unicorn/samples/sample_x86.c

1490 lines
46 KiB
C
Raw Permalink Normal View History

2015-08-21 10:04:50 +03:00
/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh & Dang Hoang Vu, 2015 */
/* Sample code to demonstrate how to emulate X86 code */
#include <unicorn/unicorn.h>
#include <string.h>
2015-08-21 10:04:50 +03:00
// code to be emulated
#define X86_CODE32 \
"\x41\x4a\x66\x0f\xef\xc1" // INC ecx; DEC edx; PXOR xmm0, xmm1
#define X86_CODE32_JUMP \
"\xeb\x02\x90\x90\x90\x90\x90\x90" // jmp 4; nop; nop; nop; nop; nop; nop
// #define X86_CODE32_SELF
// "\xeb\x1c\x5a\x89\xd6\x8b\x02\x66\x3d\xca\x7d\x75\x06\x66\x05\x03\x03\x89\x02\xfe\xc2\x3d\x41\x41\x41\x41\x75\xe9\xff\xe6\xe8\xdf\xff\xff\xff\x31\xd2\x6a\x0b\x58\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xca\x7d\x41\x41\x41\x41"
2015-08-21 10:04:50 +03:00
//#define X86_CODE32 "\x51\x51\x51\x51" // PUSH ecx;
#define X86_CODE32_LOOP "\x41\x4a\xeb\xfe" // INC ecx; DEC edx; JMP self-loop
#define X86_CODE32_MEM_WRITE \
"\x89\x0D\xAA\xAA\xAA\xAA\x41\x4a" // mov [0xaaaaaaaa], ecx; INC ecx; DEC
// edx
#define X86_CODE32_MEM_READ \
"\x8B\x0D\xAA\xAA\xAA\xAA\x41\x4a" // mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx
#define X86_CODE32_MEM_READ_IN_TB \
"\x40\x8b\x1d\x00\x00\x10\x00\x42" // inc eax; mov ebx, [0x100000]; inc edx
#define X86_CODE32_JMP_INVALID \
"\xe9\xe9\xee\xee\xee\x41\x4a" // JMP outside; INC ecx; DEC edx
#define X86_CODE32_INOUT \
"\x41\xE4\x3F\x4a\xE6\x46\x43" // INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46,
// AL; INC ebx
#define X86_CODE32_INC "\x40" // INC eax
//#define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A \x49\x0F\xC9 \x90
//\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9" //
//<== still crash #define X86_CODE64
//"\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9"
#define X86_CODE64 \
"\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90" \
"\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A" \
"\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5" \
"\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E" \
"\x09\x3C\x59"
#define X86_CODE16 "\x00\x00" // add byte ptr [bx + si], al
#define X86_CODE64_SYSCALL "\x0f\x05" // SYSCALL
#define X86_MMIO_CODE \
"\x89\x0d\x04\x00\x02\x00\x8b\x0d\x04\x00\x02\x00" // mov [0x20004], ecx;
// mov ecx, [0x20004]
2021-10-03 17:14:44 +03:00
/*
* 0x1000 xor dword ptr [edi+0x3], eax ; edi=0x1000, eax=0xbc4177e6
* 0x1003 dw 0x3ea98b13
*/
#define X86_CODE32_SMC "\x31\x47\x03\x13\x8b\xa9\x3e"
2015-08-21 10:04:50 +03:00
// memory address where emulation starts
#define ADDRESS 0x1000000
// callback for tracing basic blocks
static void hook_block(uc_engine *uc, uint64_t address, uint32_t size,
void *user_data)
2015-08-21 10:04:50 +03:00
{
printf(">>> Tracing basic block at 0x%" PRIx64 ", block size = 0x%x\n",
address, size);
2015-08-21 10:04:50 +03:00
}
// callback for tracing instruction
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size,
void *user_data)
2015-08-21 10:04:50 +03:00
{
int eflags;
printf(">>> Tracing instruction at 0x%" PRIx64
", instruction size = 0x%x\n",
address, size);
2015-08-21 10:04:50 +03:00
uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags);
2015-08-21 10:04:50 +03:00
printf(">>> --- EFLAGS is 0x%x\n", eflags);
