unicorn/tests/unit/test_tb_x86.c

312 lines
8.8 KiB
C

/**
* Unicorn x86_32 self-modifying unit test
*
* This test demonstrates the flushing of instruction translation cache
* after a self-modification of Intel's x8's "IMUL Gv,Ev,Ib" instruction.
*/
#include "unicorn_test.h"
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#define RIP_NEXT_TO_THE_SELFMODIFY_OPCODE (1)
// Demostration of a self-modifying "IMUL eax,mem,Ib" opcode
// And the QEMU's ability to flush the translation buffer properly
#define MIN(a, b) (a < b? a: b)
#define CODE_SPACE (2 * 1024 * 1024)
#define PHY_STACK_REGION (0x60000000)
#define X86_CODE32_ALPHA_MIXED \
"\x89\xe1\xd9\xcd\xd9\x71\xf4\x5d\x55\x59\x49\x49\x49\x49\x49\x49" \
"\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a\x41\x58" \
"\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" \
"\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x51\x51\x51\x52" \
"\x47\x33\x47\x34\x51\x55\x51\x56\x50\x47\x47\x38\x47\x39\x50\x4a" \
"\x50\x4b\x50\x4c\x50\x4d\x50\x4e\x50\x4f\x50\x50\x50\x31\x47\x42" \
"\x47\x42\x50\x34\x50\x5a\x50\x45\x51\x52\x46\x32\x47\x31\x50\x4d" \
"\x51\x51\x50\x4e\x41\x41"
/* Called before every test to set up a new instance */
static int setup(void **state)
{
uc_engine *uc;
uc_assert_success(uc_open(UC_ARCH_X86, UC_MODE_64, &uc));
*state = uc;
return 0;
}
/* Called after every test to clean up */
static int teardown(void **state)
{
uc_engine *uc = *state;
uc_assert_success(uc_close(uc));
*state = NULL;
return 0;
}
static void dump_stack_mem(uc_engine *uc)
{
uint8_t tmp[256];
uint32_t size;
size = sizeof(X86_CODE32_ALPHA_MIXED);
if (size > 255) size = 255;
if (!uc_mem_read(uc, PHY_STACK_REGION, tmp, size))
{
uint32_t i;
printf("Stack region dump");
for (i=0; i<size; i++) {
if ((i % 16) == 0) printf("\n%x: ", PHY_STACK_REGION+i);
printf("%x ", tmp[i]);
}
printf("\n");
}
}
static void print_registers(uc_engine *uc)
{
int32_t eax, ecx, edx, ebx;
int32_t esp, ebp, esi, edi;
uc_reg_read(uc, UC_X86_REG_EAX, &eax);
uc_reg_read(uc, UC_X86_REG_ECX, &ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &edx);
uc_reg_read(uc, UC_X86_REG_EBX, &ebx);
uc_reg_read(uc, UC_X86_REG_ESP, &esp);
uc_reg_read(uc, UC_X86_REG_EBP, &ebp);
uc_reg_read(uc, UC_X86_REG_ESI, &esi);
uc_reg_read(uc, UC_X86_REG_EDI, &edi);
printf("Register dump:\n");
printf("eax %8.8x ", eax);
printf("ecx %8.8x ", ecx);
printf("edx %8.8x ", edx);
printf("ebx %8.8x\n", ebx);
printf("esp %8.8x ", esp);
printf("ebp %8.8x ", ebp);
printf("esi %8.8x ", esi);
printf("edi %8.8x ", edi);
printf("\n");
}
static void hook_code32(uc_engine *uc,
uint64_t address,
uint32_t size,
void *user_data)
{
//uint8_t opcode[256];
uint8_t tmp[16];
uint32_t tmp4[1];
uint32_t ecx;
printf("\nhook_code32: Address: %"PRIx64", Opcode Size: %d\n", address, size);
print_registers(uc);
size = MIN(sizeof(tmp), size);
if (!uc_mem_read(uc, address, tmp, size))
{
uint32_t i;
printf("Opcode: ");
for (i=0; i<size; i++) {
printf("%x ", tmp[i]);
}
printf("\n");
}
dump_stack_mem(uc);
if (address == 0x60000025)
{
// double-check that opcode is
// IMUL aex,[eax+0x41],0x10
if ((tmp[0] != 0x6b) ||
(tmp[1] != 0x41) ||
(tmp[2] != 0x41) ||
(tmp[3] != 0x10))
{
printf("FAILED set-up of opcode\n");
exit(-1);
}
printf("IMUL eax,[ecx+0x41],0x10\n");
// double-check that memory operand points to 0x6000003a
uc_reg_read(uc, UC_X86_REG_ECX, &ecx);
if (ecx != 0x5ffffff9)
{
printf("FAILED EAX register not having 0x5ffffff9\n");
exit(-1);
}
printf("ECX = %8.8x\n", ecx);
printf("%8.8x + 0x41 = %8.8x\n", 0x5ffffff9, 0x5ffffff9 + 0x41);
// double-check that memory location 0x60000039
// contains 0x5151494a
if (!uc_mem_read(uc, 0x6000003a, tmp4, 4))
{
if (tmp4[0] != 0x5151494a)
{
printf("FAILED set-up\n");
exit(-1);
}
printf("Proved that 0x6000003a contains the proper 0x5151494a\n");
}
// dump_stack_mem(uc);
}
// Stop after 'imul eax,[ecx+0x41],0x10
if (address == 0x60000029)
{
uint32_t eax;
// IMUL eax,mem,Ib
// mem = [ecx+0x41]
// ecx = 0x5ffffff9
// [6000003A] = 0x5151494a
// Stop after 'imul eax,[ecx+0x41],0x10
// This step basically shifts left 8-bit...elaborately.
