uc_reg_read & uc_reg_write now support ARM64 Neon registers (#774)

* uc_reg_read & uc_reg_write now support ARM64 Neon registers

* Do not reuse uc_x86_xmm for uc_arm64_neon128. TODO: refactor both classes to use the same parent.
This commit is contained in:
stevielavern 2017-03-07 14:29:34 +01:00 committed by Nguyen Anh Quynh
parent 117b48c33c
commit b3a5eae81c
2 changed files with 56 additions and 2 deletions

View File

@ -9,7 +9,7 @@ import os.path
import sys import sys
import weakref import weakref
from . import x86_const, unicorn_const as uc from . import x86_const, arm64_const, unicorn_const as uc
if not hasattr(sys.modules[__name__], "__file__"): if not hasattr(sys.modules[__name__], "__file__"):
__file__ = inspect.getfile(inspect.currentframe()) __file__ = inspect.getfile(inspect.currentframe())
@ -223,6 +223,13 @@ class uc_x86_xmm(ctypes.Structure):
("high_qword", ctypes.c_uint64), ("high_qword", ctypes.c_uint64),
] ]
class uc_arm64_neon128(ctypes.Structure):
"""128-bit neon register"""
_fields_ = [
("low_qword", ctypes.c_uint64),
("high_qword", ctypes.c_uint64),
]
# Subclassing ref to allow property assignment. # Subclassing ref to allow property assignment.
class UcRef(weakref.ref): class UcRef(weakref.ref):
pass pass
@ -317,6 +324,14 @@ class Uc(object):
raise UcError(status) raise UcError(status)
return reg.value return reg.value
if self._arch == uc.UC_ARCH_ARM64:
if reg_id in range(arm64_const.UC_ARM64_REG_Q0, arm64_const.UC_ARM64_REG_Q31+1) or range(arm64_const.UC_ARM64_REG_V0, arm64_const.UC_ARM64_REG_V31+1):
reg = uc_arm64_neon128()
status = _uc.uc_reg_read(self._uch, reg_id, ctypes.byref(reg))
if status != uc.UC_ERR_OK:
raise UcError(status)
return reg.low_qword | (reg.high_qword << 64)
# read to 64bit number to be safe # read to 64bit number to be safe
reg = ctypes.c_uint64(0) reg = ctypes.c_uint64(0)
status = _uc.uc_reg_read(self._uch, reg_id, ctypes.byref(reg)) status = _uc.uc_reg_read(self._uch, reg_id, ctypes.byref(reg))
@ -349,6 +364,12 @@ class Uc(object):
reg.rid = value[0] reg.rid = value[0]
reg.value = value[1] reg.value = value[1]
if self._arch == uc.UC_ARCH_ARM64:
if reg_id in range(arm64_const.UC_ARM64_REG_Q0, arm64_const.UC_ARM64_REG_Q31+1) or range(arm64_const.UC_ARM64_REG_V0, arm64_const.UC_ARM64_REG_V31+1):
reg = uc_arm64_neon128()
reg.low_qword = value & 0xffffffffffffffff
reg.high_qword = value >> 64
if reg is None: if reg is None:
# convert to 64bit number to be safe # convert to 64bit number to be safe
reg = ctypes.c_uint64(value) reg = ctypes.c_uint64(value)

View File

@ -50,10 +50,27 @@ int arm64_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int co
for (i = 0; i < count; i++) { for (i = 0; i < count; i++) {
unsigned int regid = regs[i]; unsigned int regid = regs[i];
void *value = vals[i]; void *value = vals[i];
// V & Q registers are the same
if (regid >= UC_ARM64_REG_V0 && regid <= UC_ARM64_REG_V31) {
regid += UC_ARM64_REG_Q0 - UC_ARM64_REG_V0;
}
if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) { if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) {
*(int64_t *)value = ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_X0]; *(int64_t *)value = ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_X0];
} else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) { } else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) {
*(int32_t *)value = READ_DWORD(ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_W0]); *(int32_t *)value = READ_DWORD(ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_W0]);
} else if (regid >= UC_ARM64_REG_Q0 && regid <= UC_ARM64_REG_Q31) {
float64 *dst = (float64*) value;
uint32_t reg_index = 2*(regid - UC_ARM64_REG_Q0);
dst[0] = ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index];
dst[1] = ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index+1];
} else if (regid >= UC_ARM64_REG_D0 && regid <= UC_ARM64_REG_D31) {
*(float64*)value = ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_D0)];
} else if (regid >= UC_ARM64_REG_S0 && regid <= UC_ARM64_REG_S31) {
*(int32_t*)value = READ_DWORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_S0)]);
} else if (regid >= UC_ARM64_REG_H0 && regid <= UC_ARM64_REG_H31) {
*(int16_t*)value = READ_WORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_H0)]);
} else if (regid >= UC_ARM64_REG_B0 && regid <= UC_ARM64_REG_B31) {
*(int8_t*)value = READ_BYTE_L(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_B0)]);
} else { } else {
switch(regid) { switch(regid) {
default: break; default: break;
@ -84,10 +101,26 @@ int arm64_reg_write(struct uc_struct *uc, unsigned int *regs, void* const* vals,
for (i = 0; i < count; i++) { for (i = 0; i < count; i++) {
unsigned int regid = regs[i]; unsigned int regid = regs[i];
const void *value = vals[i]; const void *value = vals[i];
if (regid >= UC_ARM64_REG_V0 && regid <= UC_ARM64_REG_V31) {
regid += UC_ARM64_REG_Q0 - UC_ARM64_REG_V0;
}
if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) { if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) {
ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_X0] = *(uint64_t *)value; ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_X0] = *(uint64_t *)value;
} else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) { } else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) {
WRITE_DWORD(ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_W0], *(uint32_t *)value); WRITE_DWORD(ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_W0], *(uint32_t *)value);
} else if (regid >= UC_ARM64_REG_Q0 && regid <= UC_ARM64_REG_Q31) {
float64 *src = (float64*) value;
uint32_t reg_index = 2*(regid - UC_ARM64_REG_Q0);
ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index] = src[0];
ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index+1] = src[1];
} else if (regid >= UC_ARM64_REG_D0 && regid <= UC_ARM64_REG_D31) {
ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_D0)] = * (float64*) value;
} else if (regid >= UC_ARM64_REG_S0 && regid <= UC_ARM64_REG_S31) {
WRITE_DWORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_S0)], *(int32_t*) value);
} else if (regid >= UC_ARM64_REG_H0 && regid <= UC_ARM64_REG_H31) {
WRITE_WORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_H0)], *(int16_t*) value);
} else if (regid >= UC_ARM64_REG_B0 && regid <= UC_ARM64_REG_B31) {
WRITE_BYTE_L(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_B0)], *(int8_t*) value);
} else { } else {
switch(regid) { switch(regid) {
default: break; default: break;