// Uncomment below code to stop the emulation using uc_emu_stop()
// if (address == 0x1000009)
// uc_emu_stop(uc);
2015-08-21 10:04:50 +03:00
}
// callback for tracing instruction
static void hook_code64(uc_engine *uc, uint64_t address, uint32_t size,
void *user_data)
2015-08-21 10:04:50 +03:00
{
uint64_t rip;
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
printf(">>> Tracing instruction at 0x%" PRIx64
", instruction size = 0x%x\n",
address, size);
printf(">>> RIP is 0x%" PRIx64 "\n", rip);
2015-08-21 10:04:50 +03:00
// Uncomment below code to stop the emulation using uc_emu_stop()
// if (address == 0x1000009)
// uc_emu_stop(uc);
2015-08-21 10:04:50 +03:00
}
// callback for tracing memory access (READ or WRITE)
static bool hook_mem_invalid(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, void *user_data)
2015-08-21 10:04:50 +03:00
{
switch (type) {
default:
// return false to indicate we want to stop emulation
return false;
case UC_MEM_WRITE_UNMAPPED:
printf(">>> Missing memory is being WRITE at 0x%" PRIx64
", data size = %u, data value = 0x%" PRIx64 "\n",
address, size, value);
// map this memory in with 2MB in size
uc_mem_map(uc, 0xaaaa0000, 2 * 1024 * 1024, UC_PROT_ALL);
// return true to indicate we want to continue
return true;
2015-08-21 10:04:50 +03:00
}
}
// dummy callback
static bool hook_mem_invalid_dummy(uc_engine *uc, uc_mem_type type,
uint64_t address, int size, int64_t value,
void *user_data)
{
2021-10-03 17:14:44 +03:00
// stop emulation
return false;
}
static void hook_mem64(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, void *user_data)
2015-08-21 10:04:50 +03:00
{
switch (type) {
default:
break;
case UC_MEM_READ:
printf(">>> Memory is being READ at 0x%" PRIx64 ", data size = %u\n",
address, size);
break;
case UC_MEM_WRITE:
printf(">>> Memory is being WRITE at 0x%" PRIx64
", data size = %u, data value = 0x%" PRIx64 "\n",
address, size, value);
break;
2015-08-21 10:04:50 +03:00
}
}
// callback for IN instruction (X86).
// this returns the data read from the port
static uint32_t hook_in(uc_engine *uc, uint32_t port, int size, void *user_data)
2015-08-21 10:04:50 +03:00
{
uint32_t eip;
uc_reg_read(uc, UC_X86_REG_EIP, &eip);
2015-08-21 10:04:50 +03:00
printf("--- reading from port 0x%x, size: %u, address: 0x%x\n", port, size,
eip);
switch (size) {
default:
return 0; // should never reach this
case 1:
// read 1 byte to AL
return 0xf1;
case 2:
// read 2 byte to AX
return 0xf2;
break;
case 4:
// read 4 byte to EAX
return 0xf4;
2015-08-21 10:04:50 +03:00
}
}
// callback for OUT instruction (X86).
static void hook_out(uc_engine *uc, uint32_t port, int size, uint32_t value,
void *user_data)
2015-08-21 10:04:50 +03:00
{
uint32_t tmp = 0;
2015-08-21 10:04:50 +03:00
uint32_t eip;
uc_reg_read(uc, UC_X86_REG_EIP, &eip);
2015-08-21 10:04:50 +03:00
printf("--- writing to port 0x%x, size: %u, value: 0x%x, address: 0x%x\n",
port, size, value, eip);
2015-08-21 10:04:50 +03:00
// confirm that value is indeed the value of AL/AX/EAX
switch (size) {
default:
return; // should never reach this
case 1:
uc_reg_read(uc, UC_X86_REG_AL, &tmp);
break;
case 2:
uc_reg_read(uc, UC_X86_REG_AX, &tmp);
break;
case 4:
uc_reg_read(uc, UC_X86_REG_EAX, &tmp);
break;
2015-08-21 10:04:50 +03:00
}
printf("--- register value = 0x%x\n", tmp);
}
// callback for SYSCALL instruction (X86).
