unicorn/qemu/exec.c

2136 lines
64 KiB
C

/*
* Virtual page mapping
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "exec/cpu-defs.h"
#include "cpu.h"
#include "qemu/cutils.h"
#include "exec/exec-all.h"
#include "exec/target_page.h"
#include "tcg/tcg.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "qemu/timer.h"
#include "exec/memory.h"
#include "exec/ioport.h"
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif
#include "accel/tcg/translate-all.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "qemu/range.h"
#include "qemu/rcu_queue.h"
#include "uc_priv.h"
typedef struct PhysPageEntry PhysPageEntry;
struct PhysPageEntry {
/* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
uint32_t skip : 6;
/* index into phys_sections (!skip) or phys_map_nodes (skip) */
uint32_t ptr : 26;
};
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
/* Size of the L2 (and L3, etc) page tables. */
#define ADDR_SPACE_BITS 64
#define P_L2_BITS 9
#define P_L2_SIZE (1 << P_L2_BITS)
#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
typedef PhysPageEntry Node[P_L2_SIZE];
typedef struct PhysPageMap {
unsigned sections_nb;
unsigned sections_nb_alloc;
unsigned nodes_nb;
unsigned nodes_nb_alloc;
Node *nodes;
MemoryRegionSection *sections;
} PhysPageMap;
struct AddressSpaceDispatch {
MemoryRegionSection *mru_section;
/* This is a multi-level map on the physical address space.
* The bottom level has pointers to MemoryRegionSections.
*/
PhysPageEntry phys_map;
PhysPageMap map;
struct uc_struct *uc;
};
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
MemoryRegion iomem;
FlatView *fv;
hwaddr base;
uint16_t sub_section[];
} subpage_t;
#define PHYS_SECTION_UNASSIGNED 0
static void tcg_commit(MemoryListener *listener);
/**
* CPUAddressSpace: all the information a CPU needs about an AddressSpace
* @cpu: the CPU whose AddressSpace this is
* @as: the AddressSpace itself
* @memory_dispatch: its dispatch pointer (cached, RCU protected)
* @tcg_as_listener: listener for tracking changes to the AddressSpace
*/
struct CPUAddressSpace {
CPUState *cpu;
AddressSpace *as;
struct AddressSpaceDispatch *memory_dispatch;
MemoryListener tcg_as_listener;
};
static void phys_map_node_reserve(AddressSpaceDispatch *d, PhysPageMap *map, unsigned nodes)
{
if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
map->nodes_nb_alloc = MAX(d->uc->alloc_hint, map->nodes_nb + nodes);
map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d->uc->alloc_hint = map->nodes_nb_alloc;
}
}
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
{
unsigned i;
uint32_t ret;
PhysPageEntry e;
PhysPageEntry *p;
ret = map->nodes_nb++;
p = map->nodes[ret];
assert(ret != PHYS_MAP_NODE_NIL);
assert(ret != map->nodes_nb_alloc);
e.skip = leaf ? 0 : 1;
e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
for (i = 0; i < P_L2_SIZE; ++i) {
memcpy(&p[i], &e, sizeof(e));
}
return ret;
}
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
hwaddr *index, uint64_t *nb, uint16_t leaf,
int level)
{
PhysPageEntry *p;
hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
lp->ptr = phys_map_node_alloc(map, level == 0);
}
p = map->nodes[lp->ptr];
lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
while (*nb && lp < &p[P_L2_SIZE]) {
if ((*index & (step - 1)) == 0 && *nb >= step) {
lp->skip = 0;
lp->ptr = leaf;
*index += step;
*nb -= step;
} else {
phys_page_set_level(map, lp, index, nb, leaf, level - 1);
}
++lp;
}
}
static void phys_page_set(AddressSpaceDispatch *d,
hwaddr index, uint64_t nb,
uint16_t leaf)
{
#ifdef TARGET_ARM
struct uc_struct *uc = d->uc;
#endif
/* Wildly overreserve - it doesn't matter much. */
phys_map_node_reserve(d, &d->map, 3 * P_L2_LEVELS);
phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
* and update our entry so we can skip it and go directly to the destination.
*/
static void phys_page_compact(struct uc_struct *uc, PhysPageEntry *lp, Node *nodes)
{
unsigned valid_ptr = P_L2_SIZE;
int valid = 0;
PhysPageEntry *p;
int i;
if (lp->ptr == PHYS_MAP_NODE_NIL) {
return;
}
p = nodes[lp->ptr];
for (i = 0; i < P_L2_SIZE; i++) {
if (p[i].ptr == PHYS_MAP_NODE_NIL) {
continue;
}
valid_ptr = i;
valid++;
if (p[i].skip) {
phys_page_compact(uc, &p[i], nodes);
}
}
/* We can only compress if there's only one child. */
if (valid != 1) {
return;
}
assert(valid_ptr < P_L2_SIZE);
/* Don't compress if it won't fit in the # of bits we have. */
if (P_L2_LEVELS >= (1 << 6) &&
lp->skip + p[valid_ptr].skip >= (1 << 6)) {
return;
}
lp->ptr = p[valid_ptr].ptr;
if (!p[valid_ptr].skip) {
/* If our only child is a leaf, make this a leaf. */
/* By design, we should have made this node a leaf to begin with so we
* should never reach here.
* But since it's so simple to handle this, let's do it just in case we
* change this rule.
*/
lp->skip = 0;
} else {
lp->skip += p[valid_ptr].skip;
}
}
void address_space_dispatch_compact(AddressSpaceDispatch *d)
{
if (d->phys_map.skip) {
phys_page_compact(d->uc, &d->phys_map, d->map.nodes);
}
}
static inline bool section_covers_addr(const MemoryRegionSection *section,
hwaddr addr)
{
/* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
* the section must cover the entire address space.
*/
return int128_gethi(section->size) ||
range_covers_byte(section->offset_within_address_space,
int128_getlo(section->size), addr);
}
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
{
#ifdef TARGET_ARM
struct uc_struct *uc = d->uc;
#endif
PhysPageEntry lp = d->phys_map, *p;
Node *nodes = d->map.nodes;
MemoryRegionSection *sections = d->map.sections;
hwaddr index = addr >> TARGET_PAGE_BITS;
int i;
for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
if (lp.ptr == PHYS_MAP_NODE_NIL) {
return &sections[PHYS_SECTION_UNASSIGNED];
}
p = nodes[lp.ptr];
lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
}
if (section_covers_addr(&sections[lp.ptr], addr)) {
return &sections[lp.ptr];
} else {
return &sections[PHYS_SECTION_UNASSIGNED];
}
}
/* Called from RCU critical section */
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
hwaddr addr,
bool resolve_subpage)
{
#ifdef TARGET_ARM
struct uc_struct *uc = d->uc;
#endif
MemoryRegionSection *section = d->mru_section;
subpage_t *subpage;
if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
!section_covers_addr(section, addr)) {
section = phys_page_find(d, addr);
d->mru_section = section;
}
if (resolve_subpage && section->mr->subpage) {
subpage = container_of(section->mr, subpage_t, iomem);
section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
}
return section;
}
/* Called from RCU critical section */
static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool resolve_subpage)
{
MemoryRegionSection *section;
MemoryRegion *mr;
Int128 diff;
section = address_space_lookup_region(d, addr, resolve_subpage);
/* Compute offset within MemoryRegionSection */
addr -= section->offset_within_address_space;
/* Compute offset within MemoryRegion */
*xlat = addr + section->offset_within_region;
mr = section->mr;
/* MMIO registers can be expected to perform full-width accesses based only
* on their address, without considering adjacent registers that could
* decode to completely different MemoryRegions. When such registers
* exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
* regions overlap wildly. For this reason we cannot clamp the accesses
* here.
