/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ //#include "config.h" #include #include #include "glib_compat.h" #define g_mem_gc_friendly FALSE /** * SECTION:arrays * @title: Arrays * @short_description: arrays of arbitrary elements which grow * automatically as elements are added * * Arrays are similar to standard C arrays, except that they grow * automatically as elements are added. * * Array elements can be of any size (though all elements of one array * are the same size), and the array can be automatically cleared to * '0's and zero-terminated. * * To create a new array use g_array_new(). * * To add elements to an array, use g_array_append_val(), * g_array_append_vals(), g_array_prepend_val(), and * g_array_prepend_vals(). * * To access an element of an array, use g_array_index(). * * To set the size of an array, use g_array_set_size(). * * To free an array, use g_array_free(). * * Here is an example that stores integers in a #GArray: * |[ * GArray *garray; * gint i; * // We create a new array to store gint values. * // We don't want it zero-terminated or cleared to 0's. * garray = g_array_new (FALSE, FALSE, sizeof (gint)); * for (i = 0; i < 10000; i++) * g_array_append_val (garray, i); * for (i = 0; i < 10000; i++) * if (g_array_index (garray, gint, i) != i) * g_print ("ERROR: got %d instead of %d\n", * g_array_index (garray, gint, i), i); * g_array_free (garray, TRUE); * ]| */ #define MIN_ARRAY_SIZE 16 typedef struct _GRealArray GRealArray; /** * GArray: * @data: a pointer to the element data. The data may be moved as * elements are added to the #GArray. * @len: the number of elements in the #GArray not including the * possible terminating zero element. * * Contains the public fields of a GArray. */ struct _GRealArray { guint8 *data; guint len; guint alloc; guint elt_size; guint zero_terminated : 1; guint clear : 1; // gatomicrefcount ref_count; GDestroyNotify clear_func; }; /** * g_array_index: * @a: a #GArray * @t: the type of the elements * @i: the index of the element to return * * Returns the element of a #GArray at the given index. The return * value is cast to the given type. * * This example gets a pointer to an element in a #GArray: * |[ * EDayViewEvent *event; * // This gets a pointer to the 4th element in the array of * // EDayViewEvent structs. * event = &g_array_index (events, EDayViewEvent, 3); * ]| * * Returns: the element of the #GArray at the index given by @i */ #define g_array_elt_len(array,i) ((array)->elt_size * (i)) #define g_array_elt_pos(array,i) ((array)->data + g_array_elt_len((array),(i))) #define g_array_elt_zero(array, pos, len) \ (memset (g_array_elt_pos ((array), pos), 0, g_array_elt_len ((array), len))) #define g_array_zero_terminate(array) G_STMT_START{ \ if ((array)->zero_terminated) \ g_array_elt_zero ((array), (array)->len, 1); \ }G_STMT_END static guint g_nearest_pow (guint num); static void g_array_maybe_expand (GRealArray *array, guint len); /** * g_array_new: * @zero_terminated: %TRUE if the array should have an extra element at * the end which is set to 0 * @clear_: %TRUE if #GArray elements should be automatically cleared * to 0 when they are allocated * @element_size: the size of each element in bytes * * Creates a new #GArray with a reference count of 1. * * Returns: the new #GArray */ GArray* g_array_new (gboolean zero_terminated, gboolean clear, guint elt_size) { g_return_val_if_fail (elt_size > 0, NULL); return g_array_sized_new (zero_terminated, clear, elt_size, 0); } /** * g_array_sized_new: * @zero_terminated: %TRUE if the array should have an extra element at * the end with all bits cleared * @clear_: %TRUE if all bits in the array should be cleared to 0 on * allocation * @element_size: size of each element in the array * @reserved_size: number of elements preallocated * * Creates a new #GArray with @reserved_size elements preallocated and * a reference count of 1. This avoids frequent reallocation, if you * are going to add many elements to the array. Note however that the * size of the array is still 0. * * Returns: the new #GArray */ GArray* g_array_sized_new (gboolean zero_terminated, gboolean clear, guint elt_size, guint reserved_size) { GRealArray *array; g_return_val_if_fail (elt_size > 0, NULL); array = g_slice_new (GRealArray); array->data = NULL; array->len = 0; array->alloc = 0; array->zero_terminated = (zero_terminated ? 1 : 0); array->clear = (clear ? 1 : 0); array->elt_size = elt_size; array->clear_func = NULL; // g_atomic_ref_count_init (&array->ref_count); if (array->zero_terminated || reserved_size != 0) { g_array_maybe_expand (array, reserved_size); g_array_zero_terminate(array); } return (GArray*) array; } /** * g_array_set_clear_func: * @array: A #GArray * @clear_func: a function to clear an element of @array * * Sets a function to clear an element of @array. * * The @clear_func will be called when an element in the array * data segment is removed and when the array is freed and data * segment is deallocated as well. @clear_func will be passed a * pointer to the element to clear, rather than the element itself. * * Note that in contrast with other uses of #GDestroyNotify * functions, @clear_func is expected to clear the contents