unicorn/uc.c

980 lines
27 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996)
#endif
#if defined(UNICORN_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#endif
#include <time.h> // nanosleep
#include <string.h>
#ifndef _WIN32
#include <sys/mman.h>
#endif
#include "uc_priv.h"
#include "hook.h"
// target specific headers
#include "qemu/target-m68k/unicorn.h"
#include "qemu/target-i386/unicorn.h"
#include "qemu/target-arm/unicorn.h"
#include "qemu/target-mips/unicorn.h"
#include "qemu/target-sparc/unicorn.h"
#include "qemu/include/hw/boards.h"
UNICORN_EXPORT
unsigned int uc_version(unsigned int *major, unsigned int *minor)
{
if (major != NULL && minor != NULL) {
*major = UC_API_MAJOR;
*minor = UC_API_MINOR;
}
return (UC_API_MAJOR << 8) + UC_API_MINOR;
}
UNICORN_EXPORT
uc_err uc_errno(uc_engine *uc)
{
return uc->errnum;
}
UNICORN_EXPORT
const char *uc_strerror(uc_err code)
{
switch(code) {
default:
return "Unknown error code";
case UC_ERR_OK:
return "OK (UC_ERR_OK)";
case UC_ERR_NOMEM:
return "No memory available or memory not present (UC_ERR_NOMEM)";
case UC_ERR_ARCH:
return "Invalid/unsupported architecture(UC_ERR_ARCH)";
case UC_ERR_HANDLE:
return "Invalid handle (UC_ERR_HANDLE)";
case UC_ERR_MODE:
return "Invalid mode (UC_ERR_MODE)";
case UC_ERR_VERSION:
return "Different API version between core & binding (UC_ERR_VERSION)";
case UC_ERR_READ_INVALID:
return "Invalid memory read (UC_ERR_READ_INVALID)";
case UC_ERR_WRITE_INVALID:
return "Invalid memory write (UC_ERR_WRITE_INVALID)";
case UC_ERR_FETCH_INVALID:
return "Invalid memory fetch (UC_ERR_FETCH_INVALID)";
case UC_ERR_CODE_INVALID:
return "Invalid code address (UC_ERR_CODE_INVALID)";
case UC_ERR_HOOK:
return "Invalid hook type (UC_ERR_HOOK)";
case UC_ERR_INSN_INVALID:
return "Invalid instruction (UC_ERR_INSN_INVALID)";
case UC_ERR_MAP:
return "Invalid memory mapping (UC_ERR_MAP)";
case UC_ERR_WRITE_PROT:
return "Write to write-protected memory (UC_ERR_WRITE_PROT)";
case UC_ERR_READ_PROT:
return "Read from non-readable memory (UC_ERR_READ_PROT)";
case UC_ERR_EXEC_PROT:
return "Fetch from non-executable memory (UC_ERR_EXEC_PROT)";
case UC_ERR_INVAL:
return "Invalid argumet (UC_ERR_INVAL)";
case UC_ERR_READ_UNALIGNED:
return "Read from unaligned memory (UC_ERR_READ_UNALIGNED)";
case UC_ERR_WRITE_UNALIGNED:
return "Write to unaligned memory (UC_ERR_WRITE_UNALIGNED)";
case UC_ERR_FETCH_UNALIGNED:
return "Fetch from unaligned memory (UC_ERR_FETCH_UNALIGNED)";
}
}
UNICORN_EXPORT
bool uc_arch_supported(uc_arch arch)
{
switch (arch) {
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM: return true;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64: return true;
#endif
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K: return true;
#endif
#ifdef UNICORN_HAS_MIPS
case UC_ARCH_MIPS: return true;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC: return true;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC: return true;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86: return true;
