unicorn/qemu/target/ppc/unicorn.c
2022-07-20 18:31:13 -04:00

428 lines
11 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
/* Modified for Unicorn Engine by Chen Huitao<chenhuitao@hfmrit.com>, 2020 */
#include "qemu/osdep.h"
#include "hw/ppc/ppc.h"
#include "sysemu/cpus.h"
#include "cpu.h"
#include "unicorn_common.h"
#include "uc_priv.h"
#include "unicorn.h"
#include "helper_regs.h"
#include "cpu.h"
#ifdef TARGET_PPC64
typedef uint64_t ppcreg_t;
#else
typedef uint32_t ppcreg_t;
#endif
// Unicorn version to ensure writing MSR without exception
static inline int uc_ppc_store_msr(CPUPPCState *env, target_ulong value,
int alter_hv)
{
// int excp;
// CPUState *cs = env_cpu(env);
// excp = 0;
value &= env->msr_mask;
/* Neither mtmsr nor guest state can alter HV */
if (!alter_hv || !(env->msr & MSR_HVB)) {
value &= ~MSR_HVB;
value |= env->msr & MSR_HVB;
}
if (((value >> MSR_IR) & 1) != msr_ir ||
((value >> MSR_DR) & 1) != msr_dr) {
// cpu_interrupt_exittb(cs);
}
if ((env->mmu_model & POWERPC_MMU_BOOKE) &&
((value >> MSR_GS) & 1) != msr_gs) {
// cpu_interrupt_exittb(cs);
}
if (unlikely((env->flags & POWERPC_FLAG_TGPR) &&
((value ^ env->msr) & (1 << MSR_TGPR)))) {
/* Swap temporary saved registers with GPRs */
hreg_swap_gpr_tgpr(env);
}
if (unlikely((value >> MSR_EP) & 1) != msr_ep) {
/* Change the exception prefix on PowerPC 601 */
env->excp_prefix = ((value >> MSR_EP) & 1) * 0xFFF00000;
}
/*
* If PR=1 then EE, IR and DR must be 1
*
* Note: We only enforce this on 64-bit server processors.
* It appears that:
* - 32-bit implementations supports PR=1 and EE/DR/IR=0 and MacOS
* exploits it.
* - 64-bit embedded implementations do not need any operation to be
* performed when PR is set.
*/
if (is_book3s_arch2x(env) && ((value >> MSR_PR) & 1)) {
value |= (1 << MSR_EE) | (1 << MSR_DR) | (1 << MSR_IR);
}
env->msr = value;
hreg_compute_hflags(env);
// if (unlikely(msr_pow == 1)) {
// if (!env->pending_interrupts && (*env->check_pow)(env)) {
// cs->halted = 1;
// excp = EXCP_HALTED;
// }
// }
return 0;
}
static uint64_t ppc_mem_redirect(uint64_t address)
{
/* // kseg0 range masks off high address bit
if (address >= 0x80000000 && address <= 0x9fffffff)
return address & 0x7fffffff;
// kseg1 range masks off top 3 address bits
if (address >= 0xa0000000 && address <= 0xbfffffff) {
return address & 0x1fffffff;
}*/
// no redirect
return address;
}
static void ppc_set_pc(struct uc_struct *uc, uint64_t address)
{
((CPUPPCState *)uc->cpu->env_ptr)->nip = address;
}
static uint64_t ppc_get_pc(struct uc_struct *uc)
{
return ((CPUPPCState *)uc->cpu->env_ptr)->nip;
}
void ppc_cpu_instance_finalize(CPUState *obj);
void ppc_cpu_unrealize(CPUState *dev);
static void ppc_release(void *ctx)
{
int i;
TCGContext *tcg_ctx = (TCGContext *)ctx;
PowerPCCPU *cpu = (PowerPCCPU *)tcg_ctx->uc->cpu;
CPUTLBDesc *d = cpu->neg.tlb.d;
CPUTLBDescFast *f = cpu->neg.tlb.f;
CPUTLBDesc *desc;
CPUTLBDescFast *fast;
release_common(ctx);
for (i = 0; i < NB_MMU_MODES; i++) {
desc = &(d[i]);
fast = &(f[i]);
g_free(desc->iotlb);
g_free(fast->table);
