unicorn/tests/unit/test_mem_high.c

126 lines
4.2 KiB
C

/**
* Unicorn memory API tests
*
* This tests memory read/write and map/unmap functionality.
* One is necessary for doing the other.
*/
#include "unicorn_test.h"
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
/* Called before every test to set up a new instance */
static int setup(void **state)
{
uc_engine *uc;
uc_assert_success(uc_open(UC_ARCH_X86, UC_MODE_64, &uc));
*state = uc;
return 0;
}
/* Called after every test to clean up */
static int teardown(void **state)
{
uc_engine *uc = *state;
uc_assert_success(uc_close(uc));
*state = NULL;
return 0;
}
/******************************************************************************/
// mapping the last pages will silently fail
static void test_last_page_map(void **state)
{
uc_engine *uc = *state;
uint8_t writebuf[0x10];
memset(writebuf, 0xCC, sizeof(writebuf));
const uint64_t mem_len = 0x1000;
const uint64_t last_page = 0xfffffffffffff000;
uc_assert_success(uc_mem_map(uc, last_page, mem_len, UC_PROT_NONE));
uc_assert_success(uc_mem_write(uc, last_page, writebuf, sizeof(writebuf)));
}
// segfaults with NULL-deref (caused by UC_PROT_NONE)
static void test_nullptr_deref_wrong_perms(void **state){
uc_engine *uc = *state;
const uint64_t base_addr = 0x400000;
uc_assert_success(uc_mem_map(uc, base_addr, 4096, UC_PROT_NONE));
uc_emu_start(uc, base_addr, base_addr + 1, 0, 0);
}
static int number_of_memory_reads = 0;
static void hook_mem64(uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value, void *user_data)
{
number_of_memory_reads += 1;
printf(">>> Memory is being accessed at 0x%"PRIx64 ", data size = %u\n", address, size);
}
//if a read is performed from a big address whith a non-zero last digit, multiple read events are triggered
static void test_high_address_reads(void **state)
{
uc_engine *uc = *state;
uc_hook trace2;
uint64_t addr = 0x0010000000000001;
//addr = 0x0010000000000000; // uncomment to fix wrong? behaviour
//addr = 90000000; // uncomment to fix wrong? behaviour
//
uc_mem_map(uc, addr-(addr%4096), 4096*2, UC_PROT_ALL);
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &addr));
const uint64_t base_addr = 0x40000;
uint8_t code[] = {0x48,0x8b,0x00,0x90,0x90,0x90,0x90}; // mov rax, [rax], nops
uc_assert_success(uc_mem_map(uc, base_addr, 4096, UC_PROT_ALL));
uc_assert_success(uc_mem_write(uc, base_addr, code, 7));
uc_assert_success(uc_hook_add(uc, &trace2, UC_HOOK_MEM_READ, hook_mem64, NULL, 1, 0));
uc_assert_success(uc_emu_start(uc, base_addr, base_addr + 3, 0, 0));
if(number_of_memory_reads != 1) {
fail_msg("wrong number of memory reads for instruction %i", number_of_memory_reads);
}
}
//if a read is performed from a big address whith a non-zero last digit, 0 will be read
static void test_high_address_read_values(void **state)
{
uc_engine *uc = *state;
uint64_t addr = 0x0010000000000001;
//addr = 0x000ffffffffffff8; // uncomment to fix wrong behaviour
//addr = 90000000; // uncomment to fix wrong behaviour
//
uint8_t content[] = {0x42,0x42,0x42,0x42, 0x42,0x42,0x42,0x42};
uc_assert_success(uc_mem_map(uc, addr-(addr%4096), 4096*2, UC_PROT_ALL));
uc_assert_success(uc_mem_write(uc, addr, content, 8));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &addr));
const uint64_t base_addr = 0x40000;
uint8_t code[] = {0x48,0x8b,0x00,0x90,0x90,0x90,0x90}; // mov rax, [rax], nops
uc_assert_success(uc_mem_map(uc, base_addr, 4096, UC_PROT_ALL));
uc_assert_success(uc_mem_write(uc, base_addr, code, 7));
uc_assert_success(uc_emu_start(uc, base_addr, base_addr + 3, 0, 0));
uint64_t rax = 0;
uc_assert_success(uc_reg_read(uc, UC_X86_REG_RAX, &rax));
if(rax != 0x4242424242424242) {
fail_msg("wrong memory read from code %"PRIx64, rax);
}
}
int main(void) {
#define test(x) cmocka_unit_test_setup_teardown(x, setup, teardown)
const struct CMUnitTest tests[] = {
test(test_last_page_map),
test(test_high_address_reads),
test(test_high_address_read_values),
test(test_nullptr_deref_wrong_perms),
};
#undef test
return cmocka_run_group_tests(tests, NULL, NULL);
}