/* Java bindings for the Unicorn Emulator Engine Copyright(c) 2015 Chris Eagle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Unicorn Emulator Engine */ /* By Loi Anh Tuan, 2015 */ /* Sample code to demonstrate how to emulate m68k code */ package samples; import unicorn.*; public class Sample_m68k { // code to be emulated public static final byte[] M68K_CODE = { 118, -19 }; // movq #-19, %d3 // memory address where emulation starts public static final int ADDRESS = 0x10000; public static final long toInt(byte val[]) { long res = 0; for (int i = 0; i < val.length; i++) { long v = val[i] & 0xff; res = res + (v << (i * 8)); } return res; } public static final byte[] toBytes(long val) { byte[] res = new byte[8]; for (int i = 0; i < 8; i++) { res[i] = (byte) (val & 0xff); val >>>= 8; } return res; } // callback for tracing basic blocks private static class MyBlockHook implements BlockHook { public void hook(Unicorn u, long address, int size, Object user_data) { System.out.print(String.format( ">>> Tracing basic block at 0x%x, block size = 0x%x\n", address, size)); } } // callback for tracing instruction private static class MyCodeHook implements CodeHook { public void hook(Unicorn u, long address, int size, Object user_data) { System.out.print(String.format( ">>> Tracing instruction at 0x%x, instruction size = 0x%x\n", address, size)); } } public static void test_m68k() { Long d0 = 0x0000L; // d0 data register Long d1 = 0x0000L; // d1 data register Long d2 = 0x0000L; // d2 data register Long d3 = 0x0000L; // d3 data register Long d4 = 0x0000L; // d4 data register Long d5 = 0x0000L; // d5 data register Long d6 = 0x0000L; // d6 data register Long d7 = 0x0000L; // d7 data register Long a0 = 0x0000L; // a0 address register Long a1 = 0x0000L; // a1 address register Long a2 = 0x0000L; // a2 address register Long a3 = 0x0000L; // a3 address register Long a4 = 0x0000L; // a4 address register Long a5 = 0x0000L; // a5 address register Long a6 = 0x0000L; // a6 address register Long a7 = 0x0000L; // a6 address register Long pc = 0x0000L; // program counter Long sr = 0x0000L; // status register System.out.print("Emulate M68K code\n"); // Initialize emulator in M68K mode Unicorn u = new Unicorn(Unicorn.UC_ARCH_M68K, Unicorn.UC_MODE_BIG_ENDIAN); // map 2MB memory for this emulation u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL); // write machine code to be emulated to memory u.mem_write(ADDRESS, M68K_CODE); // initialize machine registers u.reg_write(Unicorn.UC_M68K_REG_D0, d0); u.reg_write(Unicorn.UC_M68K_REG_D1, d1); u.reg_write(Unicorn.UC_M68K_REG_D2, d2); u.reg_write(Unicorn.UC_M68K_REG_D3, d3); u.reg_write(Unicorn.UC_M68K_REG_D4, d4); u.reg_write(Unicorn.UC_M68K_REG_D5, d5); u.reg_write(Unicorn.UC_M68K_REG_D6, d6); u.reg_write(Unicorn.UC_M68K_REG_D7, d7); u.reg_write(Unicorn.UC_M68K_REG_A0, a0); u.reg_write(Unicorn.UC_M68K_REG_A1, a1); u.reg_write(Unicorn.UC_M68K_REG_A2, a2); u.reg_write(Unicorn.UC_M68K_REG_A3, a3); u.reg_write(Unicorn.UC_M68K_REG_A4, a4); u.reg_write(Unicorn.UC_M68K_REG_A5, a5); u.reg_write(Unicorn.UC_M68K_REG_A6, a6); u.reg_write(Unicorn.UC_M68K_REG_A7, a7); u.reg_write(Unicorn.UC_M68K_REG_PC, pc); u.reg_write(Unicorn.UC_M68K_REG_SR, sr); // tracing all basic blocks with customized callback u.hook_add(new MyBlockHook(), 1, 0, null); // tracing all instruction u.hook_add(new MyCodeHook(), 1, 0, null); // emulate machine code in infinite time (last param = 0), or when // finishing all the code. u.emu_start(ADDRESS, ADDRESS + M68K_CODE.length, 0, 0); // now print out some registers System.out.print(">>> Emulation done. Below is the CPU context\n"); d0 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D0); d1 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D1); d2 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D2); d3 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D3); d4 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D4); d5 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D5); d6 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D6); d7 = (Long) u.reg_read(Unicorn.UC_M68K_REG_D7); a0 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A0); a1 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A1); a2 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A2); a3 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A3); a4 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A4); a5 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A5); a6 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A6); a7 = (Long) u.reg_read(Unicorn.UC_M68K_REG_A7); pc = (Long) u.reg_read(Unicorn.UC_M68K_REG_PC); sr = (Long) u.reg_read(Unicorn.UC_M68K_REG_SR); System.out.print(String.format(">>> A0 = 0x%x\t\t>>> D0 = 0x%x\n", a0.intValue(), d0.intValue())); System.out.print(String.format(">>> A1 = 0x%x\t\t>>> D1 = 0x%x\n", a1.intValue(), d1.intValue())); System.out.print(String.format(">>> A2 = 0x%x\t\t>>> D2 = 0x%x\n", a2.intValue(), d2.intValue())); System.out.print(String.format(">>> A3 = 0x%x\t\t>>> D3 = 0x%x\n", a3.intValue(), d3.intValue())); System.out.print(String.format(">>> A4 = 0x%x\t\t>>> D4 = 0x%x\n", a4.intValue(), d4.intValue())); System.out.print(String.format(">>> A5 = 0x%x\t\t>>> D5 = 0x%x\n", a5.intValue(), d5.intValue())); System.out.print(String.format(">>> A6 = 0x%x\t\t>>> D6 = 0x%x\n", a6.intValue(), d6.intValue())); System.out.print(String.format(">>> A7 = 0x%x\t\t>>> D7 = 0x%x\n", a7.intValue(), d7.intValue())); System.out.print(String.format(">>> PC = 0x%x\n", pc.intValue())); System.out.print(String.format(">>> SR = 0x%x\n", sr.intValue())); u.close(); } public static void main(String args[]) { test_m68k(); } }