Merge pull request #139 from JonathonReinhart/unit-testing-framework

[WIP] Unit testing framework
This commit is contained in:
Nguyen Anh Quynh 2015-09-21 11:18:59 +08:00
commit 47b904c3ba
7 changed files with 981 additions and 0 deletions

View File

@ -246,3 +246,12 @@ Unicorn requires few dependent packages as followings
So far, only Python is supported by bindings in the main code.
Look for the bindings under directory bindings/, and refer to README file
of corresponding languages.
[11] Unit tests
Automated unit tests use the cmocka unit testing framework (https://cmocka.org/).
It can be installed in most Linux distros using the package manager, e.g.
`sudo yum install libcmocka libcmocka-devel`, or you can easily build and install it from source.
You can run the tests by running `make test` in the project directory.

View File

@ -249,6 +249,11 @@ else
endif
.PHONY: test
test: all
$(MAKE) -C test/unit test
install: all $(PKGCFGF)
mkdir -p $(LIBDIR)
ifeq ($(UNICORN_SHARED),yes)
@ -302,6 +307,7 @@ ifeq (,$(findstring yes,$(UNICORN_BUILD_CORE_ONLY)))
cd samples && $(MAKE) clean
rm -f $(BLDIR)/samples/lib$(LIBNAME).$(EXT)
endif
$(MAKE) -C test/unit clean
ifdef BUILDDIR
rm -rf $(BUILDDIR)

2
test/unit/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
test_x86
test_mem_map

30
test/unit/Makefile Normal file
View File

@ -0,0 +1,30 @@
CFLAGS += -Wall -Werror -Wno-unused-function -g
CFLAGS += -L ../../
CFLAGS += -lcmocka -lunicorn
CFLAGS += -I ../../include
ALL_TESTS = test_x86 test_mem_map
.PHONY: all
all: ${ALL_TESTS}
.PHONY: clean
clean:
rm ${ALL_TESTS}
.PHONY: test
test: export LD_LIBRARY_PATH=../../
test: ${ALL_TESTS}
./test_x86
./test_mem_map
test_x86: test_x86.c
test_mem_map: test_mem_map.c
${ALL_TESTS}:
gcc ${CFLAGS} -o $@ $^

