unicorn/qemu/softmmu/memory.c
Takacs, Philipp df18756234 implement uc_mem_unmap with snapshots
still has todos and need tests
2023-07-11 11:51:44 +02:00

1473 lines
45 KiB
C

/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/memory.h"
#include "qemu/bitops.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "sysemu/tcg.h"
#include "exec/exec-all.h"
#include "uc_priv.h"
//#define DEBUG_UNASSIGNED
void memory_region_transaction_begin(void);
void memory_region_transaction_commit(MemoryRegion *mr);
typedef struct AddrRange AddrRange;
/*
* Note that signed integers are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
// Unicorn engine
MemoryRegion *memory_map(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms)
{
MemoryRegion *ram = g_new(MemoryRegion, 1);
memory_region_init_ram(uc, ram, size, perms);
if (ram->addr == -1 || !ram->ram_block) {
// out of memory
g_free(ram);
return NULL;
}
memory_region_add_subregion_overlap(uc->system_memory, begin, ram, uc->snapshot_level);
if (uc->cpu) {
tlb_flush(uc->cpu);
}
return ram;
}
MemoryRegion *memory_map_ptr(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms, void *ptr)
{
MemoryRegion *ram = g_new(MemoryRegion, 1);
memory_region_init_ram_ptr(uc, ram, size, ptr);
ram->perms = perms;
if (ram->addr == -1 || !ram->ram_block) {
// out of memory
g_free(ram);
return NULL;
}
memory_region_add_subregion(uc->system_memory, begin, ram);
if (uc->cpu) {
tlb_flush(uc->cpu);
}
return ram;
}
static void make_contained(struct uc_struct *uc, MemoryRegion *current)
{
hwaddr addr = current->addr;
MemoryRegion *container = g_new(MemoryRegion, 1);
memory_region_init(uc, container, int128_get64(current->size));
memory_region_del_subregion(uc->system_memory, current);
memory_region_add_subregion_overlap(container, 0, current, current->priority);
memory_region_add_subregion(uc->system_memory, addr, container);
}
MemoryRegion *memory_cow(struct uc_struct *uc, MemoryRegion *current, hwaddr begin, size_t size)
{
hwaddr offset;
hwaddr current_offset;
MemoryRegion *ram = g_new(MemoryRegion, 1);
if (current->container == uc->system_memory) {
make_contained(uc, current);
}
offset = begin - current->container->addr;;
current_offset = offset - current->addr;
memory_region_init_ram(uc, ram, size, current->perms);
if (ram->addr == -1 || !ram->ram_block) {
g_free(ram);
return NULL;
}
memory_region_transaction_begin();
memcpy(ramblock_ptr(ram->ram_block, 0), ramblock_ptr(current->ram_block, current_offset), size);
memory_region_add_subregion_overlap(current->container, offset, ram, uc->snapshot_level);
if (uc->cpu) {
tlb_flush(uc->cpu);
}
uc->memory_region_update_pending = true;
memory_region_transaction_commit(ram);
return ram;
}
static uint64_t mmio_read_wrapper(struct uc_struct *uc, void *opaque, hwaddr addr, unsigned size)
{
mmio_cbs* cbs = (mmio_cbs*)opaque;
// We have to care about 32bit target.
addr = addr & ( (target_ulong)(-1) );
if (cbs->read) {
return cbs->read(uc, addr, size, cbs->user_data_read);
} else {
return 0;
}
}
static void mmio_write_wrapper(struct uc_struct *uc, void *opaque, hwaddr addr, uint64_t data, unsigned size)
{
mmio_cbs* cbs = (mmio_cbs*)opaque;
// We have to care about 32bit target.
