unicorn/build.zig

269 lines
9.2 KiB
Zig

//! License: GNU GENERAL PUBLIC LICENSE Version 2
const std = @import("std");
const MIN_ZIG_VERSION: []const u8 = "0.12.0";
const MIN_ZIG_VERSION_ERR_MSG = "Please! Update zig toolchain to >= v" ++ MIN_ZIG_VERSION;
const SampleFileTypes = enum {
c,
cpp,
zig,
};
const SampleDescripton = struct {
file_type: SampleFileTypes,
root_file_path: []const u8,
};
/// Create a module for the Zig Bindings
///
/// This will also get exported as a library that other zig projects can use
/// as a dependency via the zig build system.
fn create_unicorn_sys(b: *std.Build, target: std.Build.ResolvedTarget, optimize: std.builtin.OptimizeMode) *std.Build.Module {
const unicorn_sys = b.addModule("unicorn-sys", .{
.target = target,
.optimize = optimize,
.root_source_file = b.path("bindings/zig/unicorn/unicorn.zig"),
});
// link libc
unicorn_sys.link_libc = true;
// we need the c header for the zig-bindings
unicorn_sys.addIncludePath(b.path("include"));
unicorn_sys.addLibraryPath(b.path("build"));
// Linking to the Unicorn library
if (target.result.abi == .msvc and target.result.os.tag == .windows) {
unicorn_sys.linkSystemLibrary("unicorn.dll", .{});
} else {
unicorn_sys.linkSystemLibrary("unicorn", .{});
}
return unicorn_sys;
}
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
if (comptime !checkVersion())
@compileError(MIN_ZIG_VERSION_ERR_MSG);
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// Give the user the options to perform the cmake build in parallel or not
// (eg. ci on macos will fail if parallel is enabled)
//
// flag: -Dparallel=true/false
const parallel_cmake = b.option(bool, "parallel", "Enable parallel cmake build") orelse true;
// flag: -DSamples=True/False
const samples = b.option(bool, "Samples", "Build all Samples [default: true]") orelse true;
const sample_bins = [_]SampleDescripton{
.{ .file_type = .zig, .root_file_path = "bindings/zig/sample/sample_riscv_zig.zig" },
.{ .file_type = .c, .root_file_path = "samples/sample_arm.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_arm64.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_ctl.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_batch_reg.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_m68k.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_riscv.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_sparc.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_s390x.c" },
.{ .file_type = .c, .root_file_path = "samples/shellcode.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_tricore.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_x86.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_x86_32_gdt_and_seg_regs.c" },
};
// make a module for Zig Bindings
const unicorn_sys = create_unicorn_sys(b, target, optimize);
// Build Samples
if (samples) {
for (sample_bins) |sample| {
const sample_bin = buildExe(b, .{
.target = target,
.optimize = optimize,
.filetype = sample.file_type,
.filepath = sample.root_file_path,
});
// import the unicorn sys module if this is a zig build
if (sample.file_type == .zig) {
sample_bin.root_module.addImport("unicorn", unicorn_sys);
}
}
}
// CMake Build
const cmake = cmakeBuild(b, parallel_cmake);
const cmake_step = b.step("cmake", "Run cmake build");
cmake_step.dependOn(&cmake.step);
}
fn buildExe(b: *std.Build, info: BuildInfo) *std.Build.Step.Compile {
const target = info.stdTarget();
const execonfig: std.Build.ExecutableOptions = switch (info.filetype) {
.c, .cpp => .{
.name = info.filename(),
.target = info.target,
.optimize = info.optimize,
},
else => .{
.name = info.filename(),
.target = info.target,
.optimize = info.optimize,
.root_source_file = .{
.path = info.filepath,
},
},
};
const exe = b.addExecutable(execonfig);
if (info.filetype != .zig) {
exe.addCSourceFile(.{
.file = .{ .path = info.filepath },
.flags = &.{
"-Wall",
"-Werror",
"-fno-sanitize=all",
"-Wshadow",
},
});
// Ensure the C headers are available
exe.addIncludePath(.{ .path = "include" });
// Ensure the C library is available
exe.addLibraryPath(.{ .path = "build" });
// linking to OS-LibC or static-linking for:
// Musl(Linux) [e.g: -Dtarget=native-linux-musl]
// MinGW(Windows) [e.g: -Dtarget=native-windows-gnu (default)]
if (info.filetype == .cpp and target.abi != .msvc)
exe.linkLibCpp() // static-linking LLVM-libcxx (all targets) + libC
else
exe.linkLibC();
// Now link the C library
if (target.abi == .msvc and target.os.tag == .windows) {
exe.linkSystemLibrary("unicorn.dll");
} else exe.linkSystemLibrary("unicorn");
}
// Linking to the Unicorn library
if (target.abi == .msvc and target.os.tag == .windows) {
exe.want_lto = false;
}
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a RunStep in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step(info.filename(), b.fmt("Run the {s}.", .{info.filename()}));
run_step.dependOn(&run_cmd.step);
return exe;
}
const PARALLEL_CMAKE_COMMAND = [_][]const u8{
"cmake",
"--build",
"build",
"--config",
"release",
"--parallel",
};
const SINGLE_CMAKE_COMMAND = [_][]const u8{
"cmake",
"--build",
"build",
"--config",
"release",
};
fn cmakeBuild(b: *std.Build, parallel_cmake: bool) *std.Build.Step.Run {
const preconf = b.addSystemCommand(&.{
"cmake",
"-B",
"build",
"-DZIG_BUILD=ON",
"-DUNICORN_BUILD_TESTS=OFF",
"-DUNICORN_INSTALL=OFF",
"-DCMAKE_BUILD_TYPE=Release",
});
// build in parallel if requested
const cmakebuild = b.addSystemCommand(blk: {
if (parallel_cmake) {
break :blk &PARALLEL_CMAKE_COMMAND;
} else {
break :blk &SINGLE_CMAKE_COMMAND;
}
});
cmakebuild.step.dependOn(&preconf.step);
return cmakebuild;
}
// ensures the currently in-use zig version is at least the minimum required
fn checkVersion() bool {
const builtin = @import("builtin");
if (!@hasDecl(builtin, "zig_version")) {
return false;
}
const needed_version = std.SemanticVersion.parse(MIN_ZIG_VERSION) catch unreachable;
const version = builtin.zig_version;
const order = version.order(needed_version);
return order != .lt;
}
const BuildInfo = struct {
filepath: []const u8,
filetype: SampleFileTypes,
target: std.Build.ResolvedTarget,
optimize: std.builtin.OptimizeMode,
fn filename(self: BuildInfo) []const u8 {
var split = std.mem.splitSequence(u8, std.fs.path.basename(self.filepath), ".");
return split.first();
}
fn stdTarget(self: *const BuildInfo) std.Target {
return self.target.result;
}
};