143
test/unit/test_mem_map.c Normal file
View File

@ -0,0 +1,143 @@
/**
* Unicorn memory API tests
*
* This tests memory read/write and map/unmap functionality.
* One is necessary for doing the other.
*/
#include "unicorn_test.h"
#include <stdio.h>
#include <string.h>
/* Called before every test to set up a new instance */
static int setup(void **state)
{
uc_engine *uc;
uc_assert_success(uc_open(UC_ARCH_X86, UC_MODE_32, &uc));
*state = uc;
return 0;
}
/* Called after every test to clean up */
static int teardown(void **state)
{
uc_engine *uc = *state;
uc_assert_success(uc_close(uc));
*state = NULL;
return 0;
}
/******************************************************************************/
/**
* A basic test showing mapping of memory, and reading/writing it
*/
static void test_basic(void **state)
{
uc_engine *uc = *state;
const uint64_t mem_start = 0x1000;
const uint64_t mem_len = 0x1000;
const uint64_t test_addr = mem_start + 0x100;
/* Map a region */
uc_assert_success(uc_mem_map(uc, mem_start, mem_len, UC_PROT_NONE));
/* Write some data to it */
uc_assert_success(uc_mem_write(uc, test_addr, "test", 4));
uint8_t buf[4];
memset(buf, 0xCC, sizeof(buf));
/* Read it back */
uc_assert_success(uc_mem_read(uc, test_addr, buf, sizeof(buf)));
/* And make sure it matches what we expect */
assert_memory_equal(buf, "test", 4);
/* Unmap the region */
//uc_assert_success(uc_mem_unmap(uc, mem_start, mem_len));
}
static void test_bad_read(void **state)
{
uc_engine *uc = *state;
uint8_t readbuf[0x10];
memset(readbuf, 0xCC, sizeof(readbuf));
uint8_t checkbuf[0x10];
memset(checkbuf, 0xCC, sizeof(checkbuf));
/* Reads to unmapped addresses should fail */
/* TODO: Which error? */
uc_assert_fail(uc_mem_read(uc, 0x1000, readbuf, sizeof(readbuf)));
/* And our buffer should be unchanged */
assert_memory_equal(readbuf, checkbuf, sizeof(checkbuf));
}
static void test_bad_write(void **state)
{
uc_engine *uc = *state;
uint8_t writebuf[0x10];
memset(writebuf, 0xCC, sizeof(writebuf));
/* Writes to unmapped addresses should fail */
/* TODO: Which error? */
uc_assert_fail(uc_mem_write(uc, 0x1000, writebuf, sizeof(writebuf)));
}
/**
* Verify that we can read/write across memory map region boundaries
*/
static void test_rw_across_boundaries(void **state)
{
uc_engine *uc = *state;
/* Map in two adjacent regions */
uc_assert_success(uc_mem_map(uc, 0, 0x1000, 0)); /* 0x0000 - 0x1000 */
uc_assert_success(uc_mem_map(uc, 0x1000, 0x1000, 0)); /* 0x1000 - 0x2000 */
const uint64_t addr = 0x1000 - 2; /* 2 bytes before end of block */
/* Write some data across the boundary */
uc_assert_success(uc_mem_write(uc, addr, "test", 4));
uint8_t buf[4];
memset(buf, 0xCC, sizeof(buf));
/* Read the data across the boundary */
uc_assert_success(uc_mem_read(uc, addr, buf, sizeof(buf)));
assert_memory_equal(buf, "test", 4);
}
/* Try to unmap memory that has not been mapped */
static void test_bad_unmap(void **state)
{
uc_engine *uc = *state;
/* TODO: Which error should this return? */
uc_assert_fail(uc_mem_unmap(uc, 0x0, 0x1000));
}
int main(void) {
#define test(x) cmocka_unit_test_setup_teardown(x, setup, teardown)
const struct CMUnitTest tests[] = {
test(test_basic),
//test(test_bad_read),
//test(test_bad_write),
test(test_bad_unmap),
test(test_rw_across_boundaries),
};
#undef test
return cmocka_run_group_tests(tests, NULL, NULL);
}