*
* If the length is small (as is the case for address_space_ldl/stl),
* everything works fine. If the incoming length is large, however,
* the caller really has to do the clamping through memory_access_size.
*/
if (memory_region_is_ram(mr)) {
diff = int128_sub(section->size, int128_make64(addr));
*plen = int128_get64(int128_min(diff, int128_make64(*plen)));
}
return section;
}
/**
* address_space_translate_iommu - translate an address through an IOMMU
* memory region and then through the target address space.
*
* @iommu_mr: the IOMMU memory region that we start the translation from
* @addr: the address to be translated through the MMU
* @xlat: the translated address offset within the destination memory region.
* It cannot be %NULL.
* @plen_out: valid read/write length of the translated address. It
* cannot be %NULL.
* @page_mask_out: page mask for the translated address. This
* should only be meaningful for IOMMU translated
* addresses, since there may be huge pages that this bit
* would tell. It can be %NULL if we don't care about it.
* @is_write: whether the translation operation is for write
* @is_mmio: whether this can be MMIO, set true if it can
* @target_as: the address space targeted by the IOMMU
* @attrs: transaction attributes
*
* This function is called from RCU critical section. It is the common
* part of flatview_do_translate and address_space_translate_cached.
*/
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
hwaddr *xlat,
hwaddr *plen_out,
hwaddr *page_mask_out,
bool is_write,
bool is_mmio,
AddressSpace **target_as,
MemTxAttrs attrs)
{
MemoryRegionSection *section;
hwaddr page_mask = (hwaddr)-1;
MemoryRegion *mr = MEMORY_REGION(iommu_mr);
do {
hwaddr addr = *xlat;
IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
int iommu_idx = 0;
IOMMUTLBEntry iotlb;
if (imrc->attrs_to_index) {
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
}
iotlb = imrc->translate(iommu_mr, addr, is_write ?
IOMMU_WO : IOMMU_RO, iommu_idx);
if (!(iotlb.perm & (1 << is_write))) {
goto unassigned;
}
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
| (addr & iotlb.addr_mask));
page_mask &= iotlb.addr_mask;
*plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
*target_as = iotlb.target_as;
section = address_space_translate_internal(
address_space_to_dispatch(iotlb.target_as), addr, xlat,
plen_out, is_mmio);
iommu_mr = memory_region_get_iommu(section->mr);
} while (unlikely(iommu_mr));
if (page_mask_out) {
*page_mask_out = page_mask;
}
return *section;
unassigned:
return (MemoryRegionSection) { .mr = &(mr->uc->io_mem_unassigned) };
}
/**
* flatview_do_translate - translate an address in FlatView
*
* @fv: the flat view that we want to translate on
* @addr: the address to be translated in above address space
* @xlat: the translated address offset within memory region. It
* cannot be @NULL.
* @plen_out: valid read/write length of the translated address. It
* can be @NULL when we don't care about it.
* @page_mask_out: page mask for the translated address. This
* should only be meaningful for IOMMU translated
* addresses, since there may be huge pages that this bit
* would tell. It can be @NULL if we don't care about it.
* @is_write: whether the translation operation is for write
* @is_mmio: whether this can be MMIO, set true if it can
* @target_as: the address space targeted by the IOMMU
* @attrs: memory transaction attributes
*
* This function is called from RCU critical section
*/
static MemoryRegionSection flatview_do_translate(struct uc_struct *uc, FlatView *fv,
hwaddr addr,
hwaddr *xlat,
hwaddr *plen_out,
hwaddr *page_mask_out,
bool is_write,
bool is_mmio,
AddressSpace **target_as,
MemTxAttrs attrs)
{
MemoryRegionSection *section;
IOMMUMemoryRegion *iommu_mr;
hwaddr plen = (hwaddr)(-1);
if (!plen_out) {
plen_out = &plen;
}
section = address_space_translate_internal(
flatview_to_dispatch(fv), addr, xlat,
plen_out, is_mmio);
iommu_mr = memory_region_get_iommu(section->mr);
if (unlikely(iommu_mr)) {
return address_space_translate_iommu(iommu_mr, xlat,
plen_out, page_mask_out,
is_write, is_mmio,
target_as, attrs);
}
if (page_mask_out) {
/* Not behind an IOMMU, use default page size. */
*page_mask_out = ~TARGET_PAGE_MASK;
}
return *section;
}
/* Called from RCU critical section */
MemoryRegion *flatview_translate(struct uc_struct *uc, FlatView *fv, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool is_write,
MemTxAttrs attrs)
{
MemoryRegion *mr;
MemoryRegionSection section;
AddressSpace *as = NULL;
/* This can be MMIO, so setup MMIO bit. */
section = flatview_do_translate(uc, fv, addr, xlat, plen, NULL,
is_write, true, &as, attrs);
mr = section.mr;
return mr;
}
/* Called from RCU critical section */
MemoryRegionSection *
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
hwaddr *xlat, hwaddr *plen,
MemTxAttrs attrs, int *prot)
{
MemoryRegionSection *section;
IOMMUMemoryRegion *iommu_mr;
IOMMUMemoryRegionClass *imrc;
IOMMUTLBEntry iotlb;
int iommu_idx;
AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
for (;;) {
section = address_space_translate_internal(d, addr, &addr, plen, false);
iommu_mr = memory_region_get_iommu(section->mr);
if (!iommu_mr) {
break;
}
imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
// tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
/* We need all the permissions, so pass IOMMU_NONE so the IOMMU
* doesn't short-cut its translation table walk.
*/
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
| (addr & iotlb.addr_mask));
/* Update the caller's prot bits to remove permissions the IOMMU
* is giving us a failure response for. If we get down to no
* permissions left at all we can give up now.