addr = addr & ( (target_ulong)(-1) );
if (cbs->write) {
cbs->write(uc, addr, size, data, cbs->user_data_write);
}
}
static void mmio_region_destructor_uc(MemoryRegion *mr)
{
g_free(mr->opaque);
}
MemoryRegion *memory_map_io(struct uc_struct *uc, ram_addr_t begin, size_t size,
uc_cb_mmio_read_t read_cb, uc_cb_mmio_write_t write_cb,
void *user_data_read, void *user_data_write)
{
MemoryRegion *mmio = g_new(MemoryRegion, 1);
mmio_cbs* opaques = g_new(mmio_cbs, 1);
MemoryRegionOps *ops = &opaques->ops;
opaques->read = read_cb;
opaques->write = write_cb;
opaques->user_data_read = user_data_read;
opaques->user_data_write = user_data_write;
memset(ops, 0, sizeof(*ops));
ops->read = mmio_read_wrapper;
ops->read_with_attrs = NULL;
ops->write = mmio_write_wrapper;
ops->write_with_attrs = NULL;
ops->endianness = DEVICE_NATIVE_ENDIAN;
memory_region_init_io(uc, mmio, ops, opaques, size);
mmio->destructor = mmio_region_destructor_uc;
mmio->perms = 0;
if (read_cb)
mmio->perms |= UC_PROT_READ;
if (write_cb)
mmio->perms |= UC_PROT_WRITE;
memory_region_add_subregion(uc->system_memory, begin, mmio);
if (uc->cpu)
tlb_flush(uc->cpu);
return mmio;
}
void memory_region_filter_subregions(MemoryRegion *mr, int32_t level)
{
MemoryRegion *subregion, *subregion_next;
memory_region_transaction_begin();
QTAILQ_FOREACH_SAFE(subregion, &mr->subregions, subregions_link, subregion_next) {
if (subregion->priority >= level) {
memory_region_del_subregion(mr, subregion);
subregion->destructor(subregion);
g_free(subregion);
mr->uc->memory_region_update_pending = true;
}
}
memory_region_transaction_commit(mr);
}
static void memory_region_remove_mapped_block(struct uc_struct *uc, MemoryRegion *mr, bool free)
{
size_t i;
for (i = 0; i < uc->mapped_block_count; i++) {
if (uc->mapped_blocks[i] == mr) {
uc->mapped_block_count--;
//shift remainder of array down over deleted pointer
memmove(&uc->mapped_blocks[i], &uc->mapped_blocks[i + 1], sizeof(MemoryRegion*) * (uc->mapped_block_count - i));
if (free) {
mr->destructor(mr);
g_free(mr);
}
break;
}
}
}
void memory_moveout(struct uc_struct *uc, MemoryRegion *mr)
{
hwaddr addr;
/* A bit dirty, but it works.
* The first subregion will be the one with the smalest priority.
* In case of CoW this will always be the region which is mapped initial and later be moved in the subregion of the container.
* The initial subregion is the one stored in mapped_blocks
* Because CoW is done after the snapshot level is increased there is only on subregion with
*/
memory_region_transaction_begin();
MemoryRegion *mr_block = QTAILQ_FIRST(&mr->subregions);
if (!mr_block) {
mr_block = mr;
}
if (uc->cpu) {
// We also need to remove all tb cache
uc->uc_invalidate_tb(uc, mr->addr, int128_get64(mr->size));
// Make sure all pages associated with the MemoryRegion are flushed
// Only need to do this if we are in a running state
for (addr = mr->addr; (int64_t)(mr->end - addr) > 0; addr += uc->target_page_size) {
tlb_flush_page(uc->cpu, addr);
}
}
memory_region_del_subregion(uc->system_memory, mr);
g_array_append_val(uc->unmapped_regions, mr);
memory_region_remove_mapped_block(uc, mr_block, false);
uc->memory_region_update_pending = true;
memory_region_transaction_commit(uc->system_memory);
/* dirty hack to save the snapshot level */
mr->container = (void *)(intptr_t)uc->snapshot_level;
}
void memory_movein(struct uc_struct *uc, MemoryRegion *mr)
{
memory_region_transaction_begin();
memory_region_add_subregion_overlap(uc->system_memory, mr->addr, mr, mr->priority);
uc->memory_region_update_pending = true;
memory_region_transaction_commit(uc->system_memory);
}
void memory_unmap(struct uc_struct *uc, MemoryRegion *mr)
{
hwaddr addr;
if (uc->cpu) {
// We also need to remove all tb cache
uc->uc_invalidate_tb(uc, mr->addr, int128_get64(mr->size));
// Make sure all pages associated with the MemoryRegion are flushed
// Only need to do this if we are in a running state
for (addr = mr->addr; (int64_t)(mr->end - addr) > 0; addr += uc->target_page_size) {
tlb_flush_page(uc->cpu, addr);
}
}
memory_region_del_subregion(uc->system_memory, mr);
memory_region_remove_mapped_block(uc, mr, true);
}
int memory_free(struct uc_struct *uc)
{
MemoryRegion *subregion, *subregion_next;
MemoryRegion *mr = uc->system_memory;
QTAILQ_FOREACH_SAFE(subregion, &mr->subregions, subregions_link, subregion_next) {
subregion->enabled = false;
memory_region_del_subregion(uc->system_memory, subregion);
subregion->destructor(subregion);
/* destroy subregion */
g_free(subregion);
}
return 0;
}
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
#define MEMORY_LISTENER_CALL_GLOBAL(uc, _callback, _direction) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &uc->memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &uc->memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