752
test/unit/test_x86.c Normal file
View File

@ -0,0 +1,752 @@
#include "unicorn_test.h"
#include <inttypes.h>
#define OK(x) uc_assert_success(x)
/* Called before every test to set up a new instance */
static int setup32(void **state)
{
uc_engine *uc;
OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc));
*state = uc;
return 0;
}
/* Called after every test to clean up */
static int teardown(void **state)
{
uc_engine *uc = *state;
OK(uc_close(uc));
*state = NULL;
return 0;
}
/******************************************************************************/
struct bb {
uint64_t addr;
size_t size;
};
struct bbtest {
const struct bb *blocks;
unsigned int blocknum;
};
static void test_basic_blocks_hook(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
struct bbtest *bbtest = user_data;
const struct bb *bb = &bbtest->blocks[bbtest->blocknum++];
assert_int_equal(address, bb->addr);
assert_int_equal((size_t)size, bb->size);
}
static void test_basic_blocks(void **state)
{
uc_engine *uc = *state;
uc_hook trace1;
#define BASEADDR 0x1000000
uint64_t address = BASEADDR;
const uint8_t code[] = {
0x33, 0xC0, // xor eax, eax
0x90, // nop
0x90, // nop
0xEB, 0x00, // jmp $+2
0x90, // nop
0x90, // nop
0x90, // nop
};
static const struct bb blocks[] = {
{BASEADDR, 6},
{BASEADDR+ 6, 3},
};
struct bbtest bbtest = {
.blocks = blocks,
.blocknum = 0,
};
#undef BASEADDR
// map 2MB memory for this emulation
OK(uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL));
// write machine code to be emulated to memory
OK(uc_mem_write(uc, address, code, sizeof(code)));
// trace all basic blocks
OK(uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, test_basic_blocks_hook, &bbtest, (uint64_t)1, (uint64_t)0));
OK(uc_emu_start(uc, address, address+sizeof(code), 0, 0));
}
/******************************************************************************/
// callback for tracing basic blocks
static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
//printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size);
}
// callback for tracing instruction
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
//int eflags;
//printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
//uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags);
//printf(">>> --- EFLAGS is 0x%x\n", eflags);
// Uncomment below code to stop the emulation using uc_emu_stop()
// if (address == 0x1000009)
// uc_emu_stop(uc);
}
static void test_i386(void **state)
{
uc_engine *uc;
uc_err err;
uint32_t tmp;
uc_hook trace1, trace2;
const uint8_t code[] = "\x41\x4a"; // INC ecx; DEC edx
const uint64_t address = 0x1000000;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code)-1);
uc_assert_success(err);
// initialize machine registers
err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_assert_success(err);
err = uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
uc_assert_success(err);
// tracing all basic blocks with customized callback
err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// tracing all instruction by having @begin > @end
err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// emulate machine code in infinite time
err = uc_emu_start(uc, address, address+sizeof(code)-1, 0, 0);
uc_assert_success(err);
// now print out some registers
//printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
assert_int_equal(r_ecx, 0x1235);
assert_int_equal(r_edx, 0x788F);
// read from memory
err = uc_mem_read(uc, address, (uint8_t *)&tmp, 4);
uc_assert_success(err);
//printf(">>> Read 4 bytes from [0x%"PRIX64"] = 0x%x\n", address, tmp);
uc_close(uc);
}
static void test_i386_jump(void **state)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2;
const uint8_t code[] = "\xeb\x02\x90\x90\x90\x90\x90\x90"; // jmp 4; nop; nop; nop; nop; nop; nop
const uint64_t address = 0x1000000;
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code)-1);
uc_assert_success(err);
// tracing 1 basic block with customized callback
err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)address, (uint64_t)address);
uc_assert_success(err);
// tracing 1 instruction at address
err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)address, (uint64_t)address);
uc_assert_success(err);
// emulate machine code in infinite time
err = uc_emu_start(uc, address, address+sizeof(code)-1, 0, 0);
uc_assert_success(err);
err = uc_close(uc);
uc_assert_success(err);
}
/******************************************************************************/
// callback for IN instruction (X86).
// this returns the data read from the port
