(struct uc_struct *uc)
|
|
{
|
|
/* NOTE: we can always suppose that qemu_host_page_size >=
|
|
TARGET_PAGE_SIZE */
|
|
if (uc->qemu_host_page_size == 0) {
|
|
uc->qemu_host_page_size = uc->qemu_real_host_page_size;
|
|
}
|
|
if (uc->qemu_host_page_size < TARGET_PAGE_SIZE) {
|
|
uc->qemu_host_page_size = TARGET_PAGE_SIZE;
|
|
}
|
|
}
|