*/
if (!(iotlb.perm & IOMMU_RO)) {
*prot &= ~(PAGE_READ | PAGE_EXEC);
}
if (!(iotlb.perm & IOMMU_WO)) {
*prot &= ~PAGE_WRITE;
}
if (!*prot) {
goto translate_fail;
}
d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
}
assert(!(memory_region_get_iommu(section->mr) != NULL));
*xlat = addr;
// Unicorn:
// If there is no memory mapped but still we start emulation, we will get
// a default memory region section and it would be marked as an IO memory
// in cputlb which prevents further fecthing and execution.
//
// The reason we set prot to 0 here is not to setting protection but to notify
// the outer function to add a new **blank** tlb which will never be hitted.
if (!memory_region_is_ram(section->mr) && section == &d->map.sections[PHYS_SECTION_UNASSIGNED]) {
*prot = 0;
}
return section;
translate_fail:
return &d->map.sections[PHYS_SECTION_UNASSIGNED];
}
CPUState *qemu_get_cpu(struct uc_struct *uc, int index)
{
CPUState *cpu = uc->cpu;
if (cpu->cpu_index == index) {
return cpu;
}
return NULL;
}
void cpu_address_space_init(CPUState *cpu, int asidx, MemoryRegion *mr)
{
/* Target code should have set num_ases before calling us */
assert(asidx < cpu->num_ases);
if (!cpu->cpu_ases) {
cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
cpu->cpu_ases[0].cpu = cpu;
cpu->cpu_ases[0].as = &(cpu->uc->address_space_memory);
cpu->cpu_ases[0].tcg_as_listener.commit = tcg_commit;
memory_listener_register(&(cpu->cpu_ases[0].tcg_as_listener), cpu->cpu_ases[0].as);
}
/* arm security memory */
if (asidx > 0) {
cpu->cpu_ases[asidx].cpu = cpu;
cpu->cpu_ases[asidx].as = &(cpu->uc->address_space_memory);
cpu->cpu_ases[asidx].tcg_as_listener.commit = tcg_commit;
memory_listener_register(&(cpu->cpu_ases[asidx].tcg_as_listener), cpu->cpu_ases[asidx].as);
}
}
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
/* only one AddressSpace. */
return cpu->cpu_ases[0].as;
}
void cpu_exec_unrealizefn(CPUState *cpu)
{
}
void cpu_exec_initfn(CPUState *cpu)
{
cpu->num_ases = 1;
cpu->as = &(cpu->uc->address_space_memory);
cpu->memory = cpu->uc->system_memory;
}
void cpu_exec_realizefn(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
cc->tcg_initialize(cpu->uc);
tlb_init(cpu);
}
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
ram_addr_t ram_addr;
MemoryRegion *mr;
hwaddr l = 1;
mr = address_space_translate(as, addr, &addr, &l, false, attrs);
if (!memory_region_is_ram(mr)) {
return;
}
ram_addr = memory_region_get_ram_addr(mr) + addr;
tb_invalidate_phys_page_range(as->uc, ram_addr, ram_addr + 1);
}
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
/*
* There may not be a virtual to physical translation for the pc
* right now, but there may exist cached TB for this pc.
* Flush the whole TB cache to force re-translation of such TBs.
* This is heavyweight, but we're debugging anyway.
*/
tb_flush(cpu);
}
/* Add a watchpoint. */
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint)
{
#if 0
CPUWatchpoint *wp;
/* forbid ranges which are empty or run off the end of the address space */
if (len == 0 || (addr + len - 1) < addr) {
error_report("tried to set invalid watchpoint at %"
VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
return -EINVAL;
}
wp = g_malloc(sizeof(*wp));
wp->vaddr = addr;
wp->len = len;
wp->flags = flags;
/* keep all GDB-injected watchpoints in front */
if (flags & BP_GDB) {
QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
} else {
QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
}
tlb_flush_page(cpu, addr);
if (watchpoint)
*watchpoint = wp;
#endif
return 0;
}
/* Remove a specific watchpoint by reference. */
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
#if 0
QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
tlb_flush_page(cpu, watchpoint->vaddr);
g_free(watchpoint);
#endif
}
/* Remove all matching watchpoints. */
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
{
#if 0
CPUWatchpoint *wp, *next;
QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
if (wp->flags & mask) {
cpu_watchpoint_remove_by_ref(cpu, wp);
}
}
#endif
}
/* Return flags for watchpoints that match addr + prot. */
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
{
#if 0
CPUWatchpoint *wp;
int ret = 0;
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
ret |= wp->flags;
}
}
return ret;
#endif
return 0;
}
/* Add a breakpoint. */
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
CPUBreakpoint **breakpoint)
{
CPUBreakpoint *bp;
bp = g_malloc(sizeof(*bp));
bp->pc = pc;
bp->flags = flags;
/* keep all GDB-injected breakpoints in front */
if (flags & BP_GDB) {
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
} else {
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
}
breakpoint_invalidate(cpu, pc);
if (breakpoint) {
*breakpoint = bp;
}
return 0;
}
/* Remove a specific breakpoint. */
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
{
CPUBreakpoint *bp;
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
if (bp->pc == pc && bp->flags == flags) {
cpu_breakpoint_remove_by_ref(cpu, bp);
return 0;
}
}
return -ENOENT;
}
/* Remove a specific breakpoint by reference. */
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
{
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
breakpoint_invalidate(cpu, breakpoint->pc);
g_free(breakpoint);
}
/* Remove all matching breakpoints. */
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
{
CPUBreakpoint *bp, *next;
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
if (bp->flags & mask) {
cpu_breakpoint_remove_by_ref(cpu, bp);
}
}
}
void cpu_abort(CPUState *cpu, const char *fmt, ...)
{
abort();
}
/* Called from RCU critical section */
static RAMBlock *qemu_get_ram_block(struct uc_struct *uc, ram_addr_t addr)
{
RAMBlock *block;
block = uc->ram_list.mru_block;
if (block && addr - block->offset < block->max_length) {
return block;
}
RAMBLOCK_FOREACH(block) {
if (addr - block->offset < block->max_length) {
goto found;
}
}
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
abort();
found:
uc->ram_list.mru_block = block;
return block;
}
/* Note: start and end must be within the same ram block. */
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
return false;
}
/* Called from RCU critical section */
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
MemoryRegionSection *section)
{
AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
return section - d->map.sections;
}
static int subpage_register(struct uc_struct *uc, subpage_t *mmio, uint32_t start, uint32_t end,
uint16_t section);
static subpage_t *subpage_init(struct uc_struct *, FlatView *fv, hwaddr base);
static void *(*phys_mem_alloc)(struct uc_struct *uc, size_t size, uint64_t *align) =
qemu_anon_ram_alloc;
static uint16_t phys_section_add(struct uc_struct *uc, PhysPageMap *map,
MemoryRegionSection *section)
{
/* The physical section number is ORed with a page-aligned
* pointer to produce the iotlb entries. Thus it should
* never overflow into the page-aligned value.