static uint32_t hook_in(uc_engine *uc, uint32_t port, int size, void *user_data)
{
uint32_t eip;
uc_reg_read(uc, UC_X86_REG_EIP, &eip);
//printf("--- reading from port 0x%x, size: %u, address: 0x%x\n", port, size, eip);
switch(size) {
default:
return 0; // should never reach this
case 1:
// read 1 byte to AL
return 0xf1;
case 2:
// read 2 byte to AX
return 0xf2;
case 4:
// read 4 byte to EAX
return 0xf4;
}
}
// callback for OUT instruction (X86).
static void hook_out(uc_engine *uc, uint32_t port, int size, uint32_t value, void *user_data)
{
uint32_t tmp;
uint32_t eip;
uc_reg_read(uc, UC_X86_REG_EIP, &eip);
//printf("--- writing to port 0x%x, size: %u, value: 0x%x, address: 0x%x\n", port, size, value, eip);
// TODO: confirm that value is indeed the value of AL/AX/EAX
switch(size) {
default:
return; // should never reach this
case 1:
uc_reg_read(uc, UC_X86_REG_AL, &tmp);
break;
case 2:
uc_reg_read(uc, UC_X86_REG_AX, &tmp);
break;
case 4:
uc_reg_read(uc, UC_X86_REG_EAX, &tmp);
break;
}
//printf("--- register value = 0x%x\n", tmp);
}
static void test_i386_inout(void **state)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2, trace3, trace4;
int r_eax = 0x1234; // EAX register
int r_ecx = 0x6789; // ECX register
static const uint64_t address = 0x1000000;
static const uint8_t code[] = {
0x41, // inc ecx
0xE4, 0x3F, // in al, 0x3F
0x4A, // dec edx
0xE6, 0x46, // out 0x46, al
0x43, // inc ebx
};
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// initialize machine registers
err = uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
uc_assert_success(err);
err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_assert_success(err);
// tracing all basic blocks with customized callback
err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// tracing all instructions
err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// uc IN instruction
err = uc_hook_add(uc, &trace3, UC_HOOK_INSN, hook_in, NULL, UC_X86_INS_IN);
uc_assert_success(err);
// uc OUT instruction
err = uc_hook_add(uc, &trace4, UC_HOOK_INSN, hook_out, NULL, UC_X86_INS_OUT);
uc_assert_success(err);
// emulate machine code in infinite time
err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
uc_assert_success(err);
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
//printf(">>> EAX = 0x%x\n", r_eax);
//printf(">>> ECX = 0x%x\n", r_ecx);
// TODO: Assert on the register values here
uc_assert_success(uc_close(uc));
}
/******************************************************************************/
// emulate code that loop forever
static void test_i386_loop(void **state)
{
uc_engine *uc;
uc_err err;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
static const uint64_t address = 0x1000000;
static const uint8_t code[] = {
0x41, // inc ecx
0x4a, // dec edx
0xEB, 0xFE, // jmp $
};
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// initialize machine registers
err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_assert_success(err);
err = uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
uc_assert_success(err);
// emulate machine code in 2 seconds, so we can quit even
// if the code loops
err = uc_emu_start(uc, address, address+sizeof(code), 2*UC_SECOND_SCALE, 0);
uc_assert_success(err);
// verify register values
uc_assert_success(uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx));
uc_assert_success(uc_reg_read(uc, UC_X86_REG_EDX, &r_edx));
assert_int_equal(r_ecx, 0x1235);
assert_int_equal(r_edx, 0x788F);
uc_assert_success(uc_close(uc));
}
/******************************************************************************/
// emulate code that reads invalid memory
static void test_i386_invalid_mem_read(void **state)
{
uc_engine *uc;
uc_err err;
static const uint64_t address = 0x1000000;
static const uint8_t code[] = {
0x88, 0x0D, 0xAA, 0xAA, 0xAA, 0xAA, // mov ecx, [0xAAAAAAAA]
};
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// emulate machine code in infinite time
err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
uc_assert_err(UC_ERR_READ_INVALID, err); // TODO: Currently returns WRITE_INVALID
uc_assert_success(uc_close(uc));
}
// emulate code that writes invalid memory
static void test_i386_invalid_mem_write(void **state)
{
uc_engine *uc;
uc_err err;
static const uint64_t address = 0x1000000;
static const uint8_t code[] = {
0x89, 0x0D, 0xAA, 0xAA, 0xAA, 0xAA, // mov [0xAAAAAAAA], ecx
};
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// emulate machine code in infinite time
err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
uc_assert_err(UC_ERR_WRITE_INVALID, err);
uc_assert_success(uc_close(uc));