}
for (i = 0; i < 32; i++) {
g_free(tcg_ctx->cpu_gpr[i]);
}
// g_free(tcg_ctx->cpu_PC);
g_free(tcg_ctx->btarget);
g_free(tcg_ctx->bcond);
g_free(tcg_ctx->cpu_dspctrl);
// g_free(tcg_ctx->tb_ctx.tbs);
ppc_cpu_instance_finalize(tcg_ctx->uc->cpu);
ppc_cpu_unrealize(tcg_ctx->uc->cpu);
}
void ppc_reg_reset(struct uc_struct *uc)
{
CPUArchState *env;
env = uc->cpu->env_ptr;
memset(env->gpr, 0, sizeof(env->gpr));
env->nip = 0;
}
// http://www.csit-sun.pub.ro/~cpop/Documentatie_SMP/Motorola_PowerPC/PowerPc/GenInfo/pemch2.pdf
static void reg_read(CPUPPCState *env, unsigned int regid, void *value)
{
uint32_t val;
if (regid >= UC_PPC_REG_0 && regid <= UC_PPC_REG_31)
*(ppcreg_t *)value = env->gpr[regid - UC_PPC_REG_0];
else {
switch (regid) {
default:
break;
case UC_PPC_REG_PC:
*(ppcreg_t *)value = env->nip;
break;
case UC_PPC_REG_FPR0:
case UC_PPC_REG_FPR1:
case UC_PPC_REG_FPR2:
case UC_PPC_REG_FPR3:
case UC_PPC_REG_FPR4:
case UC_PPC_REG_FPR5:
case UC_PPC_REG_FPR6:
case UC_PPC_REG_FPR7:
case UC_PPC_REG_FPR8:
case UC_PPC_REG_FPR9:
case UC_PPC_REG_FPR10:
case UC_PPC_REG_FPR11:
case UC_PPC_REG_FPR12:
case UC_PPC_REG_FPR13:
case UC_PPC_REG_FPR14:
case UC_PPC_REG_FPR15:
case UC_PPC_REG_FPR16:
case UC_PPC_REG_FPR17:
case UC_PPC_REG_FPR18:
case UC_PPC_REG_FPR19:
case UC_PPC_REG_FPR20:
case UC_PPC_REG_FPR21:
case UC_PPC_REG_FPR22:
case UC_PPC_REG_FPR23:
case UC_PPC_REG_FPR24:
case UC_PPC_REG_FPR25:
case UC_PPC_REG_FPR26:
case UC_PPC_REG_FPR27:
case UC_PPC_REG_FPR28:
case UC_PPC_REG_FPR29:
case UC_PPC_REG_FPR30:
case UC_PPC_REG_FPR31:
*(uint64_t *)value = env->vsr[regid - UC_PPC_REG_FPR0].VsrD(0);
break;
case UC_PPC_REG_CR0:
case UC_PPC_REG_CR1:
case UC_PPC_REG_CR2:
case UC_PPC_REG_CR3:
case UC_PPC_REG_CR4:
case UC_PPC_REG_CR5:
case UC_PPC_REG_CR6:
case UC_PPC_REG_CR7:
*(uint32_t *)value = env->crf[regid - UC_PPC_REG_CR0];
break;
case UC_PPC_REG_CR:
val = 0;
for (int i = 0; i < 8; i++) {
val <<= 4;
val |= env->crf[i];
}
*(uint32_t *)value = val;
break;
case UC_PPC_REG_LR:
*(ppcreg_t *)value = env->lr;
break;
case UC_PPC_REG_CTR:
*(ppcreg_t *)value = env->ctr;
break;
case UC_PPC_REG_MSR:
*(ppcreg_t *)value = env->msr;
break;
case UC_PPC_REG_XER:
*(uint32_t *)value = env->xer;
break;
case UC_PPC_REG_FPSCR:
*(uint32_t *)value = env->fpscr;
break;
}
}
return;
}
static void reg_write(CPUPPCState *env, unsigned int regid, const void *value)
{
uint32_t val;
int i;
if (regid >= UC_PPC_REG_0 && regid <= UC_PPC_REG_31)
env->gpr[regid - UC_PPC_REG_0] = *(ppcreg_t *)value;
else {
switch (regid) {
default:
break;
case UC_PPC_REG_PC:
env->nip = *(ppcreg_t *)value;
break;
case UC_PPC_REG_FPR0:
case UC_PPC_REG_FPR1:
case UC_PPC_REG_FPR2:
case UC_PPC_REG_FPR3:
case UC_PPC_REG_FPR4:
case UC_PPC_REG_FPR5:
case UC_PPC_REG_FPR6:
case UC_PPC_REG_FPR7:
case UC_PPC_REG_FPR8:
case UC_PPC_REG_FPR9:
case UC_PPC_REG_FPR10:
case UC_PPC_REG_FPR11:
case UC_PPC_REG_FPR12:
case UC_PPC_REG_FPR13:
case UC_PPC_REG_FPR14:
case UC_PPC_REG_FPR15:
case UC_PPC_REG_FPR16:
case UC_PPC_REG_FPR17:
case UC_PPC_REG_FPR18:
case UC_PPC_REG_FPR19:
case UC_PPC_REG_FPR20:
case UC_PPC_REG_FPR21:
case UC_PPC_REG_FPR22:
case UC_PPC_REG_FPR23:
case UC_PPC_REG_FPR24:
case UC_PPC_REG_FPR25:
case UC_PPC_REG_FPR26:
case UC_PPC_REG_FPR27:
case UC_PPC_REG_FPR28:
case UC_PPC_REG_FPR29:
case UC_PPC_REG_FPR30:
case UC_PPC_REG_FPR31:
env->vsr[regid - UC_PPC_REG_FPR0].VsrD(0) = *(uint64_t *)value;
break;
case UC_PPC_REG_CR0:
case UC_PPC_REG_CR1:
case UC_PPC_REG_CR2:
case UC_PPC_REG_CR3:
case UC_PPC_REG_CR4:
case UC_PPC_REG_CR5:
case UC_PPC_REG_CR6:
case UC_PPC_REG_CR7:
env->crf[regid - UC_PPC_REG_CR0] = (*(uint32_t *)value) & 0b1111;
break;
case UC_PPC_REG_CR:
val = *(uint32_t *)value;
for (i = 7; i >= 0; i--) {
env->crf[i] = val & 0b1111;
val >>= 4;
}
break;
case UC_PPC_REG_LR:
env->lr = *(ppcreg_t *)value;
break;
case UC_PPC_REG_CTR:
env->ctr = *(ppcreg_t *)value;
break;
case UC_PPC_REG_MSR:
uc_ppc_store_msr(env, *(ppcreg_t *)value, 0);
break;
case UC_PPC_REG_XER:
env->xer = *(uint32_t *)value;
break;
case UC_PPC_REG_FPSCR:
store_fpscr(env, *(uint32_t *)value, 0xffffffff);
break;
}
}
return;
}
int ppc_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals,
int count)
{
CPUPPCState *env = &(POWERPC_CPU(uc->cpu)->env);
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
reg_read(env, regid, value);
}
return 0;
}
int ppc_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals,
int count)
{
CPUPPCState *env = &(POWERPC_CPU(uc->cpu)->env);
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
reg_write(env, regid, value);
if (regid == UC_PPC_REG_PC) {
// force to quit execution and flush TB
uc->quit_request = true;
uc_emu_stop(uc);
}
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_PPC64
int ppc64_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void **vals, int count)
#else
int ppc_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void **vals, int count)
#endif
{
CPUPPCState *env = (CPUPPCState *)ctx->data;
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
reg_read(env, regid, value);
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_PPC64
int ppc64_context_reg_write(struct uc_context *ctx, unsigned int *regs,
void *const *vals, int count)
#else
int ppc_context_reg_write(struct uc_context *ctx, unsigned int *regs,
void *const *vals, int count)
#endif
{
CPUPPCState *env = (CPUPPCState *)ctx->data;
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
reg_write(env, regid, value);
}
return 0;
}
PowerPCCPU *cpu_ppc_init(struct uc_struct *uc);
static int ppc_cpus_init(struct uc_struct *uc, const char *cpu_model)
{
PowerPCCPU *cpu;
cpu = cpu_ppc_init(uc);
if (cpu == NULL) {
return -1;
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_PPC64
void ppc64_uc_init(struct uc_struct *uc)
#else
void ppc_uc_init(struct uc_struct *uc)
#endif
{
uc->reg_read = ppc_reg_read;
uc->reg_write = ppc_reg_write;
uc->reg_reset = ppc_reg_reset;
uc->release = ppc_release;
uc->set_pc = ppc_set_pc;
uc->get_pc = ppc_get_pc;
uc->mem_redirect = ppc_mem_redirect;
uc->cpus_init = ppc_cpus_init;
uc->cpu_context_size = offsetof(CPUPPCState, uc);
uc_common_init(uc);
}