#endif
/* Invalid or disabled arch */
default: return false;
}
}
UNICORN_EXPORT
uc_err uc_open(uc_arch arch, uc_mode mode, uc_engine **result)
{
struct uc_struct *uc;
if (arch < UC_ARCH_MAX) {
uc = calloc(1, sizeof(*uc));
if (!uc) {
// memory insufficient
return UC_ERR_NOMEM;
}
uc->errnum = UC_ERR_OK;
uc->arch = arch;
uc->mode = mode;
// uc->cpus = QTAILQ_HEAD_INITIALIZER(uc->cpus);
uc->cpus.tqh_first = NULL;
uc->cpus.tqh_last = &(uc->cpus.tqh_first);
// uc->ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
uc->ram_list.blocks.tqh_first = NULL;
uc->ram_list.blocks.tqh_last = &(uc->ram_list.blocks.tqh_first);
uc->x86_global_cpu_lock = SPIN_LOCK_UNLOCKED;
uc->memory_listeners.tqh_first = NULL;
uc->memory_listeners.tqh_last = &uc->memory_listeners.tqh_first;
uc->address_spaces.tqh_first = NULL;
uc->address_spaces.tqh_last = &uc->address_spaces.tqh_first;
switch(arch) {
default:
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
uc->init_arch = m68k_uc_init;
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
uc->init_arch = x86_uc_init;
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
uc->init_arch = arm_uc_init;
// verify mode
if (mode != UC_MODE_ARM && mode != UC_MODE_THUMB) {
free(uc);
return UC_ERR_MODE;
}
if (mode == UC_MODE_THUMB)
uc->thumb = 1;
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
uc->init_arch = arm64_uc_init;
break;
#endif
#if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL)
case UC_ARCH_MIPS:
if (mode & UC_MODE_BIG_ENDIAN) {
#ifdef UNICORN_HAS_MIPS
if (mode & UC_MODE_MIPS32)
uc->init_arch = mips_uc_init;
#endif
#ifdef UNICORN_HAS_MIPS64
if (mode & UC_MODE_MIPS64)
uc->init_arch = mips64_uc_init;
#endif
} else { // little endian
#ifdef UNICORN_HAS_MIPSEL
if (mode & UC_MODE_MIPS32)
uc->init_arch = mipsel_uc_init;
#endif
#ifdef UNICORN_HAS_MIPS64EL
if (mode & UC_MODE_MIPS64)
uc->init_arch = mips64el_uc_init;
#endif
}
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
if (mode & UC_MODE_64)
uc->init_arch = sparc64_uc_init;
else
uc->init_arch = sparc_uc_init;
break;
#endif
}
if (uc->init_arch == NULL) {
return UC_ERR_ARCH;
}
machine_initialize(uc);
*result = uc;
if (uc->reg_reset)
uc->reg_reset(uc);
uc->hook_size = HOOK_SIZE;
uc->hook_callbacks = calloc(1, sizeof(uc->hook_callbacks[0]) * HOOK_SIZE);
return UC_ERR_OK;
} else {
return UC_ERR_ARCH;
}
}
UNICORN_EXPORT
uc_err uc_close(uc_engine *uc)
{
if (uc->release)
uc->release(uc->tcg_ctx);
#ifndef _WIN32
free(uc->l1_map);
#endif
if (uc->bounce.buffer) {
free(uc->bounce.buffer);
}
g_free(uc->tcg_ctx);
free((void*) uc->system_memory->name);
g_free(uc->system_memory);
g_hash_table_destroy(uc->type_table);
int i;
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
free(uc->ram_list.dirty_memory[i]);
}
// TODO: remove uc->root (created with object_new())
uc->root->free(uc->root);
free(uc->hook_callbacks);
free(uc->mapped_blocks);
// finally, free uc itself.