}
// emulate code that jumps to invalid memory
static void test_i386_jump_invalid(void **state)
{
uc_engine *uc;
uc_err err;
static const uint64_t address = 0x1000000;
static const uint8_t code[] = {
0xE9, 0xE9, 0xEE, 0xEE, 0xEE, // jmp 0xEEEEEEEE
};
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// emulate machine code in infinite time
err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
uc_assert_err(UC_ERR_CODE_INVALID, err);
uc_assert_success(uc_close(uc));
}
/******************************************************************************/
static void hook_mem64(uc_engine *uc, uc_mem_type type,
uint64_t address, int size, int64_t value, void *user_data)
{
switch(type) {
default: break;
case UC_MEM_READ:
//printf(">>> Memory is being READ at 0x%"PRIx64 ", data size = %u\n",
// address, size);
break;
case UC_MEM_WRITE:
//printf(">>> Memory is being WRITE at 0x%"PRIx64 ", data size = %u, data value = 0x%"PRIx64 "\n",
// address, size, value);
break;
}
}
// callback for tracing instruction
static void hook_code64(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
uint64_t rip;
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
//printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
//printf(">>> RIP is 0x%"PRIx64 "\n", rip);
// Uncomment below code to stop the emulation using uc_emu_stop()
// if (address == 0x1000009)
// uc_emu_stop(uc);
}
static void test_x86_64(void **state)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2, trace3, trace4;
static const uint64_t address = 0x1000000;
static const uint8_t code[] = "\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E\x09\x3C\x59";
int64_t rax = 0x71f3029efd49d41d;
int64_t rbx = 0xd87b45277f133ddb;
int64_t rcx = 0xab40d1ffd8afc461;
int64_t rdx = 0x919317b4a733f01;
int64_t rsi = 0x4c24e753a17ea358;
int64_t rdi = 0xe509a57d2571ce96;
int64_t r8 = 0xea5b108cc2b9ab1f;
int64_t r9 = 0x19ec097c8eb618c1;
int64_t r10 = 0xec45774f00c5f682;
int64_t r11 = 0xe17e9dbec8c074aa;
int64_t r12 = 0x80f86a8dc0f6d457;
int64_t r13 = 0x48288ca5671c5492;
int64_t r14 = 0x595f72f6e4017f6e;
int64_t r15 = 0x1efd97aea331cccc;
int64_t rsp = address + 0x200000;
// Initialize emulator in X86-64bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// initialize machine registers
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RSP, &rsp));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &rax));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RBX, &rbx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RCX, &rcx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RDX, &rdx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RSI, &rsi));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RDI, &rdi));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R8, &r8));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R9, &r9));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R10, &r10));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R11, &r11));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R12, &r12));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R13, &r13));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R14, &r14));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_R15, &r15));
// tracing all basic blocks with customized callback
err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// tracing all instructions in the range [address, address+20]
err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code64, NULL, (uint64_t)address, (uint64_t)(address+20));
uc_assert_success(err);
// tracing all memory WRITE access (with @begin > @end)
err = uc_hook_add(uc, &trace3, UC_HOOK_MEM_WRITE, hook_mem64, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// tracing all memory READ access (with @begin > @end)
err = uc_hook_add(uc, &trace4, UC_HOOK_MEM_READ, hook_mem64, NULL, (uint64_t)1, (uint64_t)0);
uc_assert_success(err);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
uc_assert_success(err);
// Read registers
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
uc_reg_read(uc, UC_X86_REG_RBX, &rbx);
uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
uc_reg_read(uc, UC_X86_REG_RDX, &rdx);
uc_reg_read(uc, UC_X86_REG_RSI, &rsi);
uc_reg_read(uc, UC_X86_REG_RDI, &rdi);
uc_reg_read(uc, UC_X86_REG_R8, &r8);
uc_reg_read(uc, UC_X86_REG_R9, &r9);
uc_reg_read(uc, UC_X86_REG_R10, &r10);
uc_reg_read(uc, UC_X86_REG_R11, &r11);
uc_reg_read(uc, UC_X86_REG_R12, &r12);
uc_reg_read(uc, UC_X86_REG_R13, &r13);
uc_reg_read(uc, UC_X86_REG_R14, &r14);
uc_reg_read(uc, UC_X86_REG_R15, &r15);
#if 0