// multiplying 0x5151494a x 0x10 = 0x151494a0
uc_reg_read(uc, UC_X86_REG_EAX, &eax);
if (eax != 0x151494a0)
{
fail_msg("FAIL: TB did not flush; eax is not the expected 0x151494a0\n");
print_registers(uc);
//dump_stack_mem(uc);
exit(-1);
}
printf("PASS\n");
}
print_registers(uc);
// dump_stack_mem(uc);
return;
}
static void hook_mem32(uc_engine *uc,
uc_mem_type type,
uint64_t address,
int size,
uint64_t value,
void *user_data)
{
char ctype;
//uint32_t tmp[1];
ctype = '?';
if (type == UC_MEM_READ) ctype = 'R';
if (type == UC_MEM_WRITE) ctype = 'W';
printf("hook_mem32(%c): Address: 0x%"PRIx64", Size: %d, Value:0x%"PRIx64"\n", ctype, address, size, value);
// if (!uc_mem_read(uc, 0x6000003a, tmp, 4))
// {
// printf(" hook_mem32 0x6000003a: %8.8x\n", tmp[0]);
// }
return;
}
static void test_tb_x86_64_32_imul_Gv_Ev_Ib(void **state)
{
uc_engine *uc = *state;
uc_hook trace1, trace2;
void *mem;
#ifdef RIP_NEXT_TO_THE_SELFMODIFY_OPCODE
// These values assumes just before PC = 0x60000021
int64_t eax = 0x00000041;
int64_t ecx = 0x5ffffff8;
int64_t edx = 0x5ffffff8;
int64_t ebx = 0x034a129b;
int64_t esp = 0x6010229a;
int64_t ebp = 0x60000002;
int64_t esi = 0x1f350211;
int64_t edi = 0x488ac239;
#else
// These values assumes PC == 0x6000000
int64_t eax = 0x73952c43;
int64_t ecx = 0x6010229a;
int64_t edx = 0x2a500e50;
int64_t ebx = 0x034a1295;
int64_t esp = 0x6010229a;
int64_t ebp = 0x60000000;
int64_t esi = 0x1f350211;
int64_t edi = 0x488ac239;
#endif
mem = calloc(1, CODE_SPACE);
assert_int_not_equal(0, mem);
uc_assert_success(uc_open(UC_ARCH_X86,
UC_MODE_32,
&uc));
uc_assert_success(uc_mem_map(uc,
PHY_STACK_REGION,
CODE_SPACE,
UC_PROT_ALL));
uc_assert_success(uc_mem_write(uc,
PHY_STACK_REGION,
X86_CODE32_ALPHA_MIXED,
sizeof(X86_CODE32_ALPHA_MIXED) - 1));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EAX, &eax));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_ECX, &ecx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EDX, &edx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EBX, &ebx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_ESP, &esp));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EBP, &ebp));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_ESI, &esi));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EDI, &edi));
uc_assert_success(uc_hook_add(uc,
&trace1,
UC_HOOK_CODE,
hook_code32,
NULL,
1,
0));
uc_assert_success(uc_hook_add(uc,
&trace2,
UC_HOOK_MEM_VALID,
hook_mem32,
NULL,
1,
0));
uc_assert_success(uc_emu_start(uc,
#ifdef RIP_NEXT_TO_THE_SELFMODIFY_OPCODE
// Register set (before self-modifying IMUL opcode)
// Start at "0x00000021: xorb %al, 0x30(%ecx)
// Start at "0x00000021: xor byte ptr [ecx + 0x30], al
PHY_STACK_REGION+0x0021, // 0x0024 didn't work
#else
PHY_STACK_REGION+0x0000,
#endif
PHY_STACK_REGION+sizeof(X86_CODE32_ALPHA_MIXED) - 1,
0, 0));
uc_assert_success(uc_close(uc));
}
int
main(void)
{
#define test(x) cmocka_unit_test_setup_teardown(x, setup, teardown)
const struct CMUnitTest tests[] = {
test(test_tb_x86_64_32_imul_Gv_Ev_Ib)
};
#undef test
return cmocka_run_group_tests(tests, NULL, NULL);
}