memset(uc, 0, sizeof(*uc));
free(uc);
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_read(uc_engine *uc, int regid, void *value)
{
if (uc->reg_read)
uc->reg_read(uc, regid, value);
else
return -1; // FIXME: need a proper uc_err
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_write(uc_engine *uc, int regid, const void *value)
{
if (uc->reg_write)
uc->reg_write(uc, regid, value);
else
return -1; // FIXME: need a proper uc_err
return UC_ERR_OK;
}
// check if a memory area is mapped
// this is complicated because an area can overlap adjacent blocks
static bool check_mem_area(uc_engine *uc, uint64_t address, size_t size)
{
size_t count = 0, len;
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = MIN(size - count, mr->end - address);
count += len;
address += len;
} else // this address is not mapped in yet
break;
}
return (count == size);
}
UNICORN_EXPORT
uc_err uc_mem_read(uc_engine *uc, uint64_t address, void *_bytes, size_t size)
{
uint8_t *bytes = _bytes;
if (!check_mem_area(uc, address, size))
return UC_ERR_READ_INVALID;
size_t count = 0, len;
// memory area can overlap adjacent memory blocks
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = MIN(size - count, mr->end - address);
if (uc->read_mem(&uc->as, address, bytes, len) == false)
break;
count += len;
address += len;
bytes += len;
} else // this address is not mapped in yet
break;
}
if (count == size)
return UC_ERR_OK;
else
return UC_ERR_READ_INVALID;
}
UNICORN_EXPORT
uc_err uc_mem_write(uc_engine *uc, uint64_t address, const void *_bytes, size_t size)
{
const uint8_t *bytes = _bytes;
if (!check_mem_area(uc, address, size))
return UC_ERR_WRITE_INVALID;
size_t count = 0, len;
// memory area can overlap adjacent memory blocks
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
uint32_t operms = mr->perms;
if (!(operms & UC_PROT_WRITE)) // write protected
// but this is not the program accessing memory, so temporarily mark writable
uc->readonly_mem(mr, false);
len = MIN(size - count, mr->end - address);
if (uc->write_mem(&uc->as, address, bytes, len) == false)
break;
if (!(operms & UC_PROT_WRITE)) // write protected
// now write protect it again
uc->readonly_mem(mr, true);
count += len;
address += len;
bytes += len;
} else // this address is not mapped in yet
break;
}
if (count == size)
return UC_ERR_OK;
else
return UC_ERR_WRITE_INVALID;
}
#define TIMEOUT_STEP 2 // microseconds
static void *_timeout_fn(void *arg)
{
struct uc_struct *uc = arg;
int64_t current_time = get_clock();
do {
usleep(TIMEOUT_STEP);
// perhaps emulation is even done before timeout?
if (uc->emulation_done)
break;
} while(get_clock() - current_time < uc->timeout);
// timeout before emulation is done?
if (!uc->emulation_done) {
// force emulation to stop
uc_emu_stop(uc);
}
return NULL;
}
static void enable_emu_timer(uc_engine *uc, uint64_t timeout)
{
uc->timeout = timeout;
qemu_thread_create(uc, &uc->timer, "timeout", _timeout_fn,
uc, QEMU_THREAD_JOINABLE);
}
UNICORN_EXPORT
uc_err uc_emu_start(uc_engine* uc, uint64_t begin, uint64_t until, uint64_t timeout, size_t count)
{
// reset the counter
uc->emu_counter = 0;
uc->stop_request = false;
uc->invalid_error = UC_ERR_OK;
uc->block_full = false;
uc->emulation_done = false;
switch(uc->arch) {
default:
break;
case UC_ARCH_M68K:
uc_reg_write(uc, UC_M68K_REG_PC, &begin);
break;
case UC_ARCH_X86:
switch(uc->mode) {
default:
break;
case UC_MODE_16:
uc_reg_write(uc, UC_X86_REG_IP, &begin);
break;
case UC_MODE_32:
uc_reg_write(uc, UC_X86_REG_EIP, &begin);
break;
case UC_MODE_64:
uc_reg_write(uc, UC_X86_REG_RIP, &begin);
break;
}
break;
case UC_ARCH_ARM:
switch(uc->mode) {
default:
break;
case UC_MODE_THUMB:
case UC_MODE_ARM:
uc_reg_write(uc, UC_ARM_REG_R15, &begin);
break;
}
break;
case UC_ARCH_ARM64:
uc_reg_write(uc, UC_ARM64_REG_PC, &begin);
break;
case UC_ARCH_MIPS:
// TODO: MIPS32/MIPS64/BIGENDIAN etc
uc_reg_write(uc, UC_MIPS_REG_PC, &begin);
break;
case UC_ARCH_SPARC:
// TODO: Sparc/Sparc64
uc_reg_write(uc, UC_SPARC_REG_PC, &begin);
break;
}
uc->emu_count = count;
if (count > 0) {
uc->hook_insn = true;
}
uc->addr_end = until;
uc->vm_start(uc);
if (timeout)
enable_emu_timer(uc, timeout * 1000); // microseconds -> nanoseconds
uc->pause_all_vcpus(uc);
// emulation is done
uc->emulation_done = true;
if (timeout) {
// wait for the timer to finish
qemu_thread_join(&uc->timer);
}
return uc->invalid_error;
}
UNICORN_EXPORT
uc_err uc_emu_stop(uc_engine *uc)
{
if (uc->emulation_done)
return UC_ERR_OK;
uc->stop_request = true;
// exit the current TB
cpu_exit(uc->current_cpu);
return UC_ERR_OK;
}
static int _hook_code(uc_engine *uc, int type, uint64_t begin, uint64_t end,
void *callback, void *user_data, uc_hook *hh)
{
int i;
i = hook_add(uc, type, begin, end, callback, user_data);
if (i == 0)
return UC_ERR_NOMEM; // FIXME
*hh = i;
return UC_ERR_OK;
}
static uc_err _hook_mem_access(uc_engine *uc, uc_hook_type type,
uint64_t begin, uint64_t end,
void *callback, void *user_data, uc_hook *hh)
{
int i;
i = hook_add(uc, type, begin, end, callback, user_data);
if (i == 0)
return UC_ERR_NOMEM; // FIXME
*hh = i;
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms)
{
MemoryRegion **regions;
if (size == 0)
// invalid memory mapping
return UC_ERR_INVAL;
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0)
return UC_ERR_INVAL;
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0)
return UC_ERR_INVAL;
// check for only valid permissions
if ((perms & ~UC_PROT_ALL) != 0)
return UC_ERR_INVAL;
if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { //time to grow
regions = (MemoryRegion**)realloc(uc->mapped_blocks,
sizeof(MemoryRegion*) * (uc->mapped_block_count + MEM_BLOCK_INCR));
if (regions == NULL) {
return UC_ERR_NOMEM;
}
uc->mapped_blocks = regions;
}
uc->mapped_blocks[uc->mapped_block_count] = uc->memory_map(uc, address, size, perms);
uc->mapped_block_count++;
return UC_ERR_OK;
}
// Create a backup copy of the indicated MemoryRegion.
// Generally used in prepartion for splitting a MemoryRegion.
static uint8_t *copy_region(struct uc_struct *uc, MemoryRegion *mr)
{
uint8_t *block = (uint8_t *)malloc(int128_get64(mr->size));
if (block != NULL) {
uc_err err = uc_mem_read(uc, mr->addr, block, int128_get64(mr->size));
if (err != UC_ERR_OK) {
free(block);
block = NULL;
}
}
return block;
}
/*
Split the given MemoryRegion at the indicated address for the indicated size
this may result in the create of up to 3 spanning sections. If the delete
parameter is true, the no new section will be created to replace the indicate
range. This functions exists to support uc_mem_protect and uc_mem_unmap.
This is a static function and callers have already done some preliminary
parameter validation.