*/
assert(map->sections_nb < TARGET_PAGE_SIZE);
if (map->sections_nb == map->sections_nb_alloc) {
map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
map->sections = g_renew(MemoryRegionSection, map->sections,
map->sections_nb_alloc);
}
map->sections[map->sections_nb] = *section;
return map->sections_nb++;
}
static void phys_section_destroy(MemoryRegion *mr)
{
bool have_sub_page = mr->subpage;
if (have_sub_page) {
subpage_t *subpage = container_of(mr, subpage_t, iomem);
// object_unref(OBJECT(&subpage->iomem));
g_free(subpage);
}
}
static void phys_sections_free(PhysPageMap *map)
{
while (map->sections_nb > 0) {
MemoryRegionSection *section = &map->sections[--map->sections_nb];
phys_section_destroy(section->mr);
}
g_free(map->sections);
g_free(map->nodes);
}
static void register_subpage(struct uc_struct *uc, FlatView *fv, MemoryRegionSection *section)
{
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
subpage_t *subpage;
hwaddr base = section->offset_within_address_space
& TARGET_PAGE_MASK;
MemoryRegionSection *existing = phys_page_find(d, base);
MemoryRegionSection subsection = {
.offset_within_address_space = base,
.size = int128_make64(TARGET_PAGE_SIZE),
};
hwaddr start, end;
assert(existing->mr->subpage || existing->mr == &(section->mr->uc->io_mem_unassigned));
if (!(existing->mr->subpage)) {
subpage = subpage_init(uc, fv, base);
subsection.fv = fv;
subsection.mr = &subpage->iomem;
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
phys_section_add(uc, &d->map, &subsection));
} else {
subpage = container_of(existing->mr, subpage_t, iomem);
}
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
end = start + int128_get64(section->size) - 1;
subpage_register(uc, subpage, start, end,
phys_section_add(uc, &d->map, section));
}
static void register_multipage(struct uc_struct *uc, FlatView *fv,
MemoryRegionSection *section)
{
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
hwaddr start_addr = section->offset_within_address_space;
uint16_t section_index = phys_section_add(uc, &d->map, section);
uint64_t num_pages = int128_get64(int128_rshift(section->size,
TARGET_PAGE_BITS));
assert(num_pages);
phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
}
/*
* The range in *section* may look like this:
*
* |s|PPPPPPP|s|
*
* where s stands for subpage and P for page.
*/
void flatview_add_to_dispatch(struct uc_struct *uc, FlatView *fv, MemoryRegionSection *section)
{
MemoryRegionSection remain = *section;
Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
/* register first subpage */
if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
- remain.offset_within_address_space;
MemoryRegionSection now = remain;
now.size = int128_min(int128_make64(left), now.size);
register_subpage(uc, fv, &now);
if (int128_eq(remain.size, now.size)) {
return;
}
remain.size = int128_sub(remain.size, now.size);
remain.offset_within_address_space += int128_get64(now.size);
remain.offset_within_region += int128_get64(now.size);
}
/* register whole pages */
if (int128_ge(remain.size, page_size)) {
MemoryRegionSection now = remain;
now.size = int128_and(now.size, int128_neg(page_size));
register_multipage(uc, fv, &now);
if (int128_eq(remain.size, now.size)) {
return;
}
remain.size = int128_sub(remain.size, now.size);
remain.offset_within_address_space += int128_get64(now.size);
remain.offset_within_region += int128_get64(now.size);
}
/* register last subpage */
register_subpage(uc, fv, &remain);
}
/* Allocate space within the ram_addr_t space that governs the
* dirty bitmaps.
* Called with the ramlist lock held.
*/
static ram_addr_t find_ram_offset(struct uc_struct *uc, ram_addr_t size)
{
RAMBlock *block, *next_block;
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
assert(size != 0); /* it would hand out same offset multiple times */
if (QLIST_EMPTY_RCU(&uc->ram_list.blocks)) {
return 0;
}
RAMBLOCK_FOREACH(block) {
ram_addr_t candidate, next = RAM_ADDR_MAX;
/* Align blocks to start on a 'long' in the bitmap
* which makes the bitmap sync'ing take the fast path.
*/
candidate = block->offset + block->max_length;
candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
/* Search for the closest following block
* and find the gap.
*/
RAMBLOCK_FOREACH(next_block) {
if (next_block->offset >= candidate) {
next = MIN(next, next_block->offset);
}
}
/* If it fits remember our place and remember the size
* of gap, but keep going so that we might find a smaller
* gap to fill so avoiding fragmentation.
*/
if (next - candidate >= size && next - candidate < mingap) {
offset = candidate;
mingap = next - candidate;
}
}
if (offset == RAM_ADDR_MAX) {
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
(uint64_t)size);
abort();
}
return offset;
}
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
return rb->host;
}
ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
return rb->offset;
}
ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
return rb->used_length;
}
bool qemu_ram_is_shared(RAMBlock *rb)
{
return rb->flags & RAM_SHARED;
}
size_t qemu_ram_pagesize(RAMBlock *rb)
{
return rb->page_size;
}
static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block)
{
RAMBlock *block;
RAMBlock *last_block = NULL;
new_block->offset = find_ram_offset(uc, new_block->max_length);
if (!new_block->host) {
new_block->host = phys_mem_alloc(uc, new_block->max_length,
&new_block->mr->align);
if (!new_block->host) {
// mmap fails.
uc->invalid_error = UC_ERR_NOMEM;
// error_setg_errno(errp, errno,
// "cannot set up guest memory '%s'",
// memory_region_name(new_block->mr));
return;
}
// memory_try_enable_merging(new_block->host, new_block->max_length);
}
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
* QLIST (which has an RCU-friendly variant) does not have insertion at
* tail, so save the last element in last_block.