/* No need to ref/unref .mr, the FlatRange keeps it alive. */
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
do { \
MemoryRegionSection mrs = section_from_flat_range(fr, \
address_space_to_flatview(as)); \
MEMORY_LISTENER_CALL(as, callback, dir, &mrs); \
} while(0)
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
hwaddr offset_in_region;
AddrRange addr;
bool readonly;
};
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static inline MemoryRegionSection
section_from_flat_range(FlatRange *fr, FlatView *fv)
{
return (MemoryRegionSection) {
.mr = fr->mr,
.fv = fv,
.offset_within_region = fr->offset_in_region,
.size = fr->addr.size,
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
};
}
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->readonly == b->readonly;
}
static FlatView *flatview_new(MemoryRegion *mr_root)
{
FlatView *view;
view = g_new0(FlatView, 1);
view->ref = 1;
view->root = mr_root;
return view;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
++view->nr;
}
static inline void flatview_ref(FlatView *view)
{
view->ref++;
}
static void flatview_destroy(FlatView *view)
{
if (view->dispatch) {
address_space_dispatch_free(view->dispatch);
}
g_free(view->ranges);
g_free(view);
}
void flatview_unref(FlatView *view)
{
view->ref--;
if (view->ref <= 0) {
flatview_destroy(view);
}
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging adjacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static bool memory_region_big_endian(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
{
if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
switch (op & MO_SIZE) {
case MO_8:
break;
case MO_16:
*data = bswap16(*data);
break;
case MO_32:
*data = bswap32(*data);
break;
case MO_64:
*data = bswap64(*data);
break;
default:
g_assert_not_reached();
}
}
}
static inline void memory_region_shift_read_access(uint64_t *value,
signed shift,
uint64_t mask,
uint64_t tmp)
{
if (shift >= 0) {
*value |= (tmp & mask) << shift;
} else {
*value |= (tmp & mask) >> -shift;
}
}
static inline uint64_t memory_region_shift_write_access(uint64_t *value,
signed shift,
uint64_t mask)
{
uint64_t tmp;
if (shift >= 0) {
tmp = (*value >> shift) & mask;
} else {
tmp = (*value << -shift) & mask;
}
return tmp;
}
static MemTxResult memory_region_read_accessor(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->read(uc, mr->opaque, addr, size);
memory_region_shift_read_access(value, shift, mask, tmp);
return MEMTX_OK;
}
static MemTxResult memory_region_read_with_attrs_accessor(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
r = mr->ops->read_with_attrs(uc, mr->opaque, addr, &tmp, size, attrs);
memory_region_shift_read_access(value, shift, mask, tmp);
return r;
}
static MemTxResult memory_region_write_accessor(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
mr->ops->write(uc, mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static MemTxResult memory_region_write_with_attrs_accessor(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
return mr->ops->write_with_attrs(uc, mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(struct uc_struct *uc, hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
MemTxResult (*access_fn)
(struct uc_struct *uc,
MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = MAKE_64BIT_MASK(0, access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
r |= access_fn(uc, mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
r |= access_fn(uc, mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
AddressSpace *as;
while (mr->container) {
mr = mr->container;
}
QTAILQ_FOREACH(as, &mr->uc->address_spaces, address_spaces_link) {
if (mr == as->root) {
return as;
}
}
return NULL;
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
hwaddr offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
fr.mr = mr;
fr.readonly = readonly;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
now = int128_sub(int128_min(int128_add(base, remain),
addrrange_end(view->ranges[i].addr)),
base);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_nz(remain)) {
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
flatview_insert(view, i, &fr);
}
}
static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
{
while (mr->enabled) {
if (!mr->terminates) {
unsigned int found = 0;
MemoryRegion *child, *next = NULL;
QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
if (child->enabled) {
if (++found > 1) {
next = NULL;
break;
}
if (!child->addr && int128_ge(mr->size, child->size)) {
/* A child is included in its entirety. If it's the only
* enabled one, use it in the hope of finding an alias down the
* way. This will also let us share FlatViews.