static void hook_syscall(uc_engine *uc, void *user_data)
{
uint64_t rax;
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
if (rax == 0x100) {
rax = 0x200;
uc_reg_write(uc, UC_X86_REG_RAX, &rax);
} else
printf("ERROR: was not expecting rax=0x%" PRIx64 " in syscall\n", rax);
}
2021-10-03 17:14:44 +03:00
static bool hook_memalloc(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, void *user_data)
2021-10-03 17:14:44 +03:00
{
uint64_t algined_address = address & 0xFFFFFFFFFFFFF000ULL;
int aligned_size = ((int)(size / 0x1000) + 1) * 0x1000;
printf(">>> Allocating block at 0x%" PRIx64 " (0x%" PRIx64
"), block size = 0x%x (0x%x)\n",
address, algined_address, size, aligned_size);
2021-10-03 17:14:44 +03:00
uc_mem_map(uc, algined_address, aligned_size, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, algined_address, X86_CODE32, sizeof(X86_CODE32) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return false;
}
// this recovers from missing memory, so we return true
return true;
}
static void test_miss_code(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
2021-10-03 17:14:44 +03:00
printf("Emulate i386 code - missing code\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace1, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// auto-allocate memory on access
uc_hook_add(uc, &trace2, UC_HOOK_MEM_UNMAPPED, hook_memalloc, NULL, 1, 0);
// emulate machine code, without having the code in yet
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2021-10-03 17:14:44 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
}
2015-08-21 10:04:50 +03:00
static void test_i386(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uint32_t tmp;
uc_hook trace1, trace2;
2015-08-21 10:04:50 +03:00
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
// XMM0 and XMM1 registers, low qword then high qword
uint64_t r_xmm0[2] = {0x08090a0b0c0d0e0f, 0x0001020304050607};
uint64_t r_xmm1[2] = {0x8090a0b0c0d0e0f0, 0x0010203040506070};
2015-08-21 10:04:50 +03:00
printf("Emulate i386 code\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
uc_reg_write(uc, UC_X86_REG_XMM0, &r_xmm0);
uc_reg_write(uc, UC_X86_REG_XMM1, &r_xmm1);
2015-08-21 10:04:50 +03:00
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
uc_reg_read(uc, UC_X86_REG_XMM0, &r_xmm0);
2015-08-21 10:04:50 +03:00
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
printf(">>> XMM0 = 0x%.16" PRIx64 "%.16" PRIx64 "\n", r_xmm0[1], r_xmm0[0]);
2015-08-21 10:04:50 +03:00
// read from memory
if (!uc_mem_read(uc, ADDRESS, &tmp, sizeof(tmp)))
2015-08-21 10:04:50 +03:00
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", ADDRESS, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", ADDRESS);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
static void test_i386_map_ptr(void)
{
uc_engine *uc;
uc_err err;
uint32_t tmp;
uc_hook trace1, trace2;
void *mem;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
printf("===================================\n");
printf("Emulate i386 code - use uc_mem_map_ptr()\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// malloc 2MB memory for this emulation
mem = calloc(1, 2 * 1024 * 1024);
if (mem == NULL) {
printf("Failed to malloc()\n");
return;
}
2015-11-28 12:36:11 +03:00
uc_mem_map_ptr(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL, mem);
// write machine code to be emulated to memory
if (!memcpy(mem, X86_CODE32, sizeof(X86_CODE32) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
// read from memory
if (!uc_mem_read(uc, ADDRESS, &tmp, sizeof(tmp)))
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", ADDRESS, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", ADDRESS);
uc_close(uc);
2020-05-02 13:18:18 +03:00
free(mem);
}
2015-08-21 10:04:50 +03:00
static void test_i386_jump(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uc_hook trace1, trace2;
2015-08-21 10:04:50 +03:00
printf("===================================\n");
printf("Emulate i386 code with jump\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_JUMP,
