unicorn/tests/unit/test_ctl.c

237 lines
6.5 KiB
C

#include "unicorn_test.h"
#include <time.h>
#include <string.h>
// We have to copy this for Android.
#ifdef _WIN32
#include "windows.h"
#define NANOSECONDS_PER_SECOND 1000000000LL
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
uint32_t low, high;
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
static int64_t get_freq(void)
{
LARGE_INTEGER freq;
int ret = QueryPerformanceFrequency(&freq);
if (ret == 0) {
fprintf(stderr, "Could not calibrate ticks\n");
exit(1);
}
return freq.QuadPart;
}
static inline int64_t get_clock_realtime(void)
{
LARGE_INTEGER ti;
QueryPerformanceCounter(&ti);
return muldiv64(ti.QuadPart, NANOSECONDS_PER_SECOND, get_freq());
}
#else
#include <sys/time.h>
/* get host real time in nanosecond */
static inline int64_t get_clock_realtime(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
}
#endif
const uint64_t code_start = 0x1000;
const uint64_t code_len = 0x4000;
static void uc_common_setup(uc_engine **uc, uc_arch arch, uc_mode mode,
const char *code, uint64_t size)
{
OK(uc_open(arch, mode, uc));
OK(uc_mem_map(*uc, code_start, code_len, UC_PROT_ALL));
OK(uc_mem_write(*uc, code_start, code, size));
}
#define GEN_SIMPLE_READ_TEST(field, ctl_type, arg_type, expected) \
static void test_uc_ctl_##field() \
{ \
uc_engine *uc; \
arg_type arg; \
OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc)); \
OK(uc_ctl(uc, UC_CTL_READ(ctl_type, 1), &arg)); \
TEST_CHECK(arg == expected); \
OK(uc_close(uc)); \
}
GEN_SIMPLE_READ_TEST(mode, UC_CTL_UC_MODE, int, 4)
GEN_SIMPLE_READ_TEST(arch, UC_CTL_UC_ARCH, int, 4)
GEN_SIMPLE_READ_TEST(page_size, UC_CTL_UC_PAGE_SIZE, uint32_t, 4096)
GEN_SIMPLE_READ_TEST(time_out, UC_CTL_UC_TIMEOUT, uint64_t, 0)
static void test_uc_ctl_exits()
{
uc_engine *uc;
// cmp eax, 0;
// jg lb;
// inc eax;
// nop; <---- exit1
// lb:
// inc ebx;
// nop; <---- exit2
char code[] = "\x83\xf8\x00\x7f\x02\x40\x90\x43\x90";
int r_eax;
int r_ebx;
uint64_t exits[] = {code_start + 6, code_start + 8};
uc_common_setup(&uc, UC_ARCH_X86, UC_MODE_32, code, sizeof(code) - 1);
OK(uc_ctl_exits_enable(uc));
OK(uc_ctl_set_exits(uc, exits, 2));
r_eax = 0;
r_ebx = 0;
OK(uc_reg_write(uc, UC_X86_REG_EAX, &r_eax));
OK(uc_reg_write(uc, UC_X86_REG_EAX, &r_ebx));
// Run two times.