*/
next = child;
}
}
}
if (found == 0) {
return NULL;
}
if (next) {
mr = next;
continue;
}
}
return mr;
}
return NULL;
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView *generate_memory_topology(struct uc_struct *uc, MemoryRegion *mr)
{
int i;
FlatView *view;
view = flatview_new(mr);
if (mr) {
render_memory_region(view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()),
false);
}
flatview_simplify(view);
view->dispatch = address_space_dispatch_new(uc, view);
for (i = 0; i < view->nr; i++) {
MemoryRegionSection mrs =
section_from_flat_range(&view->ranges[i], view);
flatview_add_to_dispatch(uc, view, &mrs);
}
address_space_dispatch_compact(view->dispatch);
g_hash_table_replace(uc->flat_views, mr, view);
return view;
}
FlatView *address_space_get_flatview(AddressSpace *as)
{
FlatView *view;
view = address_space_to_flatview(as);
return view;
}
static void address_space_update_topology_pass(AddressSpace *as,
const FlatView *old_view,
const FlatView *new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view->nr || inew < new_view->nr) {
if (iold < old_view->nr) {
frold = &old_view->ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view->nr) {
frnew = &new_view->ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old but not in new, or in both but attributes changed. */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both and unchanged (except logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
}
++inew;
}
}
}
static void flatviews_init(struct uc_struct *uc)
{
if (uc->flat_views) {
return;
}
uc->flat_views = g_hash_table_new_full(NULL, NULL, NULL,
(GDestroyNotify) flatview_unref);
if (!uc->empty_view) {
uc->empty_view = generate_memory_topology(uc, NULL);
/* We keep it alive forever in the global variable. */
flatview_ref(uc->empty_view);
g_hash_table_replace(uc->flat_views, NULL, uc->empty_view);
}
}
static void flatviews_reset(struct uc_struct *uc)
{
AddressSpace *as;
if (uc->flat_views) {
g_hash_table_destroy(uc->flat_views);
uc->flat_views = NULL;
}
flatviews_init(uc);
/* Render unique FVs */
QTAILQ_FOREACH(as, &uc->address_spaces, address_spaces_link) {
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
if (g_hash_table_lookup(uc->flat_views, physmr)) {
continue;
}
generate_memory_topology(uc, physmr);
}
}
static void address_space_set_flatview(AddressSpace *as)
{
FlatView *old_view = address_space_to_flatview(as);
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
FlatView *new_view = g_hash_table_lookup(as->uc->flat_views, physmr);
assert(new_view);
if (old_view == new_view) {
return;
}
flatview_ref(new_view);
if (!QTAILQ_EMPTY(&as->listeners)) {
FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
if (!old_view2) {
old_view2 = &tmpview;
}
address_space_update_topology_pass(as, old_view2, new_view, false);
address_space_update_topology_pass(as, old_view2, new_view, true);
}
as->current_map = new_view;
if (old_view) {
flatview_unref(old_view);
}
}
static void address_space_update_topology(AddressSpace *as)
{
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
flatviews_init(as->uc);
if (!g_hash_table_lookup(as->uc->flat_views, physmr)) {
generate_memory_topology(as->uc, physmr);
}
address_space_set_flatview(as);
}
void memory_region_transaction_begin(void)
{
}
void memory_region_transaction_commit(MemoryRegion *mr)
{
AddressSpace *as;
if (mr->uc->memory_region_update_pending) {
flatviews_reset(mr->uc);
MEMORY_LISTENER_CALL_GLOBAL(mr->uc, begin, Forward);
QTAILQ_FOREACH(as, &mr->uc->address_spaces, address_spaces_link) {
address_space_set_flatview(as);
}
mr->uc->memory_region_update_pending = false;
MEMORY_LISTENER_CALL_GLOBAL(mr->uc, commit, Forward);
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
memory_region_filter_subregions(mr, 0);
qemu_ram_free(mr->uc, mr->ram_block);
}
void memory_region_init(struct uc_struct *uc,
MemoryRegion *mr,
uint64_t size)
{
memset(mr, 0, sizeof(*mr));
mr->uc = uc;
/* memory_region_initfn */
mr->ops = &unassigned_mem_ops;
mr->enabled = true;
mr->destructor = memory_region_destructor_none;
QTAILQ_INIT(&mr->subregions);
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
}
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
return 0;
}
static void unassigned_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
}
static bool unassigned_mem_accepts(struct uc_struct *uc, void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return false;
}