of * the array element it is given, but not free the element itself. * * Since: 2.32 */ void g_array_set_clear_func (GArray *array, GDestroyNotify clear_func) { GRealArray *rarray = (GRealArray *) array; g_return_if_fail (array != NULL); rarray->clear_func = clear_func; } /** * g_array_ref: * @array: A #GArray * * Atomically increments the reference count of @array by one. * This function is thread-safe and may be called from any thread. * * Returns: The passed in #GArray * * Since: 2.22 */ GArray *g_array_ref (GArray *array) { //GRealArray *rarray = (GRealArray*) array; g_return_val_if_fail (array, NULL); // g_atomic_ref_count_inc (&rarray->ref_count); return array; } typedef enum { FREE_SEGMENT = 1 << 0, PRESERVE_WRAPPER = 1 << 1 } ArrayFreeFlags; static gchar *array_free (GRealArray *, ArrayFreeFlags); /** * g_array_unref: * @array: A #GArray * * Atomically decrements the reference count of @array by one. If the * reference count drops to 0, all memory allocated by the array is * released. This function is thread-safe and may be called from any * thread. * * Since: 2.22 */ void g_array_unref (GArray *array) { GRealArray *rarray = (GRealArray*) array; g_return_if_fail (array); // if (g_atomic_ref_count_dec (&rarray->ref_count)) array_free (rarray, FREE_SEGMENT); } /** * g_array_get_element_size: * @array: A #GArray * * Gets the size of the elements in @array. * * Returns: Size of each element, in bytes * * Since: 2.22 */ guint g_array_get_element_size (GArray *array) { GRealArray *rarray = (GRealArray*) array; g_return_val_if_fail (array, 0); return rarray->elt_size; } /** * g_array_free: * @array: a #GArray * @free_segment: if %TRUE the actual element data is freed as well * * Frees the memory allocated for the #GArray. If @free_segment is * %TRUE it frees the memory block holding the elements as well. Pass * %FALSE if you want to free the #GArray wrapper but preserve the * underlying array for use elsewhere. If the reference count of * @array is greater than one, the #GArray wrapper is preserved but * the size of @array will be set to zero. * * If array contents point to dynamically-allocated memory, they should * be freed separately if @free_seg is %TRUE and no @clear_func * function has been set for @array. * * This function is not thread-safe. If using a #GArray from multiple * threads, use only the atomic g_array_ref() and g_array_unref() * functions. * * Returns: the element data if @free_segment is %FALSE, otherwise * %NULL. The element data should be freed using g_free(). */ gchar *g_array_free (GArray *farray, gboolean free_segment) { GRealArray *array = (GRealArray*) farray; ArrayFreeFlags flags; g_return_val_if_fail (array, NULL); flags = (free_segment ? FREE_SEGMENT : 0); /* if others are holding a reference, preserve the wrapper but do free/return the data */ //if (!g_atomic_ref_count_dec (&array->ref_count)) flags |= PRESERVE_WRAPPER; return array_free (array, flags); } static gchar *array_free (GRealArray *array, ArrayFreeFlags flags) { gchar *segment; if (flags & FREE_SEGMENT) { if (array->clear_func != NULL) { guint i; for (i = 0; i < array->len; i++) array->clear_func (g_array_elt_pos (array, i)); } g_free (array->data); segment = NULL; } else segment = (gchar*) array->data; if (flags & PRESERVE_WRAPPER) { array->data = NULL; array->len = 0; array->alloc = 0; } else { g_slice_free1 (sizeof (GRealArray), array); } return segment; } /** * g_array_append_vals: * @array: a #GArray * @data: (not nullable): a pointer to the elements to append to the end of the array * @len: the number of elements to append * * Adds @len elements onto the end of the array. * * Returns: the #GArray */ /** * g_array_append_val: * @a: a #GArray * @v: the value to append to the #GArray * * Adds the value on to the end of the array. The array will grow in * size automatically if necessary. * * g_array_append_val() is a macro which uses a reference to the value * parameter @v. This means that you cannot use it with literal values * such as "27". You must use variables. * * Returns: the #GArray */ GArray* g_array_append_vals (GArray *farray, gconstpointer data, guint len) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (len == 0) return farray; g_array_maybe_expand (array, len); memcpy (g_array_elt_pos (array, array->len), data, g_array_elt_len (array, len)); array->len += len; g_array_zero_terminate (array); return farray; } /** * g_array_prepend_vals: * @array: a #GArray * @data: (nullable): a pointer to the elements to prepend to the start of the array * @len: the number of elements to prepend, which may be zero * * Adds @len elements onto the start of the array. * * @data may be %NULL if (and only if) @len is zero. If @len is zero, this * function is a no-op. * * This operation is slower than g_array_append_vals() since the * existing elements in the array have to be moved to make space for * the new elements. * * Returns: the #GArray */ /** * g_array_prepend_val: * @a: a #GArray * @v: the value to prepend to the #GArray * * Adds the value on to the start of the array. The array will grow in * size automatically if necessary. * * This operation is slower than g_array_append_val() since the * existing elements in the