unicorn/bindings/dotnet/UnicornSamples/X86Sample32.cs

311 lines
10 KiB
C#

using Gee.External.Capstone;
using Gee.External.Capstone.X86;
using System;
using System.Diagnostics;
using System.Text;
using UnicornEngine;
using UnicornEngine.Const;
namespace UnicornSamples
{
internal static class X86Sample32
{
private const long ADDRESS = 0x1000000;
public static void X86Code32()
{
byte[] X86_CODE32 =
{
// INC ecx; DEC edx
0x41, 0x4a
};
Run(X86_CODE32);
}
public static void X86Code32InvalidMemRead()
{
byte[] X86_CODE32_MEM_READ =
{
// mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx
0x8B, 0x0D, 0xAA, 0xAA, 0xAA, 0xAA, 0x41, 0x4a
};
Run(X86_CODE32_MEM_READ);
}
public static void X86Code32InvalidMemWriteWithRuntimeFix()
{
byte[] X86_CODE32_MEM_WRITE =
{
// mov [0xaaaaaaaa], ecx; INC ecx; DEC edx
0x89, 0x0D, 0xAA, 0xAA, 0xAA, 0xAA, 0x41, 0x4a
};
Run(X86_CODE32_MEM_WRITE);
}
public static void X86Code32InOut()
{
byte[] X86_CODE32_INOUT =
{
// INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46, AL; INC ebx
0x41, 0xE4, 0x3F, 0x4a, 0xE6, 0x46, 0x43
};
Run(X86_CODE32_INOUT);
}
private static void Run(byte[] code, bool raiseException = false)
{
Console.WriteLine();
var stackTrace = new StackTrace();
var stackFrame = stackTrace.GetFrames()[1];
var methodName = stackFrame.GetMethod()?.Name;
Console.WriteLine($"*** Start: {methodName}");
Exception e = null;
try
{
RunTest(code, ADDRESS, Common.UC_MODE_32);
}
catch (UnicornEngineException ex)
{
e = ex;
}
if (!raiseException && e != null)
{
Console.Error.WriteLine("Emulation FAILED! " + e.Message);
}
Console.WriteLine("*** End: " + methodName);
Console.WriteLine();
}
private static void RunTest(byte[] code, long address, int mode)
{
using var u = new Unicorn(Common.UC_ARCH_X86, mode);
using var disassembler = CapstoneDisassembler.CreateX86Disassembler(X86DisassembleMode.Bit32);
Console.WriteLine($"Unicorn version: {u.Version()}");
// map 2MB of memory for this emulation
u.MemMap(address, 2 * 1024 * 1024, Common.UC_PROT_ALL);
// initialize machine registers
u.RegWrite(X86.UC_X86_REG_EAX, 0x1234);
u.RegWrite(X86.UC_X86_REG_ECX, 0x1234);
u.RegWrite(X86.UC_X86_REG_EDX, 0x7890);
// write machine code to be emulated to memory
u.MemWrite(address, code);
// initialize machine registers
u.RegWrite(X86.UC_X86_REG_ESP, Utils.Int64ToBytes(address + 0x200000));
// handle IN & OUT instruction
u.AddInHook(InHookCallback);
u.AddOutHook(OutHookCallback);
// tracing all instructions by having @begin > @end
u.AddCodeHook((uc, addr, size, userData) => CodeHookCallback(disassembler, uc, addr, size, userData), 1, 0);
// handle interrupt ourself
u.AddInterruptHook(InterruptHookCallback);
// handle SYSCALL
u.AddSyscallHook(SyscallHookCallback);
// intercept invalid memory events
u.AddEventMemHook(MemMapHookCallback, Common.UC_HOOK_MEM_READ_UNMAPPED | Common.UC_HOOK_MEM_WRITE_UNMAPPED);
Console.WriteLine(">>> Start tracing code");
// emulate machine code in infinite time
u.EmuStart(address, address + code.Length, 0u, 0u);
// print registers
var ecx = u.RegRead(X86.UC_X86_REG_ECX);
var edx = u.RegRead(X86.UC_X86_REG_EDX);
var eax = u.RegRead(X86.UC_X86_REG_EAX);
Console.WriteLine($"[!] EAX = {eax:X}");
Console.WriteLine($"[!] ECX = {ecx:X}");
Console.WriteLine($"[!] EDX = {edx:X}");
Console.WriteLine(">>> Emulation Done!");
}
private static int InHookCallback(Unicorn u, int port, int size, object userData)
{
var eip = u.RegRead(X86.UC_X86_REG_EIP);
Console.WriteLine($"[!] Reading from port 0x{port:X}, size: {size:X}, address: 0x{eip:X}");
var res = size switch
{
1 =>
// read 1 byte to AL
0xf1,
2 =>
// read 2 byte to AX
0xf2,
