/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ /* Modified for Unicorn Engine by Chen Huitao, 2020 */ #include "sysemu/cpus.h" #include "cpu.h" #include "unicorn_common.h" #include "uc_priv.h" #include "unicorn.h" M68kCPU *cpu_m68k_init(struct uc_struct *uc, const char *cpu_model); static void m68k_set_pc(struct uc_struct *uc, uint64_t address) { ((CPUM68KState *)uc->cpu->env_ptr)->pc = address; } static void m68k_release(void *ctx) { int i; TCGContext *tcg_ctx = (TCGContext *)ctx; M68kCPU *cpu = (M68kCPU *)tcg_ctx->uc->cpu; CPUTLBDesc *d = cpu->neg.tlb.d; CPUTLBDescFast *f = cpu->neg.tlb.f; CPUTLBDesc *desc; CPUTLBDescFast *fast; release_common(ctx); for (i = 0; i < NB_MMU_MODES; i++) { desc = &(d[i]); fast = &(f[i]); g_free(desc->iotlb); g_free(fast->table); } } void m68k_reg_reset(struct uc_struct *uc) { CPUArchState *env = uc->cpu->env_ptr; memset(env->aregs, 0, sizeof(env->aregs)); memset(env->dregs, 0, sizeof(env->dregs)); env->pc = 0; } static void reg_read(CPUM68KState *env, unsigned int regid, void *value) { if (regid >= UC_M68K_REG_A0 && regid <= UC_M68K_REG_A7) *(int32_t *)value = env->aregs[regid - UC_M68K_REG_A0]; else if (regid >= UC_M68K_REG_D0 && regid <= UC_M68K_REG_D7) *(int32_t *)value = env->dregs[regid - UC_M68K_REG_D0]; else { switch (regid) { default: break; case UC_M68K_REG_PC: *(int32_t *)value = env->pc; break; } } return; } static void reg_write(CPUM68KState *env, unsigned int regid, const void *value) { if (regid >= UC_M68K_REG_A0 && regid <= UC_M68K_REG_A7) env->aregs[regid - UC_M68K_REG_A0] = *(uint32_t *)value; else if (regid >= UC_M68K_REG_D0 && regid <= UC_M68K_REG_D7) env->dregs[regid - UC_M68K_REG_D0] = *(uint32_t *)value; else { switch (regid) { default: break; case UC_M68K_REG_PC: env->pc = *(uint32_t *)value; break; } } } int m68k_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUM68KState *env = &(M68K_CPU(uc->cpu)->env); int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; reg_read(env, regid, value); } return 0; } int m68k_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals, int count) { CPUM68KState *env = &(M68K_CPU(uc->cpu)->env); int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; reg_write(env, regid, value); if (regid == UC_M68K_REG_PC) { // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); } } return 0; } DEFAULT_VISIBILITY int m68k_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count) { CPUM68KState *env = (CPUM68KState *)ctx->data; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; reg_read(env, regid, value); } return 0; } DEFAULT_VISIBILITY int m68k_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count) { CPUM68KState *env = (CPUM68KState *)ctx->data; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; reg_write(env, regid, value); } return 0; } static int m68k_cpus_init(struct uc_struct *uc, const char *cpu_model) { M68kCPU *cpu; cpu = cpu_m68k_init(uc, cpu_model); if (cpu == NULL) { return -1; } return 0; } DEFAULT_VISIBILITY void m68k_uc_init(struct uc_struct *uc) { uc->release = m68k_release; uc->reg_read = m68k_reg_read; uc->reg_write = m68k_reg_write; uc->reg_reset = m68k_reg_reset; uc->set_pc = m68k_set_pc; uc->cpus_init = m68k_cpus_init; uc->cpu_context_size = offsetof(CPUM68KState, end_reset_fields); uc_common_init(uc); }