array have to be moved to make space for * the new element. * * g_array_prepend_val() is a macro which uses a reference to the value * parameter @v. This means that you cannot use it with literal values * such as "27". You must use variables. * * Returns: the #GArray */ GArray* g_array_prepend_vals (GArray *farray, gconstpointer data, guint len) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (len == 0) return farray; g_array_maybe_expand (array, len); memmove (g_array_elt_pos (array, len), g_array_elt_pos (array, 0), g_array_elt_len (array, array->len)); memcpy (g_array_elt_pos (array, 0), data, g_array_elt_len (array, len)); array->len += len; g_array_zero_terminate (array); return farray; } /** * g_array_insert_vals: * @array: a #GArray * @index_: the index to place the elements at * @data: (nullable): a pointer to the elements to insert * @len: the number of elements to insert * * Inserts @len elements into a #GArray at the given index. * * If @index_ is greater than the array's current length, the array is expanded. * The elements between the old end of the array and the newly inserted elements * will be initialised to zero if the array was configured to clear elements; * otherwise their values will be undefined. * * @data may be %NULL if (and only if) @len is zero. If @len is zero, this * function is a no-op. * * Returns: the #GArray */ /** * g_array_insert_val: * @a: a #GArray * @i: the index to place the element at * @v: the value to insert into the array * * Inserts an element into an array at the given index. * * g_array_insert_val() is a macro which uses a reference to the value * parameter @v. This means that you cannot use it with literal values * such as "27". You must use variables. * * Returns: the #GArray */ GArray* g_array_insert_vals (GArray *farray, guint index_, gconstpointer data, guint len) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (len == 0) return farray; /* Is the index off the end of the array, and hence do we need to over-allocate * and clear some elements? */ if (index_ >= array->len) { g_array_maybe_expand (array, index_ - array->len + len); return g_array_append_vals (g_array_set_size (farray, index_), data, len); } g_array_maybe_expand (array, len); memmove (g_array_elt_pos (array, len + index_), g_array_elt_pos (array, index_), g_array_elt_len (array, array->len - index_)); memcpy (g_array_elt_pos (array, index_), data, g_array_elt_len (array, len)); array->len += len; g_array_zero_terminate (array); return farray; } /** * g_array_set_size: * @array: a #GArray * @length: the new size of the #GArray * * Sets the size of the array, expanding it if necessary. If the array * was created with @clear_ set to %TRUE, the new elements are set to 0. * * Returns: the #GArray */ GArray* g_array_set_size (GArray *farray, guint length) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (length > array->len) { g_array_maybe_expand (array, length - array->len); if (array->clear) g_array_elt_zero (array, array->len, length - array->len); } else if (length < array->len) g_array_remove_range (farray, length, array->len - length); array->len = length; g_array_zero_terminate (array); return farray; } /** * g_array_remove_index: * @array: a #GArray * @index_: the index of the element to remove * * Removes the element at the given index from a #GArray. The following * elements are moved down one place. * * Returns: the #GArray */ GArray* g_array_remove_index (GArray *farray, guint index_) { GRealArray* array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ < array->len, NULL); if (array->clear_func != NULL) array->clear_func (g_array_elt_pos (array, index_)); if (index_ != array->len - 1) memmove (g_array_elt_pos (array, index_), g_array_elt_pos (array, index_ + 1), g_array_elt_len (array, array->len - index_ - 1)); array->len -= 1; if (g_mem_gc_friendly) g_array_elt_zero (array, array->len, 1); else g_array_zero_terminate (array); return farray; } /** * g_array_remove_index_fast: * @array: a @GArray * @index_: the index of the element to remove * * Removes the element at the given index from a #GArray. The last * element in the array is used to fill in the space, so this function * does not preserve the order of the #GArray. But it is faster than * g_array_remove_index(). * * Returns: the #GArray */ GArray* g_array_remove_index_fast (GArray *farray, guint index_) { GRealArray* array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ < array->len, NULL); if (array->clear_func != NULL) array->clear_func (g_array_elt_pos (array, index_)); if (index_ != array->len - 1) memcpy (g_array_elt_pos (array, index_), g_array_elt_pos (array, array->len - 1), g_array_elt_len (array, 1)); array->len -= 1; if (g_mem_gc_friendly) g_array_elt_zero (array, array->len, 1); else g_array_zero_terminate (array); return farray; } /** * g_array_remove_range: * @array: a @GArray * @index_: the index of the first element to remove * @length: the number of elements to remove * * Removes the given number of elements starting at the given index * from a #GArray. The following elements are moved to close the gap. * * Returns: the #GArray * * Since: 2.4 */ GArray* g_array_remove_range (GArray *farray, guint index_, guint length) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ <= array->len, NULL); g_return_val_if_fail (index_ + length <= array->len, NULL); if (array->clear_func != NULL) { guint i; for (i = 0; i < length; i++) array->clear_func (g_array_elt_pos (array, index_ + i)); } if (index_ + length != array->len) memmove (g_array_elt_pos (array, index_), g_array_elt_pos (array, index_ + length), (array->len - (index_ + length)) * array->elt_size); array->len -= length; if (g_mem_gc_friendly) g_array_elt_zero (array, array->len, length); else g_array_zero_terminate (array); return farray; } /* Returns the smallest power of 2 greater than n, or n if * such power does not fit in a guint */ static guint g_nearest_pow (guint num) { guint n = num - 1; g_assert (num > 0); n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; #if SIZEOF_INT == 8 n |= n >> 32; #endif return n + 1; } static void g_array_maybe_expand (GRealArray *array, guint len) { guint want_alloc; /* Detect potential overflow */ //if ((G_MAXUINT - array->len) < len) // g_error ("adding %u to array would overflow", len); want_alloc = g_array_elt_len (array, array->len + len + array->zero_terminated); if (want_alloc > array->alloc) { want_alloc = g_nearest_pow (want_alloc); want_alloc = MAX (want_alloc, MIN_ARRAY_SIZE); array->data = g_realloc (array->data, want_alloc); if (g_mem_gc_friendly) memset (array->data + array->alloc, 0, want_alloc - array->alloc); array->alloc = want_alloc; } } /** * SECTION:arrays_pointer * @title: Pointer Arrays * @short_description: arrays of pointers to any type of data, which * grow automatically as new elements are added * * Pointer Arrays are similar to Arrays but are used only for storing * pointers. * * If you remove elements from the array, elements at the end of the * array are moved into the space previously occupied by the removed * element. This means that you should not rely on the index of particular * elements remaining the same. You should also be careful when deleting * elements while iterating over the array. * * To create a pointer array, use g_ptr_array_new(). * * To add elements to a pointer array, use g_ptr_array_add(). * * To remove elements from a pointer array, use g_ptr_array_remove(), * g_ptr_array_remove_index() or g_ptr_array_remove_index_fast(). * * To access an element of a pointer array, use g_ptr_array_index(). * * To set the size of a pointer array, use g_ptr_array_set_size(). * * To free a pointer array, use g_ptr_array_free(). * * An example using a #GPtrArray: * |[ * GPtrArray *array; * gchar *string1 = "one"; * gchar *string2 = "two"; * gchar *string3 = "three"; * * array = g_ptr_array_new (); * g_ptr_array_add (array, (gpointer) string1); * g_ptr_array_add (array, (gpointer) string2); * g_ptr_array_add (array, (gpointer) string3); * * if (g_ptr_array_index (array, 0) != (gpointer) string1) * g_print ("ERROR: got %p instead of %p\n", * g_ptr_array_index (array, 0), string1); * * g_ptr_array_free (array, TRUE); * ]| */ typedef struct _GRealPtrArray GRealPtrArray; /** * GPtrArray: * @pdata: points to the array of pointers, which may be moved when the * array grows * @len: number of pointers in the array * * Contains the public fields of a pointer array. */ struct _GRealPtrArray { gpointer *pdata; guint len; guint alloc; // gatomicrefcount ref_count; GDestroyNotify element_free_func; }; /** * g_ptr_array_index: * @array: a #GPtrArray * @index_: the index of the pointer to return * * Returns the pointer at the given index of the pointer array. * * This does not perform bounds checking on the given @index_, * so you are responsible for checking it against the array length. * * Returns: the pointer at the given index */ static void g_ptr_array_maybe_expand (GRealPtrArray *array, guint len); /** * g_ptr_array_new: * * Creates a new #GPtrArray with a reference count of 1. * * Returns: the new #GPtrArray */ GPtrArray *g_ptr_array_new (void) { return g_ptr_array_sized_new (0); } /** * g_ptr_array_steal: * @array: a #GPtrArray. * @len: (optional) (out caller-allocates): pointer to retrieve the number of * elements of the original array * * Frees the data in the array and resets the size to zero, while * the underlying array is preserved for use elsewhere and returned * to the caller. * * Even if set, the #GDestroyNotify function will never be called * on the current contents of the array and the caller is * responsible for freeing the array elements. * * An example of use: * |[ * g_autoptr(GPtrArray) chunk_buffer = g_ptr_array_new_with_free_func (g_bytes_unref); * * // Some part of your application appends a number of chunks to the pointer array. * g_ptr_array_add (chunk_buffer, g_bytes_new_static ("hello", 5)); * g_ptr_array_add (chunk_buffer, g_bytes_new_static ("world", 5)); * * ... * * // Periodically, the chunks need to be sent as an array-and-length to some * // other part of the program. * GBytes **chunks; * gsize n_chunks; * * chunks = g_ptr_array_steal (chunk_buffer, &n_chunks); * for (gsize i = 0; i < n_chunks; i++) * { * // Do something with each chunk here, and then free them, since * // g_ptr_array_steal() transfers ownership of all the elements and the * // array to the caller. * ... * * g_bytes_unref (chunks[i]); * } * * g_free (chunks); * * // After calling g_ptr_array_steal(), the pointer array can be reused for the * // next set of chunks. * g_assert (chunk_buffer->len == 0); * ]| * * Returns: (transfer full): the element data, which should be * freed using g_free(). * * Since: 2.64 */ gpointer *g_ptr_array_steal (GPtrArray *array, gsize *len) { GRealPtrArray *rarray; gpointer *segment; g_return_val_if_fail (array != NULL, NULL); rarray = (GRealPtrArray *) array; segment = (gpointer *) rarray->pdata; if (len != NULL) *len = rarray->len; rarray->pdata = NULL; rarray->len = 0; rarray->alloc = 0; return segment; } /** * g_ptr_array_copy: * @array: #GPtrArray to duplicate * @func: (nullable): a copy function used to copy every element in the array * @user_data: user data passed to the copy function @func, or %NULL * * Makes a full (deep) copy of a #GPtrArray. * * @func, as a #GCopyFunc, takes two arguments, the data to be copied * and a @user_data pointer. On common processor architectures, it's safe to * pass %NULL as @user_data if the copy function takes only one argument. You * may get compiler warnings from this though if compiling with GCC's * `-Wcast-function-type` warning. * * If @func is %NULL, then only the pointers (and not what they are * pointing to) are copied to the new #GPtrArray. * * The copy of @array will have the same #GDestroyNotify for its elements as * @array. * * Returns: (transfer full): a deep copy of the initial #GPtrArray. * * Since: 2.62 **/ GPtrArray *g_ptr_array_copy (GPtrArray *array, GCopyFunc func, gpointer user_data) { gsize i; GPtrArray *new_array; g_return_val_if_fail (array != NULL, NULL); new_array = g_ptr_array_sized_new (array->len); g_ptr_array_set_free_func (new_array, ((GRealPtrArray *) array)->element_free_func); if (func != NULL) { for (i = 0; i < array->len; i++) new_array->pdata[i] = func (array->pdata[i], user_data); } else if (array->len > 0) { memcpy (new_array->pdata, array->pdata, array->len * sizeof (*array->pdata)); } new_array->len = array->len; return new_array; } /** * g_ptr_array_sized_new: * @reserved_size: number of pointers preallocated * * Creates a new #GPtrArray with @reserved_size pointers preallocated * and a reference count of 1. This avoids frequent reallocation, if * you are going to add many pointers to the array. Note however that * the size of the array is still 0. * * Returns: the new #GPtrArray */ GPtrArray *g_ptr_array_sized_new (guint reserved_size) { GRealPtrArray *array; array = g_slice_new (GRealPtrArray); array->pdata = NULL; array->len = 0; array->alloc = 0; array->element_free_func = NULL; // g_atomic_ref_count_init (&array->ref_count); if (reserved_size != 0) g_ptr_array_maybe_expand (array, reserved_size); return (GPtrArray*) array; } /** * g_array_copy: * @array: A #GArray. * * Create a shallow copy of a #GArray. If the array elements consist of * pointers to data, the pointers are copied but the actual data is not. * * Returns: (transfer container): A copy of @array. * * Since: 2.62 **/ GArray *g_array_copy (GArray *array) { GRealArray *rarray = (GRealArray *) array; GRealArray *new_rarray; g_return_val_if_fail (rarray != NULL, NULL); new_rarray = (GRealArray *) g_array_sized_new (rarray->zero_terminated, rarray->clear, rarray->elt_size, rarray->alloc / rarray->elt_size); new_rarray->len = rarray->len; if (rarray->len > 0) memcpy (new_rarray->data, rarray->data, rarray->len * rarray->elt_size); g_array_zero_terminate (new_rarray); return (GArray *) new_rarray; } /** * g_ptr_array_new_with_free_func: * @element_free_func: (nullable): A function to free elements with * destroy @array or %NULL * * Creates a new #GPtrArray with a reference count of 1 and use * @element_free_func for freeing each element when the array is destroyed * either via g_ptr_array_unref(), when g_ptr_array_free() is called with * @free_segment set to %TRUE or when removing elements. * * Returns: A new #GPtrArray * * Since: 2.22 */ GPtrArray *g_ptr_array_new_with_free_func (GDestroyNotify element_free_func) { GPtrArray *array; array = g_ptr_array_new (); g_ptr_array_set_free_func (array, element_free_func); return array; } /** * g_ptr_array_new_full: * @reserved_size: number of pointers preallocated * @element_free_func: (nullable): A function to free elements with * destroy @array or %NULL * * Creates a new #GPtrArray with @reserved_size pointers preallocated * and a reference count of 1. This avoids frequent reallocation, if * you are going to add many pointers to the array. Note however that * the size of the array is still 0. It also set @element_free_func * for freeing each element when the array is destroyed either via * g_ptr_array_unref(), when g_ptr_array_free() is called with * @free_segment set to %TRUE or when removing elements. * * Returns: A new #GPtrArray * * Since: 2.30 */ GPtrArray *g_ptr_array_new_full (guint reserved_size, GDestroyNotify element_free_func) { GPtrArray *array; array = g_ptr_array_sized_new (reserved_size); g_ptr_array_set_free_func (array, element_free_func); return array; } /** * g_ptr_array_set_free_func: * @array: A #GPtrArray * @element_free_func: (nullable): A function to free elements with * destroy @array