4 =>
// read 4 byte to EAX
0xf4,
_ => 0
};
Console.WriteLine($"[!] Return value: {res:X}");
return res;
}
private static void OutHookCallback(Unicorn u, int port, int size, int value, object userData)
{
var eip = u.RegRead(X86.UC_X86_REG_EIP);
Console.WriteLine($"[!] Writing to port 0x{port:X}, size: {size:X}, value: 0x{value:X}, address: 0x{eip:X}");
// confirm that value is indeed the value of AL/ AX / EAX
var v = 0L;
var regName = string.Empty;
switch (size)
{
case 1:
// read 1 byte in AL
v = u.RegRead(X86.UC_X86_REG_AL);
regName = "AL";
break;
case 2:
// read 2 byte in AX
v = u.RegRead(X86.UC_X86_REG_AX);
regName = "AX";
break;
case 4:
// read 4 byte in EAX
v = u.RegRead(X86.UC_X86_REG_EAX);
regName = "EAX";
break;
}
Console.WriteLine("[!] Register {0}: {1:X}", regName, v);
}
private static bool MemMapHookCallback(Unicorn u, int eventType, long address, int size, long value, object userData)
{
if (eventType != Common.UC_MEM_WRITE_UNMAPPED) return false;
Console.WriteLine($"[!] Missing memory is being WRITE at 0x{address:X}, data size = {size:X}, data value = 0x{value:X}. Map memory.");
u.MemMap(0xaaaa0000, 2 * 1024 * 1024, Common.UC_PROT_ALL);
return true;
}
private static void CodeHookCallback1(
CapstoneX86Disassembler disassembler,
Unicorn u,
long addr,
int size,
object userData)
{
Console.Write($"[+] 0x{addr:X}: ");
var eipBuffer = new byte[4];
u.RegRead(X86.UC_X86_REG_EIP, eipBuffer);
var effectiveSize = Math.Min(16, size);
var tmp = new byte[effectiveSize];
u.MemRead(addr, tmp);
var sb = new StringBuilder();
foreach (var t in tmp)
{
sb.AppendFormat($"{(0xFF & t):X} ");
}
Console.Write($"{sb,-20}");
Console.WriteLine(Utils.Disassemble(disassembler, tmp));
}
private static void CodeHookCallback(
CapstoneX86Disassembler disassembler,
Unicorn u,
long addr,
int size,
object userData)
{
Console.Write($"[+] 0x{addr:X}: ");
var eipBuffer = new byte[4];
u.RegRead(X86.UC_X86_REG_EIP, eipBuffer);
var effectiveSize = Math.Min(16, size);
var tmp = new byte[effectiveSize];
u.MemRead(addr, tmp);
var sb = new StringBuilder();
foreach (var t in tmp)
{
sb.AppendFormat($"{(0xFF & t):X} ");
}
Console.Write($"{sb,-20}");
Console.WriteLine(Utils.Disassemble(disassembler, tmp));
}
private static void SyscallHookCallback(Unicorn u, object userData)
{
var eaxBuffer = new byte[4];
u.RegRead(X86.UC_X86_REG_EAX, eaxBuffer);
var eax = Utils.ToInt(eaxBuffer);
Console.WriteLine($"[!] Syscall EAX = 0x{eax:X}");
u.EmuStop();
}
private static void InterruptHookCallback(Unicorn u, int intNumber, object userData)
{
// only handle Linux syscall
if (intNumber != 0x80)
{
return;
}
var eaxBuffer = new byte[4];
var eipBuffer = new byte[4];
u.RegRead(X86.UC_X86_REG_EAX, eaxBuffer);
u.RegRead(X86.UC_X86_REG_EIP, eipBuffer);
var eax = Utils.ToInt(eaxBuffer);
var eip = Utils.ToInt(eipBuffer);
switch (eax)
{
default:
Console.WriteLine($"[!] Interrupt 0x{eip:X} num {intNumber:X}, EAX=0x{eax:X}");
break;
case 1: // sys_exit
Console.WriteLine($"[!] Interrupt 0x{eip:X} num {intNumber:X}, SYS_EXIT");
u.EmuStop();
break;
case 4: // sys_write
// ECX = buffer address
var ecxBuffer = new byte[4];
// EDX = buffer size
var edxBuffer = new byte[4];
u.RegRead(X86.UC_X86_REG_ECX, ecxBuffer);
u.RegRead(X86.UC_X86_REG_EDX, edxBuffer);
var ecx = Utils.ToInt(ecxBuffer);
var edx = Utils.ToInt(edxBuffer);
// read the buffer in
var size = Math.Min(256, edx);
var buffer = new byte[size];
u.MemRead(ecx, buffer);
var content = Encoding.Default.GetString(buffer);
Console.WriteLine($"[!] Interrupt 0x{eip:X}: num {ecx:X}, SYS_WRITE. buffer = 0x{edx:X}, size = {size:X}, content = '{content}'");
break;
}
}
}
}