/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ /* Modified for Unicorn Engine by Chen Huitao, 2020 */ #include "sysemu/cpus.h" #include "unicorn.h" #include "cpu.h" #include "unicorn_common.h" #include "uc_priv.h" const int SPARC_REGS_STORAGE_SIZE = offsetof(CPUSPARCState, tlb_table); static bool sparc_stop_interrupt(int intno) { switch(intno) { default: return false; case TT_ILL_INSN: return true; } } static void sparc_set_pc(struct uc_struct *uc, uint64_t address) { ((CPUSPARCState *)uc->current_cpu->env_ptr)->pc = address; ((CPUSPARCState *)uc->current_cpu->env_ptr)->npc = address + 4; } static void sparc_release(void *ctx) { int i; TCGContext *tcg_ctx = (TCGContext *) ctx; SPARCCPU *cpu = SPARC_CPU(tcg_ctx->uc, tcg_ctx->uc->cpu); CPUSPARCState *env = &cpu->env; release_common(ctx); g_free(tcg_ctx->cpu_wim); g_free(tcg_ctx->cpu_cond); g_free(tcg_ctx->cpu_cc_src); g_free(tcg_ctx->cpu_cc_src2); g_free(tcg_ctx->cpu_cc_dst); g_free(tcg_ctx->cpu_fsr); g_free(tcg_ctx->sparc_cpu_pc); g_free(tcg_ctx->cpu_npc); g_free(tcg_ctx->cpu_y); g_free(tcg_ctx->cpu_tbr); for (i = 0; i < 8; i++) { g_free(tcg_ctx->cpu_gregs[i]); } for (i = 0; i < 32; i++) { g_free(tcg_ctx->cpu_gpr[i]); } g_free(tcg_ctx->cpu_PC); g_free(tcg_ctx->btarget); g_free(tcg_ctx->bcond); g_free(tcg_ctx->cpu_dspctrl); g_free(tcg_ctx->tb_ctx.tbs); g_free(env->def); } void sparc_reg_reset(struct uc_struct *uc) { CPUArchState *env = uc->cpu->env_ptr; memset(env->gregs, 0, sizeof(env->gregs)); memset(env->fpr, 0, sizeof(env->fpr)); memset(env->regbase, 0, sizeof(env->regbase)); env->pc = 0; env->npc = 0; env->regwptr = env->regbase; } int sparc_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; if (regid >= UC_SPARC_REG_G0 && regid <= UC_SPARC_REG_G7) *(int32_t *)value = SPARC_CPU(uc, mycpu)->env.gregs[regid - UC_SPARC_REG_G0]; else if (regid >= UC_SPARC_REG_O0 && regid <= UC_SPARC_REG_O7) *(int32_t *)value = SPARC_CPU(uc, mycpu)->env.regwptr[regid - UC_SPARC_REG_O0]; else if (regid >= UC_SPARC_REG_L0 && regid <= UC_SPARC_REG_L7) *(int32_t *)value = SPARC_CPU(uc, mycpu)->env.regwptr[8 + regid - UC_SPARC_REG_L0]; else if (regid >= UC_SPARC_REG_I0 && regid <= UC_SPARC_REG_I7) *(int32_t *)value = SPARC_CPU(uc, mycpu)->env.regwptr[16 + regid - UC_SPARC_REG_I0]; else { switch(regid) { default: break; case UC_SPARC_REG_PC: *(int32_t *)value = SPARC_CPU(uc, mycpu)->env.pc; break; } } } return 0; } int sparc_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; if (regid >= UC_SPARC_REG_G0 && regid <= UC_SPARC_REG_G7) SPARC_CPU(uc, mycpu)->env.gregs[regid - UC_SPARC_REG_G0] = *(uint32_t *)value; else if (regid >= UC_SPARC_REG_O0 && regid <= UC_SPARC_REG_O7) SPARC_CPU(uc, mycpu)->env.regwptr[regid - UC_SPARC_REG_O0] = *(uint32_t *)value; else if (regid >= UC_SPARC_REG_L0 && regid <= UC_SPARC_REG_L7) SPARC_CPU(uc, mycpu)->env.regwptr[8 + regid - UC_SPARC_REG_L0] = *(uint32_t *)value; else if (regid >= UC_SPARC_REG_I0 && regid <= UC_SPARC_REG_I7) SPARC_CPU(uc, mycpu)->env.regwptr[16 + regid - UC_SPARC_REG_I0] = *(uint32_t *)value; else { switch(regid) { default: break; case UC_SPARC_REG_PC: SPARC_CPU(uc, mycpu)->env.pc = *(uint32_t *)value; SPARC_CPU(uc, mycpu)->env.npc = *(uint32_t *)value + 4; // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); break; } } } return 0; } static int sparc_cpus_init(struct uc_struct *uc, const char *cpu_model) { SPARCCPU *cpu; cpu = cpu_sparc_init(uc, cpu_model); if (cpu == NULL) { return -1; } return 0; } DEFAULT_VISIBILITY void sparc_uc_init(struct uc_struct* uc) { uc->release = sparc_release; uc->reg_read = sparc_reg_read; uc->reg_write = sparc_reg_write; uc->reg_reset = sparc_reg_reset; uc->set_pc = sparc_set_pc; uc->stop_interrupt = sparc_stop_interrupt; uc->cpus_init = sparc_cpus_init; uc_common_init(uc); }