or %NULL * * Sets a function for freeing each element when @array is destroyed * either via g_ptr_array_unref(), when g_ptr_array_free() is called * with @free_segment set to %TRUE or when removing elements. * * Since: 2.22 */ void g_ptr_array_set_free_func (GPtrArray *array, GDestroyNotify element_free_func) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (array); rarray->element_free_func = element_free_func; } static void g_ptr_array_maybe_expand (GRealPtrArray *array, guint len) { /* Detect potential overflow */ //if ((G_MAXUINT - array->len) < len) // g_error ("adding %u to array would overflow", len); if ((array->len + len) > array->alloc) { guint old_alloc = array->alloc; array->alloc = g_nearest_pow (array->len + len); array->alloc = MAX (array->alloc, MIN_ARRAY_SIZE); array->pdata = g_realloc (array->pdata, sizeof (gpointer) * array->alloc); if (g_mem_gc_friendly) for ( ; old_alloc < array->alloc; old_alloc++) array->pdata [old_alloc] = NULL; } } /** * g_ptr_array_set_size: * @array: a #GPtrArray * @length: the new length of the pointer array * * Sets the size of the array. When making the array larger, * newly-added elements will be set to %NULL. When making it smaller, * if @array has a non-%NULL #GDestroyNotify function then it will be * called for the removed elements. */ void g_ptr_array_set_size (GPtrArray *array, gint length) { GRealPtrArray *rarray = (GRealPtrArray *)array; guint length_unsigned; g_return_if_fail (rarray); g_return_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL)); g_return_if_fail (length >= 0); length_unsigned = (guint) length; if (length_unsigned > rarray->len) { guint i; g_ptr_array_maybe_expand (rarray, (length_unsigned - rarray->len)); /* This is not * memset (array->pdata + array->len, 0, * sizeof (gpointer) * (length_unsigned - array->len)); * to make it really portable. Remember (void*)NULL needn't be * bitwise zero. It of course is silly not to use memset (..,0,..). */ for (i = rarray->len; i < length_unsigned; i++) rarray->pdata[i] = NULL; } else if (length_unsigned < rarray->len) g_ptr_array_remove_range (array, length_unsigned, rarray->len - length_unsigned); rarray->len = length_unsigned; } static gpointer ptr_array_remove_index (GPtrArray *array, guint index_, gboolean fast, gboolean free_element) { GRealPtrArray *rarray = (GRealPtrArray *) array; gpointer result; g_return_val_if_fail (rarray, NULL); g_return_val_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL), NULL); g_return_val_if_fail (index_ < rarray->len, NULL); result = rarray->pdata[index_]; if (rarray->element_free_func != NULL && free_element) rarray->element_free_func (rarray->pdata[index_]); if (index_ != rarray->len - 1 && !fast) memmove (rarray->pdata + index_, rarray->pdata + index_ + 1, sizeof (gpointer) * (rarray->len - index_ - 1)); else if (index_ != rarray->len - 1) rarray->pdata[index_] = rarray->pdata[rarray->len - 1]; rarray->len -= 1; if (g_mem_gc_friendly) rarray->pdata[rarray->len] = NULL; return result; } /** * g_ptr_array_remove_index: * @array: a #GPtrArray * @index_: the index of the pointer to remove * * Removes the pointer at the given index from the pointer array. * The following elements are moved down one place. If @array has * a non-%NULL #GDestroyNotify function it is called for the removed * element. If so, the return value from this function will potentially point * to freed memory (depending on the #GDestroyNotify implementation). * * Returns: (nullable): the pointer which was removed */ gpointer g_ptr_array_remove_index (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, FALSE, TRUE); } /** * g_ptr_array_remove_index_fast: * @array: a #GPtrArray * @index_: the index of the pointer to remove * * Removes the pointer at the given index from the pointer array. * The last element in the array is used to fill in the space, so * this function does not preserve the order of the array. But it * is faster than g_ptr_array_remove_index(). If @array has a non-%NULL * #GDestroyNotify function it is called for the removed element. If so, the * return value from this function will potentially point to freed memory * (depending on the #GDestroyNotify implementation). * * Returns: (nullable): the pointer which was removed */ gpointer g_ptr_array_remove_index_fast (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, TRUE, TRUE); } /** * g_ptr_array_steal_index: * @array: a #GPtrArray * @index_: the index of the pointer to steal * * Removes the pointer at the given index from the pointer array. * The following elements are moved down one place. The #GDestroyNotify for * @array is *not* called on the removed element; ownership is transferred to * the caller of this function. * * Returns: (transfer full) (nullable): the pointer which was removed * Since: 2.58 */ gpointer g_ptr_array_steal_index (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, FALSE, FALSE); } /** * g_ptr_array_steal_index_fast: * @array: a #GPtrArray * @index_: the index of the pointer to steal * * Removes the pointer at the given index from the pointer array. * The last element in the array is used to fill in the space, so * this function does not preserve the order of the array. But it * is