/* * emulator main execution loop * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu-common.h" #include "hw/core/cpu.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #include "qemu/atomic.h" #include "qemu/timer.h" #include "exec/tb-hash.h" #include "exec/tb-lookup.h" #include "sysemu/cpus.h" #include "uc_priv.h" /* -icount align implementation. */ typedef struct SyncClocks { int64_t diff_clk; int64_t last_cpu_icount; int64_t realtime_clock; } SyncClocks; /* Allow the guest to have a max 3ms advance. * The difference between the 2 clocks could therefore * oscillate around 0. */ #define VM_CLOCK_ADVANCE 3000000 #define THRESHOLD_REDUCE 1.5 #define MAX_DELAY_PRINT_RATE 2000000000LL #define MAX_NB_PRINTS 100 /* Execute a TB, and fix up the CPU state afterwards if necessary */ static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) { CPUArchState *env = cpu->env_ptr; uintptr_t ret; TranslationBlock *last_tb; int tb_exit; uint8_t *tb_ptr = itb->tc.ptr; tb_exec_lock(cpu->uc->tcg_ctx); ret = tcg_qemu_tb_exec(env, tb_ptr); tb_exec_unlock(cpu->uc->tcg_ctx); cpu->can_do_io = 1; last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); tb_exit = ret & TB_EXIT_MASK; // trace_exec_tb_exit(last_tb, tb_exit); if (tb_exit > TB_EXIT_IDX1) { /* We didn't start executing this TB (eg because the instruction * counter hit zero); we must restore the guest PC to the address * of the start of the TB. */ CPUClass *cc = CPU_GET_CLASS(cpu); if (!HOOK_EXISTS(env->uc, UC_HOOK_CODE) && !env->uc->timeout) { // We should sync pc for R/W error. switch (env->uc->invalid_error) { case UC_ERR_WRITE_PROT: case UC_ERR_READ_PROT: case UC_ERR_FETCH_PROT: case UC_ERR_WRITE_UNMAPPED: case UC_ERR_READ_UNMAPPED: case UC_ERR_FETCH_UNMAPPED: case UC_ERR_WRITE_UNALIGNED: case UC_ERR_READ_UNALIGNED: case UC_ERR_FETCH_UNALIGNED: break; default: if (cc->synchronize_from_tb) { // avoid sync twice when helper_uc_tracecode() already did this. if (env->uc->emu_counter <= env->uc->emu_count && !env->uc->stop_request && !env->uc->quit_request) cc->synchronize_from_tb(cpu, last_tb); } else { assert(cc->set_pc); cc->set_pc(cpu, last_tb->pc); } } } cpu->tcg_exit_req = 0; } return ret; } /* Execute the code without caching the generated code. An interpreter could be used if available. */ static void cpu_exec_nocache(CPUState *cpu, int max_cycles, TranslationBlock *orig_tb, bool ignore_icount) { TranslationBlock *tb; uint32_t cflags = curr_cflags() | CF_NOCACHE; if (ignore_icount) { cflags &= ~CF_USE_ICOUNT; } /* Should never happen. We only end up here when an existing TB is too long. */ cflags |= MIN(max_cycles, CF_COUNT_MASK); mmap_lock(); tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, cflags); tb->orig_tb = orig_tb; mmap_unlock(); /* execute the generated code */ cpu_tb_exec(cpu, tb); mmap_lock(); tb_phys_invalidate(cpu->uc->tcg_ctx, tb, -1); mmap_unlock(); tcg_tb_remove(cpu->uc->tcg_ctx, tb); } struct tb_desc { target_ulong pc; target_ulong cs_base; CPUArchState *env; tb_page_addr_t phys_page1; uint32_t flags; uint32_t cf_mask; uint32_t trace_vcpu_dstate; }; static bool tb_lookup_cmp(struct uc_struct *uc, const void *p, const void *d) { const TranslationBlock *tb = p; const struct tb_desc *desc = d; if (tb->pc == desc->pc && tb->page_addr[0] == desc->phys_page1 && tb->cs_base == desc->cs_base && tb->flags == desc->flags && tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { /* check next page if needed */ if (tb->page_addr[1] == -1) { return true; } else { tb_page_addr_t phys_page2; target_ulong virt_page2; virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; phys_page2 = get_page_addr_code(desc->env, virt_page2); if (tb->page_addr[1] == phys_page2) { return true; } } } return false; } TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, target_ulong cs_base, uint32_t flags, uint32_t cf_mask) { struct uc_struct *uc = cpu->uc; tb_page_addr_t phys_pc; struct tb_desc desc; uint32_t h; desc.env = (CPUArchState *)cpu->env_ptr; desc.cs_base = cs_base; desc.flags = flags; desc.cf_mask = cf_mask; desc.trace_vcpu_dstate = *cpu->trace_dstate; desc.pc = pc; phys_pc = get_page_addr_code(desc.env, pc); if (phys_pc == -1) { return NULL; } desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); return qht_lookup_custom(uc, &cpu->uc->tcg_ctx->tb_ctx.htable, &desc, h, tb_lookup_cmp); } void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) { if (TCG_TARGET_HAS_direct_jump) { uintptr_t offset = tb->jmp_target_arg[n]; uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); } else { tb->jmp_target_arg[n] = addr; } } static inline void tb_add_jump(TranslationBlock *tb, int n, TranslationBlock *tb_next) { uintptr_t old; assert(n < ARRAY_SIZE(tb->jmp_list_next)); /* make sure the destination TB is valid */ if (tb_next->cflags & CF_INVALID) { goto out_unlock_next; } /* Atomically claim the jump destination slot only if it was NULL */ #ifdef _MSC_VER old = atomic_cmpxchg((long *)&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); #else old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); #endif if (old) { goto out_unlock_next; } /* patch the native jump address */ tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); /* add in TB jmp list */ tb->jmp_list_next[n] = tb_next->jmp_list_head; tb_next->jmp_list_head = (uintptr_t)tb | n; return; out_unlock_next: return; } static inline TranslationBlock *tb_find(CPUState *cpu, TranslationBlock *last_tb, int tb_exit, uint32_t cf_mask) { TranslationBlock *tb; target_ulong cs_base, pc; uint32_t flags; uc_tb cur_tb, prev_tb; uc_engine *uc = cpu->uc; struct list_item *cur; struct hook *hook; tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); if (tb == NULL) { mmap_lock(); tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); mmap_unlock(); /* We add the TB in the virtual pc hash table for the fast lookup */ cpu->tb_jmp_cache[tb_jmp_cache_hash_func(cpu->uc, pc)] = tb; UC_TB_COPY(&cur_tb, tb); if (last_tb) { UC_TB_COPY(&prev_tb, last_tb); for (cur = uc->hook[UC_HOOK_EDGE_GENERATED_IDX].head; cur != NULL && (hook = (struct hook *)cur->data); cur = cur->next) { if (hook->to_delete) { continue; } if (HOOK_BOUND_CHECK(hook, (uint64_t)tb->pc)) { ((uc_hook_edge_gen_t)hook->callback)(uc, &cur_tb, &prev_tb, hook->user_data); } } } } /* We don't take care of direct jumps when address mapping changes in * system emulation. So it's not safe to make a direct jump to a TB * spanning two pages because the mapping for the second page can change. */ if (tb->page_addr[1] != -1) { last_tb = NULL; } /* See if we can patch the calling TB. */ if (last_tb) { tb_add_jump(last_tb, tb_exit, tb); } return tb; } static inline bool cpu_handle_halt(CPUState *cpu) { if (cpu->halted) { #if 0 #if defined(TARGET_I386) if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) && replay_interrupt()) { X86CPU *x86_cpu = X86_CPU(cpu); apic_poll_irq(x86_cpu->apic_state); cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); } #endif #endif if (!cpu_has_work(cpu)) { return true; } cpu->halted = 0; } return false; } static inline void cpu_handle_debug_exception(CPUState *cpu) { CPUClass *cc = CPU_GET_CLASS(cpu); CPUWatchpoint *wp; if (!cpu->watchpoint_hit) { QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { wp->flags &= ~BP_WATCHPOINT_HIT; } } cc->debug_excp_handler(cpu); } static inline bool cpu_handle_exception(CPUState *cpu, int *ret) { bool catched = false; struct uc_struct *uc = cpu->uc; struct