sizeof(X86_CODE32_JUMP) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// tracing 1 basic block with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, ADDRESS, ADDRESS);
2015-08-21 10:04:50 +03:00
// tracing 1 instruction at ADDRESS
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, ADDRESS, ADDRESS);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time
err =
uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_JUMP) - 1, 0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
printf(">>> Emulation done. Below is the CPU context\n");
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
// emulate code that loop forever
static void test_i386_loop(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
2015-08-21 10:04:50 +03:00
printf("===================================\n");
printf("Emulate i386 code that loop forever\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_LOOP,
sizeof(X86_CODE32_LOOP) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
// emulate machine code in 2 seconds, so we can quit even
// if the code loops
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_LOOP) - 1,
2 * UC_SECOND_SCALE, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
// emulate code that read invalid memory
static void test_i386_invalid_mem_read(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uc_hook trace1, trace2;
2015-08-21 10:04:50 +03:00
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
2015-08-21 10:04:50 +03:00
printf("===================================\n");
printf("Emulate i386 code that read from invalid memory\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_READ,
sizeof(X86_CODE32_MEM_READ) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_MEM_READ) - 1,
0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
2016-03-22 14:32:59 +03:00
// emulate code that write invalid memory
2015-08-21 10:04:50 +03:00
static void test_i386_invalid_mem_write(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uc_hook trace1, trace2, trace3;
2015-08-21 10:04:50 +03:00
uint32_t tmp;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
2015-08-21 10:04:50 +03:00
printf("===================================\n");
printf("Emulate i386 code that write to invalid memory\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_WRITE,
sizeof(X86_CODE32_MEM_WRITE) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// intercept invalid memory events
uc_hook_add(uc, &trace3,
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED,
hook_mem_invalid, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_MEM_WRITE) - 1,
0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
// read from memory
if (!uc_mem_read(uc, 0xaaaaaaaa, &tmp, sizeof(tmp)))
2015-08-21 10:04:50 +03:00
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", 0xaaaaaaaa, tmp);
else
2016-03-22 14:32:59 +03:00
printf(">>> Failed to read 4 bytes from [0x%x]\n", 0xaaaaaaaa);
2015-08-21 10:04:50 +03:00
if (!uc_mem_read(uc, 0xffffffaa, &tmp, sizeof(tmp)))
2015-08-21 10:04:50 +03:00
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", 0xffffffaa, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", 0xffffffaa);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
// emulate code that jump to invalid memory
static void test_i386_jump_invalid(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uc_hook trace1, trace2;
2015-08-21 10:04:50 +03:00
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
2015-08-21 10:04:50 +03:00
printf("===================================\n");
printf("Emulate i386 code that jumps to invalid memory\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_JMP_INVALID,
sizeof(X86_CODE32_JMP_INVALID) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all instructions by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS,
ADDRESS + sizeof(X86_CODE32_JMP_INVALID) - 1, 0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
2015-08-21 10:04:50 +03:00
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
static void test_i386_inout(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uc_hook trace1, trace2, trace3, trace4;
2015-08-21 10:04:50 +03:00
int r_eax = 0x1234; // EAX register
int r_ecx = 0x6789; // ECX register