*/
RAMBLOCK_FOREACH(block) {
last_block = block;
if (block->max_length < new_block->max_length) {
break;
}
}
if (block) {
QLIST_INSERT_BEFORE_RCU(block, new_block, next);
} else if (last_block) {
QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
} else { /* list is empty */
QLIST_INSERT_HEAD_RCU(&uc->ram_list.blocks, new_block, next);
}
uc->ram_list.mru_block = NULL;
/* Write list before version */
//smp_wmb();
cpu_physical_memory_set_dirty_range(new_block->offset,
new_block->used_length,
DIRTY_CLIENTS_ALL);
}
RAMBlock *qemu_ram_alloc_from_ptr(struct uc_struct *uc, ram_addr_t size, void *host,
MemoryRegion *mr)
{
RAMBlock *new_block;
ram_addr_t max_size = size;
size = HOST_PAGE_ALIGN(uc, size);
max_size = HOST_PAGE_ALIGN(uc, max_size);
new_block = g_malloc0(sizeof(*new_block));
if (new_block == NULL)
return NULL;
new_block->mr = mr;
new_block->used_length = size;
new_block->max_length = max_size;
assert(max_size >= size);
new_block->page_size = uc->qemu_real_host_page_size;
new_block->host = host;
if (host) {
new_block->flags |= RAM_PREALLOC;
}
uc->invalid_addr = UC_ERR_OK;
ram_block_add(mr->uc, new_block);
if (uc->invalid_error != UC_ERR_OK) {
g_free(new_block);
return NULL;
}
return new_block;
}
RAMBlock *qemu_ram_alloc(struct uc_struct *uc, ram_addr_t size, MemoryRegion *mr)
{
return qemu_ram_alloc_from_ptr(uc, size, NULL, mr);
}
static void reclaim_ramblock(struct uc_struct *uc, RAMBlock *block)
{
if (block->flags & RAM_PREALLOC) {
;
} else if (false) {
} else {
qemu_anon_ram_free(uc, block->host, block->max_length);
}
g_free(block);
}
void qemu_ram_free(struct uc_struct *uc, RAMBlock *block)
{
if (!block) {
return;
}
//if (block->host) {
// ram_block_notify_remove(block->host, block->max_length);
//}
QLIST_REMOVE_RCU(block, next);
uc->ram_list.mru_block = NULL;
/* Write list before version */
//smp_wmb();
// call_rcu(block, reclaim_ramblock, rcu);
reclaim_ramblock(uc, block);
}
/* Return a host pointer to ram allocated with qemu_ram_alloc.
* This should not be used for general purpose DMA. Use address_space_map
* or address_space_rw instead. For local memory (e.g. video ram) that the
* device owns, use memory_region_get_ram_ptr.
*
* Called within RCU critical section.
*/
void *qemu_map_ram_ptr(struct uc_struct *uc, RAMBlock *ram_block, ram_addr_t addr)
{
RAMBlock *block = ram_block;
if (block == NULL) {
block = qemu_get_ram_block(uc, addr);
addr -= block->offset;
}
return ramblock_ptr(block, addr);
}
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
* but takes a size argument.
*
* Called within RCU critical section.
*/
static void *qemu_ram_ptr_length(struct uc_struct *uc, RAMBlock *ram_block, ram_addr_t addr,
hwaddr *size, bool lock)
{
RAMBlock *block = ram_block;
if (*size == 0) {
return NULL;
}
if (block == NULL) {
block = qemu_get_ram_block(uc, addr);
addr -= block->offset;
}
*size = MIN(*size, block->max_length - addr);
return ramblock_ptr(block, addr);
}
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
assert((uintptr_t)host >= (uintptr_t)rb->host);
assert(res < rb->max_length);
return res;
}
/*
* Translates a host ptr back to a RAMBlock, a ram_addr and an offset
* in that RAMBlock.
*
* ptr: Host pointer to look up
* round_offset: If true round the result offset down to a page boundary
* *ram_addr: set to result ram_addr
* *offset: set to result offset within the RAMBlock
*
* Returns: RAMBlock (or NULL if not found)
*
* By the time this function returns, the returned pointer is not protected
* by RCU anymore. If the caller is not within an RCU critical section and
* does not hold the iothread lock, it must have other means of protecting the
* pointer, such as a reference to the region that includes the incoming
* ram_addr_t.
*/
RAMBlock *qemu_ram_block_from_host(struct uc_struct *uc, void *ptr,
bool round_offset, ram_addr_t *offset)
{
RAMBlock *block;
uint8_t *host = ptr;
block = uc->ram_list.mru_block;
if (block && block->host && host - block->host < block->max_length) {
goto found;
}
RAMBLOCK_FOREACH(block) {
/* This case append when the block is not mapped. */
if (block->host == NULL) {
continue;
}
if (host - block->host < block->max_length) {
goto found;
}
}
return NULL;
found:
*offset = (host - block->host);
if (round_offset) {
*offset &= TARGET_PAGE_MASK;
}
return block;
}
/* Some of the softmmu routines need to translate from a host pointer
(typically a TLB entry) back to a ram offset. */
ram_addr_t qemu_ram_addr_from_host(struct uc_struct *uc, void *ptr)
{
RAMBlock *block;
ram_addr_t offset;
block = qemu_ram_block_from_host(uc, ptr, false, &offset);
if (!block) {
return RAM_ADDR_INVALID;
}
return block->offset + offset;
}
/* Generate a debug exception if a watchpoint has been hit. */
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
MemTxAttrs attrs, int flags, uintptr_t ra)
{
}
static MemTxResult flatview_read(struct uc_struct *uc, FlatView *fv, hwaddr addr,
MemTxAttrs attrs, void *buf, hwaddr len);
static MemTxResult flatview_write(struct uc_struct *, FlatView *fv, hwaddr addr, MemTxAttrs attrs,
const void *buf, hwaddr len);
static bool flatview_access_valid(struct uc_struct *uc, FlatView *fv, hwaddr addr, hwaddr len,
bool is_write, MemTxAttrs attrs);
static MemTxResult subpage_read(struct uc_struct *uc, void *opaque, hwaddr addr, uint64_t *data,
unsigned len, MemTxAttrs attrs)
{
subpage_t *subpage = opaque;
uint8_t buf[8];
MemTxResult res;
#if defined(DEBUG_SUBPAGE)
printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
subpage, len, addr);
#endif
res = flatview_read(uc, subpage->fv, addr + subpage->base, attrs, buf, len);
if (res) {
return res;
}
*data = ldn_p(buf, len);
return MEMTX_OK;
}
static MemTxResult subpage_write(struct uc_struct *uc, void *opaque, hwaddr addr,
uint64_t value, unsigned len, MemTxAttrs attrs)
{
subpage_t *subpage = opaque;
uint8_t buf[8];
#if defined(DEBUG_SUBPAGE)
printf("%s: subpage %p len %u addr " TARGET_FMT_plx
" value %"PRIx64"\n",
__func__, subpage, len, addr, value);
#endif
stn_p(buf, len, value);
return flatview_write(uc, subpage->fv, addr + subpage->base, attrs, buf, len);
}
static bool subpage_accepts(struct uc_struct *uc, void *opaque, hwaddr addr,
unsigned len, bool is_write,
MemTxAttrs attrs)
{
subpage_t *subpage = opaque;
#if defined(DEBUG_SUBPAGE)
printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