hook *hook; // printf(">> exception index = %u\n", cpu->exception_index); qq if (cpu->uc->stop_interrupt && cpu->uc->stop_interrupt(cpu->uc, cpu->exception_index)) { // Unicorn: call registered invalid instruction callbacks catched = false; HOOK_FOREACH_VAR_DECLARE; HOOK_FOREACH(uc, hook, UC_HOOK_INSN_INVALID) { if (hook->to_delete) { continue; } catched = ((uc_cb_hookinsn_invalid_t)hook->callback)(uc, hook->user_data); if (catched) { break; } } if (!catched) { uc->invalid_error = UC_ERR_INSN_INVALID; } // we want to stop emulation *ret = EXCP_HLT; return true; } if (cpu->exception_index < 0) { return false; } if (cpu->exception_index >= EXCP_INTERRUPT) { /* exit request from the cpu execution loop */ *ret = cpu->exception_index; if (*ret == EXCP_DEBUG) { cpu_handle_debug_exception(cpu); } cpu->exception_index = -1; return true; } else { #if defined(TARGET_X86_64) CPUArchState *env = cpu->env_ptr; if (env->exception_is_int) { // point EIP to the next instruction after INT env->eip = env->exception_next_eip; } #endif #if defined(TARGET_MIPS) || defined(TARGET_MIPS64) // Unicorn: Imported from https://github.com/unicorn-engine/unicorn/pull/1098 CPUMIPSState *env = &(MIPS_CPU(cpu)->env); env->active_tc.PC = uc->next_pc; #endif #if defined(TARGET_RISCV) CPURISCVState *env = &(RISCV_CPU(uc->cpu)->env); env->pc += 4; #endif // Unicorn: call registered interrupt callbacks catched = false; HOOK_FOREACH_VAR_DECLARE; HOOK_FOREACH(uc, hook, UC_HOOK_INTR) { if (hook->to_delete) { continue; } ((uc_cb_hookintr_t)hook->callback)(uc, cpu->exception_index, hook->user_data); catched = true; } // Unicorn: If un-catched interrupt, stop executions. if (!catched) { // printf("AAAAAAAAAAAA\n"); qq uc->invalid_error = UC_ERR_EXCEPTION; cpu->halted = 1; *ret = EXCP_HLT; return true; } cpu->exception_index = -1; } *ret = EXCP_INTERRUPT; return false; } static inline bool cpu_handle_interrupt(CPUState *cpu, TranslationBlock **last_tb) { CPUClass *cc = CPU_GET_CLASS(cpu); /* Clear the interrupt flag now since we're processing * cpu->interrupt_request and cpu->exit_request. * Ensure zeroing happens before reading cpu->exit_request or * cpu->interrupt_request (see also smp_wmb in cpu_exit()) */ cpu_neg(cpu)->icount_decr.u16.high = 0; if (unlikely(cpu->interrupt_request)) { int interrupt_request; interrupt_request = cpu->interrupt_request; if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { /* Mask out external interrupts for this step. */ interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; } if (interrupt_request & CPU_INTERRUPT_DEBUG) { cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; cpu->exception_index = EXCP_DEBUG; return true; } #if defined(TARGET_I386) else if (interrupt_request & CPU_INTERRUPT_INIT) { X86CPU *x86_cpu = X86_CPU(cpu); CPUArchState *env = &x86_cpu->env; //replay_interrupt(); cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); do_cpu_init(x86_cpu); cpu->exception_index = EXCP_HALTED; return true; } #else else if (interrupt_request & CPU_INTERRUPT_RESET) { //replay_interrupt(); cpu_reset(cpu); return true; } #endif /* The target hook has 3 exit conditions: False when the interrupt isn't processed, True when it is, and we should restart on a new TB, and via longjmp via cpu_loop_exit. */ else { if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { //replay_interrupt(); cpu->exception_index = -1; *last_tb = NULL; } /* The target hook may have updated the 'cpu->interrupt_request'; * reload the 'interrupt_request' value */ interrupt_request = cpu->interrupt_request; } if (interrupt_request & CPU_INTERRUPT_EXITTB) { cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; /* ensure that no TB jump will be modified as the program flow