printf(">>> RAX = 0x%" PRIx64 "\n", rax);
printf(">>> RBX = 0x%" PRIx64 "\n", rbx);
printf(">>> RCX = 0x%" PRIx64 "\n", rcx);
printf(">>> RDX = 0x%" PRIx64 "\n", rdx);
printf(">>> RSI = 0x%" PRIx64 "\n", rsi);
printf(">>> RDI = 0x%" PRIx64 "\n", rdi);
printf(">>> R8 = 0x%" PRIx64 "\n", r8);
printf(">>> R9 = 0x%" PRIx64 "\n", r9);
printf(">>> R10 = 0x%" PRIx64 "\n", r10);
printf(">>> R11 = 0x%" PRIx64 "\n", r11);
printf(">>> R12 = 0x%" PRIx64 "\n", r12);
printf(">>> R13 = 0x%" PRIx64 "\n", r13);
printf(">>> R14 = 0x%" PRIx64 "\n", r14);
printf(">>> R15 = 0x%" PRIx64 "\n", r15);
#endif
uc_assert_success(uc_close(uc));
}
/******************************************************************************/
// callback for SYSCALL instruction (X86).
static void hook_syscall(uc_engine *uc, void *user_data)
{
uint64_t rax;
uc_assert_success(uc_reg_read(uc, UC_X86_REG_RAX, &rax));
assert_int_equal(0x100, rax);
rax = 0x200;
uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &rax));
}
static void test_x86_64_syscall(void **state)
{
uc_engine *uc;
uc_hook trace1;
uc_err err;
static const uint64_t address = 0x1000000;
static const uint8_t code[] = {
0x0F, 0x05, // SYSCALL
};
int64_t rax = 0x100;
// Initialize emulator in X86-64bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
uc_assert_success(err);
// map 2MB memory for this emulation
err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// hook interrupts for syscall
err = uc_hook_add(uc, &trace1, UC_HOOK_INSN, hook_syscall, NULL, UC_X86_INS_SYSCALL);
uc_assert_success(err);
// initialize machine registers
err = uc_reg_write(uc, UC_X86_REG_RAX, &rax);
uc_assert_success(err);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, address, address + sizeof(code), 0, 0);
uc_assert_success(err);
// verify register values
uc_assert_success(uc_reg_read(uc, UC_X86_REG_RAX, &rax));
assert_int_equal(0x200, rax);
uc_assert_success(uc_close(uc));
}
/******************************************************************************/
static void test_x86_16(void **state)
{
uc_engine *uc;
uc_err err;
uint8_t tmp;
static const uint64_t address = 0;
static const uint8_t code[] = {
0x00, 0x00, // add byte ptr [bx + si], al
};
int32_t eax = 7;
int32_t ebx = 5;
int32_t esi = 6;
// Initialize emulator in X86-16bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_16, &uc);
uc_assert_success(err);
// map 8KB memory for this emulation
err = uc_mem_map(uc, address, 8 * 1024, UC_PROT_ALL);
uc_assert_success(err);
// write machine code to be emulated to memory
err = uc_mem_write(uc, address, code, sizeof(code));
uc_assert_success(err);
// initialize machine registers
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EAX, &eax));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_EBX, &ebx));
uc_assert_success(uc_reg_write(uc, UC_X86_REG_ESI, &esi));
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
uc_assert_success(err);
// read from memory
uc_assert_success(uc_mem_read(uc, 11, &tmp, 1));
assert_int_equal(7, tmp);
uc_assert_success(uc_close(uc));
}
/******************************************************************************/
int main(void) {
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_i386),
cmocka_unit_test(test_i386_jump),
cmocka_unit_test(test_i386_inout),
cmocka_unit_test(test_i386_loop),
cmocka_unit_test(test_i386_invalid_mem_read),
cmocka_unit_test(test_i386_invalid_mem_write),
cmocka_unit_test(test_i386_jump_invalid),
// TODO: Infinite loop, then segfault
//cmocka_unit_test(test_x86_64),
cmocka_unit_test(test_x86_64_syscall),
cmocka_unit_test(test_x86_16),
cmocka_unit_test_setup_teardown(test_basic_blocks, setup32, teardown),
};
return cmocka_run_group_tests(tests, NULL, NULL);
}

39
test/unit/unicorn_test.h Normal file
View File

@ -0,0 +1,39 @@
#ifndef UNICORN_TEST_H
#define UNICORN_TEST_H
#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmocka.h>
#include <unicorn/unicorn.h>
#define UC_ASSERT_ERR_ANY 0xDEADBEEF
/**
* Assert that err matches expect
*/
#define uc_assert_err(expect, err) \
do { \
uc_err __err = err; \
if ((__err != expect) \
|| (expect == UC_ASSERT_ERR_ANY && __err == UC_ERR_OK)) { \
fail_msg("%s", uc_strerror(__err)); \
} \
} while (0)
/**
* Assert that err is UC_ERR_OK
*/
#define uc_assert_success(err) uc_assert_err(UC_ERR_OK, err)
/**
* Assert that err is anything but UC_ERR_OK
*
* Note: Better to use uc_assert_err(<specific error>, err),
* as this serves to document which errors a function will return
* in various scenarios.
*/
#define uc_assert_fail(err) uc_assert_err(UC_ASSERT_ERR_ANY, err)
#endif /* UNICORN_TEST_H */