2015-08-21 10:04:50 +03:00
printf("===================================\n");
printf("Emulate i386 code with IN/OUT instructions\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_INOUT,
sizeof(X86_CODE32_INOUT) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
2015-08-21 10:04:50 +03:00
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all instructions
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// uc IN instruction
uc_hook_add(uc, &trace3, UC_HOOK_INSN, hook_in, NULL, 1, 0, UC_X86_INS_IN);
// uc OUT instruction
uc_hook_add(uc, &trace4, UC_HOOK_INSN, hook_out, NULL, 1, 0,
UC_X86_INS_OUT);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time
err =
uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INOUT) - 1, 0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
2015-08-21 10:04:50 +03:00
printf(">>> EAX = 0x%x\n", r_eax);
printf(">>> ECX = 0x%x\n", r_ecx);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
2016-10-31 13:19:53 +03:00
// emulate code and save/restore the CPU context
static void test_i386_context_save(void)
{
uc_engine *uc;
uc_context *context;
uc_err err;
int r_eax = 0x1; // EAX register
2016-10-31 13:19:53 +03:00
printf("===================================\n");
printf("Save/restore CPU context in opaque blob\n");
// initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 8KB memory for this emulation
uc_mem_map(uc, ADDRESS, 8 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_INC, sizeof(X86_CODE32_INC) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
// emulate machine code in infinite time
printf(">>> Running emulation for the first time\n");
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INC) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2016-10-31 13:19:53 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
// allocate and save the CPU context
printf(">>> Saving CPU context\n");
err = uc_context_alloc(uc, &context);
if (err) {
printf("Failed on uc_context_alloc() with error returned: %u\n", err);
return;
}
err = uc_context_save(uc, context);
if (err) {
printf("Failed on uc_context_save() with error returned: %u\n", err);
return;
}
// emulate machine code again
printf(">>> Running emulation for the second time\n");
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INC) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2016-10-31 13:19:53 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
// restore CPU context
err = uc_context_restore(uc, context);
if (err) {
printf("Failed on uc_context_restore() with error returned: %u\n", err);
return;
}
// now print out some registers
printf(">>> CPU context restored. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
2021-10-03 17:14:44 +03:00
// modify some registers of the context
r_eax = 0xc8;
uc_context_reg_write(context, UC_X86_REG_EAX, &r_eax);
// and restore CPU context again
err = uc_context_restore(uc, context);
if (err) {
printf("Failed on uc_context_restore() with error returned: %u\n", err);
return;
}
// now print out some registers
printf(">>> CPU context restored with modification. Below is the CPU "
"context\n");
2021-10-03 17:14:44 +03:00
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
2016-10-31 13:19:53 +03:00
// free the CPU context
err = uc_context_free(context);
2016-10-31 13:19:53 +03:00
if (err) {
printf("Failed on uc_free() with error returned: %u\n", err);
2016-10-31 13:19:53 +03:00
return;
}
uc_close(uc);
}
#if 0
static void test_i386_invalid_c6c7(void)
{
uc_engine *uc;
uc_err err;
uint8_t codebuf[16] = { 0 };
uint8_t opcodes[] = { 0xc6, 0xc7 };
bool valid_masks[4][8] = {
{ true, false, false, false, false, false, false, false },
{ true, false, false, false, false, false, false, false },
{ true, false, false, false, false, false, false, false },
{ true, false, false, false, false, false, false, true },
};
int i, j, k;
printf("===================================\n");
printf("Emulate i386 C6/C7 opcodes\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
for (i = 0; i < 2; ++i) {
// set opcode
codebuf[0] = opcodes[i];
for (j = 0; j < 4; ++j) {