__func__, subpage, is_write ? 'w' : 'r', len, addr);
#endif
return flatview_access_valid(uc, subpage->fv, addr + subpage->base,
len, is_write, attrs);
}
static const MemoryRegionOps subpage_ops = {
.read_with_attrs = subpage_read,
.write_with_attrs = subpage_write,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.valid.accepts = subpage_accepts,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int subpage_register(struct uc_struct *uc, subpage_t *mmio, uint32_t start, uint32_t end,
uint16_t section)
{
int idx, eidx;
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
return -1;
idx = SUBPAGE_IDX(start);
eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
__func__, mmio, start, end, idx, eidx, section);
#endif
for (; idx <= eidx; idx++) {
mmio->sub_section[idx] = section;
}
return 0;
}
static subpage_t *subpage_init(struct uc_struct *uc, FlatView *fv, hwaddr base)
{
subpage_t *mmio;
/* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
mmio->fv = fv;
mmio->base = base;
memory_region_init_io(fv->root->uc, &mmio->iomem, &subpage_ops, mmio,
TARGET_PAGE_SIZE);
mmio->iomem.subpage = true;
#if defined(DEBUG_SUBPAGE)
printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
mmio, base, TARGET_PAGE_SIZE);
#endif
return mmio;
}
static uint16_t dummy_section(struct uc_struct *uc, PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
{
assert(fv);
MemoryRegionSection section = {
.fv = fv,
.mr = mr,
.offset_within_address_space = 0,
.offset_within_region = 0,
.size = int128_2_64(),
};
return phys_section_add(uc, map, &section);
}
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
hwaddr index, MemTxAttrs attrs)
{
#ifdef TARGET_ARM
struct uc_struct *uc = cpu->uc;
#endif
int asidx = cpu_asidx_from_attrs(cpu, attrs);
CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
AddressSpaceDispatch *d = cpuas->memory_dispatch;
MemoryRegionSection *sections = d->map.sections;
return &sections[index & ~TARGET_PAGE_MASK];
}
static void io_mem_init(struct uc_struct *uc)
{
memory_region_init_io(uc, &uc->io_mem_unassigned, &unassigned_mem_ops, NULL,
UINT64_MAX);
}
AddressSpaceDispatch *address_space_dispatch_new(struct uc_struct *uc, FlatView *fv)
{
AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
#ifndef NDEBUG
uint16_t n;
n = dummy_section(uc, &d->map, fv, &(uc->io_mem_unassigned));
assert(n == PHYS_SECTION_UNASSIGNED);
#else
dummy_section(uc, &d->map, fv, &(uc->io_mem_unassigned));
#endif
d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
d->uc = uc;
return d;
}
void address_space_dispatch_free(AddressSpaceDispatch *d)
{
phys_sections_free(&d->map);
g_free(d);
}
static void tcg_commit(MemoryListener *listener)
{
CPUAddressSpace *cpuas;
AddressSpaceDispatch *d;
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
cpu_reloading_memory_map();
/* The CPU and TLB are protected by the iothread lock.
* We reload the dispatch pointer now because cpu_reloading_memory_map()
* may have split the RCU critical section.
*/
d = address_space_to_dispatch(cpuas->as);
cpuas->memory_dispatch = d;
tlb_flush(cpuas->cpu);
}
static uint64_t unassigned_io_read(struct uc_struct *uc, void* opaque, hwaddr addr, unsigned size)
{
#ifdef _MSC_VER
return (uint64_t)0xffffffffffffffffULL;
#else
return (uint64_t)-1ULL;
#endif
}
static void unassigned_io_write(struct uc_struct *uc, void* opaque, hwaddr addr, uint64_t data, unsigned size)
{
}
static const MemoryRegionOps unassigned_io_ops = {
.read = unassigned_io_read,
.write = unassigned_io_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void memory_map_init(struct uc_struct *uc)
{
uc->system_memory = g_malloc(sizeof(*(uc->system_memory)));
memory_region_init(uc, uc->system_memory, UINT64_MAX);
address_space_init(uc, &uc->address_space_memory, uc->system_memory);
uc->system_io = g_malloc(sizeof(*(uc->system_io)));
memory_region_init_io(uc, uc->system_io, &unassigned_io_ops, NULL, 65536);
address_space_init(uc, &uc->address_space_io, uc->system_io);
}
/* physical memory access (slow version, mainly for debug) */
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr length)
{
}
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
{
unsigned access_size_max = mr->ops->valid.max_access_size;
/* Regions are assumed to support 1-4 byte accesses unless
otherwise specified. */
if (access_size_max == 0) {
access_size_max = 4;
}
/* Bound the maximum access by the alignment of the address. */
if (!mr->ops->impl.unaligned) {
#ifdef _MSC_VER
unsigned align_size_max = addr & (0ULL - addr);
#else
unsigned align_size_max = addr & -addr;
#endif
if (align_size_max != 0 && align_size_max < access_size_max) {
access_size_max = align_size_max;
}
}
/* Don't attempt accesses larger than the maximum. */
if (l > access_size_max) {
l = access_size_max;
}
l = pow2floor(l);
return l;
}
static bool prepare_mmio_access(MemoryRegion *mr)
{
return true;
}
/* Called within RCU critical section. */
static MemTxResult flatview_write_continue(struct uc_struct *uc, FlatView *fv, hwaddr addr,
MemTxAttrs attrs,
const void *ptr,
hwaddr len, hwaddr addr1,
hwaddr l, MemoryRegion *mr)
{
uint8_t *ram_ptr;
uint64_t val;
MemTxResult result = MEMTX_OK;
bool release_lock = false;
const uint8_t *buf = ptr;
for (;;) {
if (!memory_access_is_direct(mr, true)) {
release_lock |= prepare_mmio_access(mr);
l = memory_access_size(mr, l, addr1);
/* XXX: could force current_cpu to NULL to avoid
potential bugs */
val = ldn_he_p(buf, l);
result |= memory_region_dispatch_write(uc, mr, addr1, val,
size_memop(l), attrs);
} else {
/* RAM case */
ram_ptr = qemu_ram_ptr_length(fv->root->uc, mr->ram_block, addr1, &l, false);
memcpy(ram_ptr, buf, l);
}
if (release_lock) {
release_lock = false;
}
len -= l;
buf += l;
addr += l;
if (!len) {
break;
}
l = len;
mr = flatview_translate(uc, fv, addr, &addr1, &l, true, attrs);
}
return result;
}
/* Called from RCU critical section. */
static MemTxResult flatview_write(struct uc_struct *uc, FlatView *fv, hwaddr addr, MemTxAttrs attrs,
const void *buf, hwaddr len)
{
hwaddr l;
hwaddr addr1;
MemoryRegion *mr;
MemTxResult result = MEMTX_OK;
l = len;
mr = flatview_translate(uc, fv, addr, &addr1, &l, true, attrs);
result = flatview_write_continue(uc, fv, addr, attrs, buf, len,
addr1, l, mr);
return result;
}
/* Called within RCU critical section. */