The do_delete argument indicates that we are being called to support
uc_mem_unmap. In this case we save some time by choosing NOT to remap
the areas that are intended to get unmapped
*/
// TODO: investigate whether qemu region manipulation functions already offered
// this capability
static bool split_region(struct uc_struct *uc, MemoryRegion *mr, uint64_t address,
size_t size, bool do_delete)
{
uint8_t *backup;
uint32_t perms;
uint64_t begin, end, chunk_end;
size_t l_size, m_size, r_size;
chunk_end = address + size;
// if this region belongs to area [address, address+size],
// then there is no work to do.
if (address <= mr->addr && chunk_end >= mr->end)
return true;
if (size == 0)
// trivial case
return true;
if (address >= mr->end || chunk_end <= mr->addr)
// impossible case
return false;
backup = copy_region(uc, mr);
if (backup == NULL)
return false;
// save the essential information required for the split before mr gets deleted
perms = mr->perms;
begin = mr->addr;
end = mr->end;
// unmap this region first, then do split it later
if (uc_mem_unmap(uc, mr->addr, int128_get64(mr->size)) != UC_ERR_OK)
goto error;
/* overlapping cases
* |------mr------|
* case 1 |---size--|
* case 2 |--size--|
* case 3 |---size--|
*/
// adjust some things
if (address < begin)
address = begin;
if (chunk_end > end)
chunk_end = end;
// compute sub region sizes
l_size = (size_t)(address - begin);
r_size = (size_t)(end - chunk_end);
m_size = (size_t)(chunk_end - address);
// If there are error in any of the below operations, things are too far gone
// at that point to recover. Could try to remap orignal region, but these smaller
// allocation just failed so no guarantee that we can recover the original
// allocation at this point
if (l_size > 0) {
if (uc_mem_map(uc, begin, l_size, perms) != UC_ERR_OK)
goto error;
if (uc_mem_write(uc, begin, backup, l_size) != UC_ERR_OK)
goto error;
}
if (m_size > 0 && !do_delete) {
if (uc_mem_map(uc, address, m_size, perms) != UC_ERR_OK)
goto error;
if (uc_mem_write(uc, address, backup + l_size, m_size) != UC_ERR_OK)
goto error;
}
if (r_size > 0) {
if (uc_mem_map(uc, chunk_end, r_size, perms) != UC_ERR_OK)
goto error;
if (uc_mem_write(uc, chunk_end, backup + l_size + m_size, r_size) != UC_ERR_OK)
goto error;
}
return true;
error:
free(backup);
return false;
}
UNICORN_EXPORT
uc_err uc_mem_protect(struct uc_struct *uc, uint64_t address, size_t size, uint32_t perms)
{
MemoryRegion *mr;
uint64_t addr = address;
size_t count, len;
if (size == 0)
// trivial case, no change
return UC_ERR_OK;
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0)
return UC_ERR_INVAL;
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0)
return UC_ERR_INVAL;
// check for only valid permissions
if ((perms & ~UC_PROT_ALL) != 0)
return UC_ERR_INVAL;
// check that user's entire requested block is mapped
if (!check_mem_area(uc, address, size))
return UC_ERR_NOMEM;
// Now we know entire region is mapped, so change permissions
// We may need to split regions if this area spans adjacent regions
addr = address;
count = 0;
while(count < size) {
mr = memory_mapping(uc, addr);
len = MIN(size - count, mr->end - addr);
if (!split_region(uc, mr, addr, len, false))
return UC_ERR_NOMEM;
mr = memory_mapping(uc, addr);
mr->perms = perms;
uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0);
count += len;
addr += len;
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_unmap(struct uc_struct *uc, uint64_t address, size_t size)
{
MemoryRegion *mr;
uint64_t addr;
size_t count, len;
if (size == 0)
// nothing to unmap
return UC_ERR_OK;
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0)
return UC_ERR_INVAL;
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0)
return UC_ERR_MAP;