for (k = 0; k < 8; ++k) {
// set Mod bits
codebuf[1] = (uint8_t) (j << 6);
// set Reg bits
codebuf[1] |= (uint8_t) (k << 3);
// perform validation
if (uc_mem_write(uc, ADDRESS, codebuf, sizeof(codebuf))) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(codebuf), 0, 0);
if ((err != UC_ERR_INSN_INVALID) ^ valid_masks[j][k]) {
printf("Unexpected uc_emu_start() error returned %u: %s\n",
err, uc_strerror(err));
return;
}
}
}
}
printf(">>> Emulation done.\n");
uc_close(uc);
}
#endif
2015-08-21 10:04:50 +03:00
static void test_x86_64(void)
{
uc_engine *uc;
2015-08-21 10:04:50 +03:00
uc_err err;
uc_hook trace1, trace2, trace3, trace4;
2015-08-21 10:04:50 +03:00
int64_t rax = 0x71f3029efd49d41d;
int64_t rbx = 0xd87b45277f133ddb;
int64_t rcx = 0xab40d1ffd8afc461;
int64_t rdx = 0x919317b4a733f01;
int64_t rsi = 0x4c24e753a17ea358;
int64_t rdi = 0xe509a57d2571ce96;
int64_t r8 = 0xea5b108cc2b9ab1f;
int64_t r9 = 0x19ec097c8eb618c1;
int64_t r10 = 0xec45774f00c5f682;
int64_t r11 = 0xe17e9dbec8c074aa;
int64_t r12 = 0x80f86a8dc0f6d457;
int64_t r13 = 0x48288ca5671c5492;
int64_t r14 = 0x595f72f6e4017f6e;
int64_t r15 = 0x1efd97aea331cccc;
int64_t rsp = ADDRESS + 0x200000;
printf("Emulate x86_64 code\n");
// Initialize emulator in X86-64bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
2015-08-21 10:04:50 +03:00
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE64, sizeof(X86_CODE64) - 1)) {
2015-08-21 10:04:50 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_RSP, &rsp);
uc_reg_write(uc, UC_X86_REG_RAX, &rax);
uc_reg_write(uc, UC_X86_REG_RBX, &rbx);
uc_reg_write(uc, UC_X86_REG_RCX, &rcx);
uc_reg_write(uc, UC_X86_REG_RDX, &rdx);
uc_reg_write(uc, UC_X86_REG_RSI, &rsi);
uc_reg_write(uc, UC_X86_REG_RDI, &rdi);
uc_reg_write(uc, UC_X86_REG_R8, &r8);
uc_reg_write(uc, UC_X86_REG_R9, &r9);
uc_reg_write(uc, UC_X86_REG_R10, &r10);
uc_reg_write(uc, UC_X86_REG_R11, &r11);
uc_reg_write(uc, UC_X86_REG_R12, &r12);
uc_reg_write(uc, UC_X86_REG_R13, &r13);
uc_reg_write(uc, UC_X86_REG_R14, &r14);
uc_reg_write(uc, UC_X86_REG_R15, &r15);
2015-08-21 10:04:50 +03:00
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all instructions in the range [ADDRESS, ADDRESS+20]
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code64, NULL, ADDRESS,
ADDRESS + 20);
2015-08-21 10:04:50 +03:00
// tracing all memory WRITE access (with @begin > @end)
uc_hook_add(uc, &trace3, UC_HOOK_MEM_WRITE, hook_mem64, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// tracing all memory READ access (with @begin > @end)
uc_hook_add(uc, &trace4, UC_HOOK_MEM_READ, hook_mem64, NULL, 1, 0);
2015-08-21 10:04:50 +03:00
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64) - 1, 0, 0);
2015-08-21 10:04:50 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-21 10:04:50 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
uc_reg_read(uc, UC_X86_REG_RBX, &rbx);
uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
uc_reg_read(uc, UC_X86_REG_RDX, &rdx);
uc_reg_read(uc, UC_X86_REG_RSI, &rsi);
uc_reg_read(uc, UC_X86_REG_RDI, &rdi);
uc_reg_read(uc, UC_X86_REG_R8, &r8);
uc_reg_read(uc, UC_X86_REG_R9, &r9);
uc_reg_read(uc, UC_X86_REG_R10, &r10);
uc_reg_read(uc, UC_X86_REG_R11, &r11);
uc_reg_read(uc, UC_X86_REG_R12, &r12);
uc_reg_read(uc, UC_X86_REG_R13, &r13);
uc_reg_read(uc, UC_X86_REG_R14, &r14);
uc_reg_read(uc, UC_X86_REG_R15, &r15);
2015-08-21 10:04:50 +03:00
printf(">>> RAX = 0x%" PRIx64 "\n", rax);
printf(">>> RBX = 0x%" PRIx64 "\n", rbx);
printf(">>> RCX = 0x%" PRIx64 "\n", rcx);
printf(">>> RDX = 0x%" PRIx64 "\n", rdx);
printf(">>> RSI = 0x%" PRIx64 "\n", rsi);
printf(">>> RDI = 0x%" PRIx64 "\n", rdi);
printf(">>> R8 = 0x%" PRIx64 "\n", r8);
printf(">>> R9 = 0x%" PRIx64 "\n", r9);
printf(">>> R10 = 0x%" PRIx64 "\n", r10);
printf(">>> R11 = 0x%" PRIx64 "\n", r11);
printf(">>> R12 = 0x%" PRIx64 "\n", r12);
printf(">>> R13 = 0x%" PRIx64 "\n", r13);
printf(">>> R14 = 0x%" PRIx64 "\n", r14);
printf(">>> R15 = 0x%" PRIx64 "\n", r15);
uc_close(uc);
2015-08-21 10:04:50 +03:00
}
static void test_x86_64_syscall(void)
{
uc_engine *uc;
uc_hook trace1;
uc_err err;
int64_t rax = 0x100;