MemTxResult flatview_read_continue(struct uc_struct *uc, FlatView *fv, hwaddr addr,
MemTxAttrs attrs, void *ptr,
hwaddr len, hwaddr addr1, hwaddr l,
MemoryRegion *mr)
{
uint8_t *ram_ptr;
uint64_t val;
MemTxResult result = MEMTX_OK;
bool release_lock = false;
uint8_t *buf = ptr;
for (;;) {
if (!memory_access_is_direct(mr, false)) {
/* I/O case */
release_lock |= prepare_mmio_access(mr);
l = memory_access_size(mr, l, addr1);
result |= memory_region_dispatch_read(uc, mr, addr1, &val,
size_memop(l), attrs);
stn_he_p(buf, l, val);
} else {
/* RAM case */
ram_ptr = qemu_ram_ptr_length(fv->root->uc, mr->ram_block, addr1, &l, false);
memcpy(buf, ram_ptr, l);
}
if (release_lock) {
release_lock = false;
}
len -= l;
buf += l;
addr += l;
if (!len) {
break;
}
l = len;
mr = flatview_translate(uc, fv, addr, &addr1, &l, false, attrs);
}
return result;
}
/* Called from RCU critical section. */
static MemTxResult flatview_read(struct uc_struct *uc, FlatView *fv, hwaddr addr,
MemTxAttrs attrs, void *buf, hwaddr len)
{
hwaddr l;
hwaddr addr1;
MemoryRegion *mr;
l = len;
mr = flatview_translate(uc, fv, addr, &addr1, &l, false, attrs);
return flatview_read_continue(uc, fv, addr, attrs, buf, len,
addr1, l, mr);
}
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, void *buf, hwaddr len)
{
MemTxResult result = MEMTX_OK;
FlatView *fv;
if (len > 0) {
fv = address_space_to_flatview(as);
result = flatview_read(as->uc, fv, addr, attrs, buf, len);
}
return result;
}
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs,
const void *buf, hwaddr len)
{
MemTxResult result = MEMTX_OK;
FlatView *fv;
if (len > 0) {
fv = address_space_to_flatview(as);
result = flatview_write(as->uc, fv, addr, attrs, buf, len);
}
return result;
}
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
void *buf, hwaddr len, bool is_write)
{
if (is_write) {
return address_space_write(as, addr, attrs, buf, len);
} else {
return address_space_read_full(as, addr, attrs, buf, len);
}
}
bool cpu_physical_memory_rw(AddressSpace *as, hwaddr addr, void *buf,
hwaddr len, bool is_write)
{
MemTxResult result = address_space_rw(as, addr, MEMTXATTRS_UNSPECIFIED,
buf, len, is_write);
if (result == MEMTX_OK) {
return true;
} else {
return false;
}
}
enum write_rom_type {
WRITE_DATA,
FLUSH_CACHE,
};
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
hwaddr addr,
MemTxAttrs attrs,
const void *ptr,
hwaddr len,
enum write_rom_type type)
{
hwaddr l;
uint8_t *ram_ptr;
hwaddr addr1;
MemoryRegion *mr;
const uint8_t *buf = ptr;
while (len > 0) {
l = len;
mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
if (!memory_region_is_ram(mr)) {
l = memory_access_size(mr, l, addr1);
} else {
/* ROM/RAM case */
ram_ptr = qemu_map_ram_ptr(as->uc, mr->ram_block, addr1);
switch (type) {
case WRITE_DATA:
memcpy(ram_ptr, buf, l);
break;
case FLUSH_CACHE:
flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
break;
}
}
len -= l;
buf += l;
addr += l;
}
return MEMTX_OK;
}
/* used for ROM loading : can write in RAM and ROM */
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs,
const void *buf, hwaddr len)
{
return address_space_write_rom_internal(as, addr, attrs,
buf, len, WRITE_DATA);
}
void cpu_flush_icache_range(AddressSpace *as, hwaddr start, hwaddr len)
{
}
void cpu_exec_init_all(struct uc_struct *uc)
{
/* The data structures we set up here depend on knowing the page size,
* so no more changes can be made after this point.
* In an ideal world, nothing we did before we had finished the
* machine setup would care about the target page size, and we could
* do this much later, rather than requiring board models to state
* up front what their requirements are.
*/
finalize_target_page_bits(uc);
memory_map_init(uc);
io_mem_init(uc);
}
static bool flatview_access_valid(struct uc_struct *uc, FlatView *fv, hwaddr addr, hwaddr len,
bool is_write, MemTxAttrs attrs)
{
MemoryRegion *mr;
hwaddr l, xlat;
while (len > 0) {
l = len;
mr = flatview_translate(uc, fv, addr, &xlat, &l, is_write, attrs);
if (!memory_access_is_direct(mr, is_write)) {
l = memory_access_size(mr, l, addr);
if (!memory_region_access_valid(uc, mr, xlat, l, is_write, attrs)) {
return false;
}
}
len -= l;
addr += l;
}
return true;
}
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
hwaddr len, bool is_write,
MemTxAttrs attrs)
{
FlatView *fv;
bool result;
fv = address_space_to_flatview(as);
result = flatview_access_valid(as->uc, fv, addr, len, is_write, attrs);
return result;
}
static hwaddr
flatview_extend_translation(struct uc_struct *uc, FlatView *fv, hwaddr addr,
hwaddr target_len,
MemoryRegion *mr, hwaddr base, hwaddr len,
bool is_write, MemTxAttrs attrs)
{
hwaddr done = 0;
hwaddr xlat;
MemoryRegion *this_mr;
for (;;) {
target_len -= len;
addr += len;
done += len;
if (target_len == 0) {
return done;
}
len = target_len;
this_mr = flatview_translate(uc, fv, addr, &xlat,
&len, is_write, attrs);
if (this_mr != mr || xlat != base + done) {
return done;
}
}
}
/* Map a physical memory region into a host virtual address.
* May map a subset of the requested range, given by and returned in *plen.
* May return NULL if resources needed to perform the mapping are exhausted.
* Use only for reads OR writes - not for read-modify-write operations.
* Use cpu_register_map_client() to know when retrying the map operation is
* likely to succeed.
*/
void *address_space_map(AddressSpace *as,
hwaddr addr,
hwaddr *plen,
bool is_write,
MemTxAttrs attrs)
{
hwaddr len = *plen;
hwaddr l, xlat;
MemoryRegion *mr;
void *ptr;
FlatView *fv;
struct uc_struct *uc = as->uc;
if (len == 0) {
return NULL;
}
l = len;
fv = address_space_to_flatview(as);
mr = flatview_translate(uc, fv, addr, &xlat, &l, is_write, attrs);
if (!memory_access_is_direct(mr, is_write)) {
/* Avoid unbounded allocations */
l = MIN(l, TARGET_PAGE_SIZE);
mr->uc->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
mr->uc->bounce.addr = addr;
mr->uc->bounce.len = l;
mr->uc->bounce.mr = mr;
if (!is_write) {
flatview_read(as->uc, fv, addr, MEMTXATTRS_UNSPECIFIED,
mr->uc->bounce.buffer, l);
}
*plen = l;
return mr->uc->bounce.buffer;
}
*plen = flatview_extend_translation(as->uc, fv, addr, len, mr, xlat,
l, is_write, attrs);
ptr = qemu_ram_ptr_length(as->uc, mr->ram_block, xlat, plen, true);
return ptr;
}
/* Unmaps a memory region previously mapped by address_space_map().