const MemoryRegionOps unassigned_mem_ops = {
.valid.accepts = unassigned_mem_accepts,
.endianness = DEVICE_NATIVE_ENDIAN,
};
bool memory_region_access_valid(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write,
MemTxAttrs attrs)
{
if (mr->ops->valid.accepts
&& !mr->ops->valid.accepts(uc, mr->opaque, addr, size, is_write, attrs)) {
return false;
}
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
/* Treat zero as compatibility all valid */
if (!mr->ops->valid.max_access_size) {
return true;
}
if (size > mr->ops->valid.max_access_size
|| size < mr->ops->valid.min_access_size) {
return false;
}
return true;
}
static MemTxResult memory_region_dispatch_read1(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
*pval = 0;
if (mr->ops->read) {
return access_with_adjusted_size(uc, addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(uc, addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_with_attrs_accessor,
mr, attrs);
}
}
MemTxResult memory_region_dispatch_read(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
MemOp op,
MemTxAttrs attrs)
{
unsigned size = memop_size(op);
MemTxResult r;
if (!memory_region_access_valid(uc, mr, addr, size, false, attrs)) {
*pval = unassigned_mem_read(mr, addr, size);
return MEMTX_DECODE_ERROR;
}
r = memory_region_dispatch_read1(uc, mr, addr, pval, size, attrs);
adjust_endianness(mr, pval, op);
return r;
}
MemTxResult memory_region_dispatch_write(struct uc_struct *uc, MemoryRegion *mr,
hwaddr addr,
uint64_t data,
MemOp op,
MemTxAttrs attrs)
{
unsigned size = memop_size(op);
if (!memory_region_access_valid(uc, mr, addr, size, true, attrs)) {
unassigned_mem_write(mr, addr, data, size);
return MEMTX_DECODE_ERROR;
}
adjust_endianness(mr, &data, op);
if (mr->ops->write) {
return access_with_adjusted_size(uc, addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr,
attrs);
} else {
return
access_with_adjusted_size(uc, addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_with_attrs_accessor,
mr, attrs);
}
}
void memory_region_init_io(struct uc_struct *uc,
MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
uint64_t size)
{
memory_region_init(uc, mr, size);
mr->ops = ops ? ops : &unassigned_mem_ops;
mr->opaque = opaque;
mr->terminates = true;
}
void memory_region_init_ram_ptr(struct uc_struct *uc,
MemoryRegion *mr,
uint64_t size,
void *ptr)
{
memory_region_init(uc, mr, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
/* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
assert(ptr != NULL);
mr->ram_block = qemu_ram_alloc_from_ptr(uc, size, ptr, mr);
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
memory_region_transaction_begin();
mr->readonly = readonly;
mr->uc->memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit(mr);
}
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
void *ptr;
ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, 0);
return ptr;
}
MemoryRegion *memory_region_from_host(struct uc_struct *uc,
void *ptr, ram_addr_t *offset)
{
RAMBlock *block;
block = qemu_ram_block_from_host(uc, ptr, false, offset);
if (!block) {
return NULL;
}
return block->mr;
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
}
static void memory_region_update_container_subregions(MemoryRegion *subregion)
{
MemoryRegion *mr = subregion->container;
MemoryRegion *other;
memory_region_transaction_begin();
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
mr->uc->memory_region_update_pending = true;
memory_region_transaction_commit(mr);
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
assert(!subregion->container);
subregion->container = mr;
subregion->addr = offset;
subregion->end = offset + int128_get64(subregion->size);
memory_region_update_container_subregions(subregion);
}
void memory_region_add_subregion(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion,
int priority)
{
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
memory_region_transaction_begin();
assert(subregion->container == mr);
subregion->container = NULL;
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
mr->uc->memory_region_update_pending = true;
memory_region_transaction_commit(mr);
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
{
return bsearch(&addr, view->ranges, view->nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
/* Same as memory_region_find, but it does not add a reference to the
* returned region. It must be called from an RCU critical section.