faster than g_ptr_array_steal_index(). The #GDestroyNotify for @array is * *not* called on the removed element; ownership is transferred to the caller * of this function. * * Returns: (transfer full) (nullable): the pointer which was removed * Since: 2.58 */ gpointer g_ptr_array_steal_index_fast (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, TRUE, FALSE); } /** * g_ptr_array_remove_range: * @array: a @GPtrArray * @index_: the index of the first pointer to remove * @length: the number of pointers to remove * * Removes the given number of pointers starting at the given index * from a #GPtrArray. The following elements are moved to close the * gap. If @array has a non-%NULL #GDestroyNotify function it is * called for the removed elements. * * Returns: the @array * * Since: 2.4 */ GPtrArray* g_ptr_array_remove_range (GPtrArray *array, guint index_, guint length) { GRealPtrArray *rarray = (GRealPtrArray *)array; guint n; g_return_val_if_fail (rarray != NULL, NULL); g_return_val_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL), NULL); g_return_val_if_fail (index_ <= rarray->len, NULL); g_return_val_if_fail (index_ + length <= rarray->len, NULL); if (rarray->element_free_func != NULL) { for (n = index_; n < index_ + length; n++) rarray->element_free_func (rarray->pdata[n]); } if (index_ + length != rarray->len) { memmove (&rarray->pdata[index_], &rarray->pdata[index_ + length], (rarray->len - (index_ + length)) * sizeof (gpointer)); } rarray->len -= length; if (g_mem_gc_friendly) { guint i; for (i = 0; i < length; i++) rarray->pdata[rarray->len + i] = NULL; } return array; } /** * g_ptr_array_remove: * @array: a #GPtrArray * @data: the pointer to remove * * Removes the first occurrence of the given pointer from the pointer * array. The following elements are moved down one place. If @array * has a non-%NULL #GDestroyNotify function it is called for the * removed element. * * It returns %TRUE if the pointer was removed, or %FALSE if the * pointer was not found. * * Returns: %TRUE if the pointer is removed, %FALSE if the pointer * is not found in the array */ gboolean g_ptr_array_remove (GPtrArray *array, gpointer data) { guint i; g_return_val_if_fail (array, FALSE); g_return_val_if_fail (array->len == 0 || (array->len != 0 && array->pdata != NULL), FALSE); for (i = 0; i < array->len; i += 1) { if (array->pdata[i] == data) { g_ptr_array_remove_index (array, i); return TRUE; } } return FALSE; } /** * g_ptr_array_remove_fast: * @array: a #GPtrArray * @data: the pointer to remove * * Removes the first occurrence of the given pointer from the pointer * array. The last element in the array is used to fill in the space, * so this function does not preserve the order of the array. But it * is faster than g_ptr_array_remove(). If @array has a non-%NULL * #GDestroyNotify function it is called for the removed element. * * It returns %TRUE if the pointer was removed, or %FALSE if the * pointer was not found. * * Returns: %TRUE if the pointer was found in the array */ gboolean g_ptr_array_remove_fast (GPtrArray *array, gpointer data) { GRealPtrArray *rarray = (GRealPtrArray *)array; guint i; g_return_val_if_fail (rarray, FALSE); g_return_val_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL), FALSE); for (i = 0; i < rarray->len; i += 1) { if (rarray->pdata[i] == data) { g_ptr_array_remove_index_fast (array, i); return TRUE; } } return FALSE; } /** * g_ptr_array_add: * @array: a #GPtrArray * @data: the pointer to add * * Adds a pointer to the end of the pointer array. The array will grow * in size automatically if necessary. */ void g_ptr_array_add (GPtrArray *array, gpointer data) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (rarray); g_return_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL)); g_ptr_array_maybe_expand (rarray, 1); rarray->pdata[rarray->len++] = data; } /** * g_ptr_array_extend: * @array_to_extend: a #GPtrArray. * @array: (transfer none): a #GPtrArray to add to the end of @array_to_extend. * @func: (nullable): a copy function used to copy every element in the array * @user_data: user data passed to the copy function @func, or %NULL * * Adds all pointers of @array to the end of the array @array_to_extend. * The array will grow in size automatically if needed. @array_to_extend is * modified in-place. * * @func, as a #GCopyFunc, takes two arguments, the data to be copied * and a @user_data pointer. On common processor architectures, it's safe to * pass %NULL as @user_data if the copy function takes only one argument. You * may get compiler warnings from this though if compiling with GCC's * `-Wcast-function-type` warning. * * If @func is %NULL, then only the pointers (and not what they are * pointing to) are copied to the new #GPtrArray. * * Since: 2.62 **/ void g_ptr_array_extend (GPtrArray *array_to_extend, GPtrArray *array, GCopyFunc func, gpointer user_data) { GRealPtrArray *rarray_to_extend = (GRealPtrArray *) array_to_extend; gsize i; g_return_if_fail (array_to_extend != NULL); g_return_if_fail (array != NULL); g_ptr_array_maybe_expand (rarray_to_extend, array->len); if (func != NULL) { for (i = 0; i < array->len; i++) rarray_to_extend->pdata[i + rarray_to_extend->len] = func (array->pdata[i], user_data); } else if (array->len > 0) { memcpy (rarray_to_extend->pdata + rarray_to_extend->len, array->pdata, array->len * sizeof (*array->pdata)); } rarray_to_extend->len += array->len; } /** * g_ptr_array_insert: * @array: a #GPtrArray * @index_: the index to place the new element at, or -1 to append * @data: the pointer to add. * * Inserts an element into the pointer array at the given index. The * array will grow in size automatically if necessary. * * Since: 2.40 */ void g_ptr_array_insert (GPtrArray *array, gint index_, gpointer data) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (rarray); g_return_if_fail (index_ >= -1); g_return_if_fail (index_ <= (gint)rarray->len); g_ptr_array_maybe_expand (rarray, 1); if (index_ < 0) index_ = rarray->len; if ((guint) index_ < rarray->len) memmove (&(rarray->pdata[index_ + 1]), &(rarray->pdata[index_]), (rarray->len - index_) * sizeof (gpointer)); rarray->len++; rarray->pdata[index_] = data; } /** * g_ptr_array_foreach: * @array: a #GPtrArray * @func: the function to call for each array element * @user_data: user data to pass to the function * * Calls a function for each element of a #GPtrArray. @func must not * add elements to or remove elements from the array. * * Since: 2.4 */ void g_ptr_array_foreach (GPtrArray *array, GFunc func, gpointer user_data) { guint i; g_return_if_fail (array); for (i = 0; i < array->len; i++) (*func) (array->pdata[i], user_data); } /** * SECTION:arrays_byte * @title: Byte Arrays * @short_description: arrays of bytes * * #GByteArray is a mutable array of bytes based on #GArray, to provide arrays * of bytes which grow automatically as elements are added. * * To create a new #GByteArray use g_byte_array_new(). To add elements to a * #GByteArray, use g_byte_array_append(), and g_byte_array_prepend(). * * To set the size of a #GByteArray, use g_byte_array_set_size(). * * To free a #GByteArray, use g_byte_array_free(). * * An example for using a #GByteArray: * |[ * GByteArray *gbarray; * gint i; * * gbarray = g_byte_array_new (); * for (i = 0; i < 10000; i++) * g_byte_array_append (gbarray, (guint8*) "abcd", 4); * * for (i = 0; i < 10000; i++) * { * g_assert (gbarray->data[4*i] == 'a'); * g_assert (gbarray->data[4*i+1] == 'b'); * g_assert (gbarray->data[4*i+2] == 'c'); * g_assert (gbarray->data[4*i+3] == 'd'); * } * * g_byte_array_free (gbarray, TRUE); * ]| * * See #GBytes if you are interested in an immutable object representing a * sequence of bytes. */ /** * GByteArray: * @data: a pointer to the element data. The data may be moved as * elements are added to the #GByteArray * @len: the number of elements in the #GByteArray * * Contains the public fields of a GByteArray. */ /** * g_byte_array_new: * * Creates a new #GByteArray with a reference count of 1. * * Returns: (transfer full): the new #GByteArray */ GByteArray *g_byte_array_new (void) { return (GByteArray *)g_array_sized_new (FALSE, FALSE, 1, 0); } /** * g_byte_array_sized_new: * @reserved_size: number of bytes preallocated * * Creates a new #GByteArray with @reserved_size bytes preallocated. * This avoids frequent reallocation, if you are going to add many * bytes to the array. Note however that the size of the array is still * 0. * * Returns: the new #GByteArray */ GByteArray* g_byte_array_sized_new (guint reserved_size) { return (GByteArray *)g_array_sized_new (FALSE, FALSE, 1, reserved_size); } /** * g_byte_array_free: * @array: a #GByteArray * @free_segment: if %TRUE the actual byte data is freed as well * * Frees the memory allocated by the #GByteArray. If @free_segment is * %TRUE it frees the actual byte data. If the reference count of * @array is greater than one, the #GByteArray wrapper is preserved but * the size of @array will be set to zero. * * Returns: the element data if @free_segment is %FALSE, otherwise * %NULL. The element data should be freed using g_free(). */ guint8* g_byte_array_free (GByteArray *array, gboolean free_segment) { return (guint8 *)g_array_free ((GArray *)array, free_segment); } /** * g_byte_array_append: * @array: a #GByteArray * @data: the byte data to be added * @len: the number of bytes to add * * Adds the given bytes to the end of the #GByteArray. * The array will grow in size automatically if necessary. * * Returns: the #GByteArray */ GByteArray* g_byte_array_append (GByteArray *array, const guint8 *data, guint len) { g_array_append_vals ((GArray *)array, (guint8 *)data, len); return array; } /** * g_byte_array_prepend: * @array: a #GByteArray * @data: the byte data to be added * @len: the number of bytes to add * * Adds the given data to the start of the #GByteArray. * The array will grow in size automatically if necessary. * * Returns: the #GByteArray */ GByteArray *g_byte_array_prepend (GByteArray *array, const guint8 *data, guint len) { g_array_prepend_vals ((GArray *)array, (guint8 *)data, len); return array; } /** * g_byte_array_set_size: * @array: a #GByteArray * @length: the new size of the #GByteArray * * Sets the size of the #GByteArray, expanding it if necessary. * * Returns: the #GByteArray */ GByteArray *g_byte_array_set_size (GByteArray *array, guint length) { g_array_set_size ((GArray *)array, length); return array; }