OK(uc_emu_start(uc, code_start, 0, 0, 0));
OK(uc_emu_start(uc, code_start, 0, 0, 0));
OK(uc_reg_read(uc, UC_X86_REG_EAX, &r_eax));
OK(uc_reg_read(uc, UC_X86_REG_EAX, &r_ebx));
TEST_CHECK(r_eax == 1);
TEST_CHECK(r_ebx == 1);
OK(uc_close(uc));
}
double time_emulation(uc_engine *uc, uint64_t start, uint64_t end)
{
int64_t t1, t2;
t1 = get_clock_realtime();
OK(uc_emu_start(uc, start, end, 0, 0));
t2 = get_clock_realtime();
return t2 - t1;
}
#define TB_COUNT (8)
#define TCG_MAX_INSNS (512) // from tcg.h
#define CODE_LEN TB_COUNT *TCG_MAX_INSNS
static void test_uc_ctl_tb_cache()
{
uc_engine *uc;
char code[CODE_LEN + 1];
double standard, cached, evicted;
memset(code, 0x90, CODE_LEN);
code[CODE_LEN] = 0;
uc_common_setup(&uc, UC_ARCH_X86, UC_MODE_32, code, sizeof(code) - 1);
standard = time_emulation(uc, code_start, code_start + sizeof(code) - 1);
for (int i = 0; i < TB_COUNT; i++) {
OK(uc_ctl_request_cache(uc, code_start + i * TCG_MAX_INSNS, NULL));
}
cached = time_emulation(uc, code_start, code_start + sizeof(code) - 1);
for (int i = 0; i < TB_COUNT; i++) {
OK(uc_ctl_remove_cache(uc, code_start + i * TCG_MAX_INSNS,
code_start + i * TCG_MAX_INSNS + 1));
}
evicted = time_emulation(uc, code_start, code_start + sizeof(code) - 1);
// In fact, evicted is also slightly faster than standard but we don't do
// this guarantee.
TEST_CHECK(cached < standard);
TEST_CHECK(evicted > cached);
OK(uc_close(uc));
}
static void test_uc_ctl_change_page_size()
{
uc_engine *uc;
uc_engine *uc2;
OK(uc_open(UC_ARCH_ARM, UC_MODE_ARM, &uc));
OK(uc_open(UC_ARCH_ARM, UC_MODE_ARM, &uc2));
OK(uc_ctl_set_page_size(uc, 4096));
OK(uc_mem_map(uc2, 1 << 10, 1 << 10, UC_PROT_ALL));
uc_assert_err(UC_ERR_ARG, uc_mem_map(uc, 1 << 10, 1 << 10, UC_PROT_ALL));
OK(uc_close(uc));
OK(uc_close(uc2));
}
// Copy from test_arm.c but with new API.
static void test_uc_ctl_arm_cpu()
{
uc_engine *uc;
int r_control, r_msp, r_psp;
OK(uc_open(UC_ARCH_ARM, UC_MODE_THUMB, &uc));
OK(uc_ctl_set_cpu_model(uc, UC_CPU_ARM_CORTEX_M7));
r_control = 0; // Make sure we are using MSP.
OK(uc_reg_write(uc, UC_ARM_REG_CONTROL, &r_control));
r_msp = 0x1000;
OK(uc_reg_write(uc, UC_ARM_REG_R13, &r_msp));
r_control = 0b10; // Make the switch.
OK(uc_reg_write(uc, UC_ARM_REG_CONTROL, &r_control));
OK(uc_reg_read(uc, UC_ARM_REG_R13, &r_psp));
TEST_CHECK(r_psp != r_msp);
r_psp = 0x2000;
OK(uc_reg_write(uc, UC_ARM_REG_R13, &r_psp));
r_control = 0; // Switch again
OK(uc_reg_write(uc, UC_ARM_REG_CONTROL, &r_control));
OK(uc_reg_read(uc, UC_ARM_REG_R13, &r_msp));
TEST_CHECK(r_psp != r_msp);
TEST_CHECK(r_msp == 0x1000);
OK(uc_close(uc));
}
TEST_LIST = {{"test_uc_ctl_mode", test_uc_ctl_mode},
{"test_uc_ctl_page_size", test_uc_ctl_page_size},
{"test_uc_ctl_arch", test_uc_ctl_arch},
{"test_uc_ctl_time_out", test_uc_ctl_time_out},
{"test_uc_ctl_exits", test_uc_ctl_exits},
{"test_uc_ctl_tb_cache", test_uc_ctl_tb_cache},
{"test_uc_ctl_change_page_size", test_uc_ctl_change_page_size},
{"test_uc_ctl_arm_cpu", test_uc_ctl_arm_cpu},
{NULL, NULL}};