* Will also mark the memory as dirty if is_write is true. access_len gives
* the amount of memory that was actually read or written by the caller.
*/
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
bool is_write, hwaddr access_len)
{
if (buffer != as->uc->bounce.buffer) {
MemoryRegion *mr;
ram_addr_t addr1;
mr = memory_region_from_host(as->uc, buffer, &addr1);
assert(mr != NULL);
if (is_write) {
invalidate_and_set_dirty(mr, addr1, access_len);
}
return;
}
if (is_write) {
address_space_write(as, as->uc->bounce.addr, MEMTXATTRS_UNSPECIFIED,
as->uc->bounce.buffer, access_len);
}
qemu_vfree(as->uc->bounce.buffer);
as->uc->bounce.buffer = NULL;
}
void *cpu_physical_memory_map(AddressSpace *as, hwaddr addr,
hwaddr *plen,
bool is_write)
{
return address_space_map(as, addr, plen, is_write,
MEMTXATTRS_UNSPECIFIED);
}
void cpu_physical_memory_unmap(AddressSpace *as, void *buffer, hwaddr len,
bool is_write, hwaddr access_len)
{
address_space_unmap(as, buffer, len, is_write, access_len);
}
#define ARG1_DECL AddressSpace *as
#define ARG1 as
#ifdef UNICORN_ARCH_POSTFIX
#define SUFFIX UNICORN_ARCH_POSTFIX
#else
#define SUFFIX
#endif
#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
#include "memory_ldst.inc.c"
/* Called from RCU critical section. This function has the same
* semantics as address_space_translate, but it only works on a
* predefined range of a MemoryRegion that was mapped with
* address_space_cache_init.
*/
static inline MemoryRegion *address_space_translate_cached(
MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool is_write, MemTxAttrs attrs)
{
MemoryRegionSection section;
MemoryRegion *mr;
IOMMUMemoryRegion *iommu_mr;
AddressSpace *target_as;
assert(!cache->ptr);
*xlat = addr + cache->xlat;
mr = cache->mrs.mr;
iommu_mr = memory_region_get_iommu(mr);
if (!iommu_mr) {
/* MMIO region. */
return mr;
}
section = address_space_translate_iommu(iommu_mr, xlat, plen,
NULL, is_write, true,
&target_as, attrs);
return section.mr;
}
#define ARG1_DECL MemoryRegionCache *cache
#define ARG1 cache
#ifdef UNICORN_ARCH_POSTFIX
#define SUFFIX glue(_cached_slow, UNICORN_ARCH_POSTFIX)
#else
#define SUFFIX _cached_slow
#endif
#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
#include "memory_ldst.inc.c"
/* virtual memory access for debug (includes writing to ROM) */
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
void *ptr, target_ulong len, bool is_write)
{
#ifdef TARGET_ARM
struct uc_struct *uc = cpu->uc;
#endif
hwaddr phys_addr;
target_ulong l, page;
uint8_t *buf = ptr;
while (len > 0) {
int asidx;
MemTxAttrs attrs;
page = addr & TARGET_PAGE_MASK;
phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
asidx = cpu_asidx_from_attrs(cpu, attrs);
/* if no physical page mapped, return an error */
if (phys_addr == -1)
return -1;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
phys_addr += (addr & ~TARGET_PAGE_MASK);
if (is_write) {
address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
attrs, buf, l);
} else {
address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
l);
}
len -= l;
buf += l;
addr += l;
}
return 0;
}
/*
* Allows code that needs to deal with migration bitmaps etc to still be built
* target independent.
*/
size_t qemu_target_page_size(struct uc_struct *uc)
{
return TARGET_PAGE_SIZE;
}
int qemu_target_page_bits(struct uc_struct *uc)
{
return TARGET_PAGE_BITS;
}
int qemu_target_page_bits_min(void)
{
return TARGET_PAGE_BITS_MIN;
}
bool target_words_bigendian(void)
{
#if defined(TARGET_WORDS_BIGENDIAN)
return true;
#else
return false;
#endif
}
bool cpu_physical_memory_is_io(AddressSpace *as, hwaddr phys_addr)
{
MemoryRegion*mr;
hwaddr l = 1;
bool res;
mr = address_space_translate(as,
phys_addr, &phys_addr, &l, false,
MEMTXATTRS_UNSPECIFIED);
res = !memory_region_is_ram(mr);
return res;
}
/*
* Unmap pages of memory from start to start+length such that
* they a) read as 0, b) Trigger whatever fault mechanism
* the OS provides for postcopy.
* The pages must be unmapped by the end of the function.
* Returns: 0 on success, none-0 on failure
*
*/
int ram_block_discard_range(struct uc_struct *uc, RAMBlock *rb, uint64_t start, size_t length)
{
int ret = -1;
uint8_t *host_startaddr = rb->host + start;
if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
//error_report("ram_block_discard_range: Unaligned start address: %p",
// host_startaddr);
goto err;
}
if ((start + length) <= rb->used_length) {
bool need_madvise;
if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
//error_report("ram_block_discard_range: Unaligned length: %zx",
// length);
goto err;
}
errno = ENOTSUP; /* If we are missing MADVISE etc */
/* The logic here is messy;
* madvise DONTNEED fails for hugepages
* fallocate works on hugepages and shmem
*/
need_madvise = (rb->page_size == uc->qemu_host_page_size);
if (need_madvise) {
/* For normal RAM this causes it to be unmapped,
* for shared memory it causes the local mapping to disappear
* and to fall back on the file contents (which we just
* fallocate'd away).
*/
#if defined(CONFIG_MADVISE)
ret = madvise(host_startaddr, length, MADV_DONTNEED);
if (ret) {
ret = -errno;
//error_report("ram_block_discard_range: Failed to discard range "
// "%s:%" PRIx64 " +%zx (%d)",
// rb->idstr, start, length, ret);
goto err;
}
#else
ret = -ENOSYS;
//error_report("ram_block_discard_range: MADVISE not available"
// "%s:%" PRIx64 " +%zx (%d)",
// rb->idstr, start, length, ret);
goto err;
#endif
}
} else {
//error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
// "/%zx/" RAM_ADDR_FMT")",
// rb->idstr, start, length, rb->used_length);
}
err:
return ret;
}
bool ramblock_is_pmem(RAMBlock *rb)
{
return rb->flags & RAM_PMEM;
}
void page_size_init(struct uc_struct *uc)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
TARGET_PAGE_SIZE */
if (uc->qemu_host_page_size == 0) {
uc->qemu_host_page_size = uc->qemu_real_host_page_size;
}
if (uc->qemu_host_page_size < TARGET_PAGE_SIZE) {
uc->qemu_host_page_size = TARGET_PAGE_SIZE;
}
}