// check that user's entire requested block is mapped
if (!check_mem_area(uc, address, size))
return UC_ERR_NOMEM;
// Now we know entire region is mapped, so do the unmap
// We may need to split regions if this area spans adjacent regions
addr = address;
count = 0;
while(count < size) {
mr = memory_mapping(uc, addr);
len = MIN(size - count, mr->end - addr);
if (!split_region(uc, mr, addr, len, true))
return UC_ERR_NOMEM;
// if we can retrieve the mapping, then no splitting took place
// so unmap here
mr = memory_mapping(uc, addr);
if (mr != NULL)
uc->memory_unmap(uc, mr);
count += len;
addr += len;
}
return UC_ERR_OK;
}
MemoryRegion *memory_mapping(struct uc_struct* uc, uint64_t address)
{
unsigned int i;
// try with the cache index first
i = uc->mapped_block_cache_index;
if (address >= uc->mapped_blocks[i]->addr && address < uc->mapped_blocks[i]->end)
return uc->mapped_blocks[i];
for(i = 0; i < uc->mapped_block_count; i++) {
if (address >= uc->mapped_blocks[i]->addr && address < uc->mapped_blocks[i]->end) {
// cache this index for the next query
uc->mapped_block_cache_index = i;
return uc->mapped_blocks[i];
}
}
// not found
return NULL;
}
static uc_err _hook_mem_invalid(struct uc_struct* uc, uc_cb_eventmem_t callback,
void *user_data, uc_hook *evh)
{
size_t i;
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_mem_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_NOMEM;
}
static uc_err _hook_intr(struct uc_struct* uc, void *callback,
void *user_data, uc_hook *evh)
{
size_t i;
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_intr_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_NOMEM;
}
static uc_err _hook_insn(struct uc_struct *uc, unsigned int insn_id, void *callback,
void *user_data, uc_hook *evh)
{
size_t i;
switch(uc->arch) {
default: break;
case UC_ARCH_X86:
switch(insn_id) {
default: break;
case UC_X86_INS_OUT:
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_out_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_NOMEM;
case UC_X86_INS_IN:
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_in_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_NOMEM;
case UC_X86_INS_SYSCALL:
case UC_X86_INS_SYSENTER:
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_syscall_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_NOMEM;
}
break;
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_hook_add(uc_engine *uc, uc_hook *hh, uc_hook_type type, void *callback, void *user_data, ...)
{
va_list valist;
int ret = UC_ERR_OK;
int id;
uint64_t begin, end;
va_start(valist, user_data);
switch(type) {
default:
ret = UC_ERR_HOOK;
break;
case UC_HOOK_INTR:
ret = _hook_intr(uc, callback, user_data, hh);
break;
case UC_HOOK_INSN:
id = va_arg(valist, int);
ret = _hook_insn(uc, id, callback, user_data, hh);
break;
case UC_HOOK_CODE:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_code(uc, UC_HOOK_CODE, begin, end, callback, user_data, hh);
break;
case UC_HOOK_BLOCK:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_code(uc, UC_HOOK_BLOCK, begin, end, callback, user_data, hh);
break;
case UC_HOOK_MEM_INVALID:
ret = _hook_mem_invalid(uc, callback, user_data, hh);
break;
case UC_HOOK_MEM_READ:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_mem_access(uc, UC_HOOK_MEM_READ, begin, end, callback, user_data, hh);
break;
case UC_HOOK_MEM_WRITE:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_mem_access(uc, UC_HOOK_MEM_WRITE, begin, end, callback, user_data, hh);
break;
case UC_HOOK_MEM_READ_WRITE:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_mem_access(uc, UC_HOOK_MEM_READ_WRITE, begin, end, callback, user_data, hh);
break;
}
va_end(valist);
return ret;
}
UNICORN_EXPORT
uc_err uc_hook_del(uc_engine *uc, uc_hook hh)
{
return hook_del(uc, hh);
}