*/
static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret = { .mr = NULL };
MemoryRegion *root;
AddressSpace *as;
AddrRange range;
FlatView *view;
FlatRange *fr;
addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
addr += root->addr;
}
as = memory_region_to_address_space(root);
if (!as) {
return ret;
}
range = addrrange_make(int128_make64(addr), int128_make64(size));
view = address_space_to_flatview(as);
fr = flatview_lookup(view, range);
if (!fr) {
return ret;
}
while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
ret.fv = view;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = range.size;
ret.offset_within_address_space = int128_get64(range.start);
ret.readonly = fr->readonly;
return ret;
}
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret;
ret = memory_region_find_rcu(mr, addr, size);
return ret;
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = section_from_flat_range(fr, view);
if (listener->region_add) {
listener->region_add(listener, &section);
}
}
if (listener->commit) {
listener->commit(listener);
}
}
static void listener_del_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = section_from_flat_range(fr, view);
if (listener->region_del) {
listener->region_del(listener, &section);
}
}
if (listener->commit) {
listener->commit(listener);
}
}
void memory_listener_register(MemoryListener *listener, AddressSpace *as)
{
listener->address_space = as;
QTAILQ_INSERT_TAIL(&as->uc->memory_listeners, listener, link);
QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
listener_add_address_space(listener, as);
}
void memory_listener_unregister(MemoryListener *listener)
{
if (!listener->address_space) {
return;
}
listener_del_address_space(listener, listener->address_space);
QTAILQ_REMOVE(&listener->address_space->uc->memory_listeners, listener, link);
QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
listener->address_space = NULL;
}
void address_space_remove_listeners(AddressSpace *as)
{
while (!QTAILQ_EMPTY(&as->listeners)) {
memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
}
}
void address_space_init(struct uc_struct *uc,
AddressSpace *as,
MemoryRegion *root)
{
as->uc = uc;
as->root = root;
as->current_map = NULL;
QTAILQ_INIT(&as->listeners);
QTAILQ_INSERT_TAIL(&uc->address_spaces, as, address_spaces_link);
address_space_update_topology(as);
}
void address_space_destroy(AddressSpace *as)
{
MemoryRegion *root = as->root;
/* Flush out anything from MemoryListeners listening in on this */
memory_region_transaction_begin();
as->root = NULL;
memory_region_transaction_commit(root);
QTAILQ_REMOVE(&as->uc->address_spaces, as, address_spaces_link);
/* At this point, as->dispatch and as->current_map are dummy
* entries that the guest should never use. Wait for the old
* values to expire before freeing the data.
*/
as->root = root;
flatview_unref(as->current_map);
}
void memory_region_init_ram(struct uc_struct *uc,
MemoryRegion *mr,
uint64_t size,
uint32_t perms)
{
memory_region_init(uc, mr, size);
mr->ram = true;
if (!(perms & UC_PROT_WRITE)) {
mr->readonly = true;
}
mr->perms = perms;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(uc, size, mr);
}