was changed */ *last_tb = NULL; } } /* Finally, check if we need to exit to the main loop. */ if (unlikely(cpu->exit_request)) { cpu->exit_request = 0; if (cpu->exception_index == -1) { cpu->exception_index = EXCP_INTERRUPT; } return true; } return false; } static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, TranslationBlock **last_tb, int *tb_exit) { uintptr_t ret; int32_t insns_left; // trace_exec_tb(tb, tb->pc); ret = cpu_tb_exec(cpu, tb); tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); *tb_exit = ret & TB_EXIT_MASK; if (*tb_exit != TB_EXIT_REQUESTED) { *last_tb = tb; return; } *last_tb = NULL; insns_left = cpu_neg(cpu)->icount_decr.u32; if (insns_left < 0) { /* Something asked us to stop executing chained TBs; just * continue round the main loop. Whatever requested the exit * will also have set something else (eg exit_request or * interrupt_request) which will be handled by * cpu_handle_interrupt. cpu_handle_interrupt will also * clear cpu->icount_decr.u16.high. */ return; } /* Instruction counter expired. */ /* Refill decrementer and continue execution. */ insns_left = MIN(0xffff, cpu->icount_budget); cpu_neg(cpu)->icount_decr.u16.low = insns_left; cpu->icount_extra = cpu->icount_budget - insns_left; if (!cpu->icount_extra) { /* Execute any remaining instructions, then let the main loop * handle the next event. */ if (insns_left > 0) { cpu_exec_nocache(cpu, insns_left, tb, false); } } } /* main execution loop */ int cpu_exec(struct uc_struct *uc, CPUState *cpu) { CPUClass *cc = CPU_GET_CLASS(cpu); int ret; // SyncClocks sc = { 0 }; if (cpu_handle_halt(cpu)) { return EXCP_HALTED; } // rcu_read_lock(); cc->cpu_exec_enter(cpu); /* Calculate difference between guest clock and host clock. * This delay includes the delay of the last cycle, so * what we have to do is sleep until it is 0. As for the * advance/delay we gain here, we try to fix it next time. */ // init_delay_params(&sc, cpu); // Unicorn: We would like to support nested uc_emu_start calls. /* prepare setjmp context for exception handling */ // if (sigsetjmp(cpu->jmp_env, 0) != 0) { if (sigsetjmp(uc->jmp_bufs[uc->nested_level - 1], 0) != 0) { #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) /* Some compilers wrongly smash all local variables after * siglongjmp. There were bug reports for gcc 4.5.0 and clang. * Reload essential local variables here for those compilers. * Newer versions of gcc would complain about this code (-Wclobbered). */ cc = CPU_GET_CLASS(cpu); #else /* buggy compiler */ /* Assert that the compiler does not smash local variables. */ // g_assert(cpu == current_cpu); g_assert(cc == CPU_GET_CLASS(cpu)); #endif /* buggy compiler */ assert_no_pages_locked(); } /* if an exception is pending, we execute it here */ while (!cpu_handle_exception(cpu, &ret)) { TranslationBlock *last_tb = NULL; int tb_exit = 0; while (!cpu_handle_interrupt(cpu, &last_tb)) { uint32_t cflags = cpu->cflags_next_tb; TranslationBlock *tb; /* When requested, use an exact setting for cflags for the next execution. This is used for icount, precise smc, and stop- after-access watchpoints. Since this request should never have CF_INVALID set, -1 is a convenient invalid value that does not require tcg headers for cpu_common_reset. */ if (cflags == -1) { cflags = curr_cflags(); } else { cpu->cflags_next_tb = -1; } tb = tb_find(cpu, last_tb, tb_exit, cflags); cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); /* Try to align the host and virtual clocks if the guest is in advance */ // align_clocks(&sc, cpu); } } // Unicorn: Clear any TCG exit flag that might have been left set by exit requests uc->cpu->tcg_exit_req = 0; cc->cpu_exec_exit(cpu); // rcu_read_unlock(); return ret; }