printf("===================================\n");
printf("Emulate x86_64 code with 'syscall' instruction\n");
// Initialize emulator in X86-64bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE64_SYSCALL,
sizeof(X86_CODE64_SYSCALL) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// hook interrupts for syscall
uc_hook_add(uc, &trace1, UC_HOOK_INSN, hook_syscall, NULL, 1, 0,
UC_X86_INS_SYSCALL);
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_RAX, &rax);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64_SYSCALL) - 1, 0,
0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
printf(">>> RAX = 0x%" PRIx64 "\n", rax);
uc_close(uc);
}
2015-08-26 04:25:29 +03:00
static void test_x86_16(void)
{
uc_engine *uc;
2015-08-26 04:25:29 +03:00
uc_err err;
uint8_t tmp;
int32_t eax = 7;
int32_t ebx = 5;
int32_t esi = 6;
printf("Emulate x86 16-bit code\n");
// Initialize emulator in X86-16bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_16, &uc);
2015-08-26 04:25:29 +03:00
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 8KB memory for this emulation
uc_mem_map(uc, 0, 8 * 1024, UC_PROT_ALL);
2015-08-26 04:25:29 +03:00
// write machine code to be emulated to memory
2016-03-22 15:09:38 +03:00
if (uc_mem_write(uc, 0, X86_CODE16, sizeof(X86_CODE16) - 1)) {
2015-08-26 04:25:29 +03:00
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &eax);
uc_reg_write(uc, UC_X86_REG_EBX, &ebx);
uc_reg_write(uc, UC_X86_REG_ESI, &esi);
2015-08-26 04:25:29 +03:00
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, 0, sizeof(X86_CODE16) - 1, 0, 0);
2015-08-26 04:25:29 +03:00
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2015-08-26 04:25:29 +03:00
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
// read from memory
if (!uc_mem_read(uc, 11, &tmp, 1))
2015-08-26 04:25:29 +03:00
printf(">>> Read 1 bytes from [0x%x] = 0x%x\n", 11, tmp);
else
printf(">>> Failed to read 1 bytes from [0x%x]\n", 11);
uc_close(uc);
2015-08-26 04:25:29 +03:00
}
static void test_i386_invalid_mem_read_in_tb(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1;
int r_eax = 0x1234; // EAX register
int r_edx = 0x7890; // EDX register
int r_eip = 0;
printf("===================================\n");
printf(
"Emulate i386 code that read invalid memory in the middle of a TB\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_READ_IN_TB,
sizeof(X86_CODE32_MEM_READ_IN_TB) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// Add a dummy callback.
uc_hook_add(uc, &trace1, UC_HOOK_MEM_READ, hook_mem_invalid_dummy, NULL, 1,
0);
// Let it crash by design.
err = uc_emu_start(uc, ADDRESS,
ADDRESS + sizeof(X86_CODE32_MEM_READ_IN_TB) - 1, 0, 0);
if (err) {
printf("uc_emu_start() failed BY DESIGN with error returned %u: %s\n",
err, uc_strerror(err));
}
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EIP, &r_eip);
printf(">>> EIP = 0x%x\n", r_eip);
if (r_eip != ADDRESS + 1) {
printf(">>> ERROR: Wrong PC 0x%x when reading unmapped memory in the "
"middle of TB!\n",
r_eip);
} else {
printf(">>> The PC is correct after reading unmapped memory in the "
"middle of TB.\n");
}
uc_close(uc);
}
static void test_i386_smc_xor()
2021-10-03 17:14:44 +03:00
{
uc_engine *uc;
uc_err err;
uint32_t r_edi = ADDRESS; // ECX register
uint32_t r_eax = 0xbc4177e6; // EDX register
2021-10-03 17:14:44 +03:00
uint32_t result;
printf("===================================\n");
printf("Emulate i386 code that modfies itself\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 1KB memory for this emulation
uc_mem_map(uc, ADDRESS, 0x1000, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_SMC, sizeof(X86_CODE32_SMC) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EDI, &r_edi);
uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
// **Important Note**
//
// Since SMC code will cause TB regeneration, the XOR in fact would executed
// twice (the first execution won't take effect.). Thus, if you would like
// to use count to control the emulation, the count should be set to 2.
2021-10-03 17:14:44 +03:00
//
// err = uc_emu_start(uc, ADDRESS, ADDRESS + 3, 0, 0);
err = uc_emu_start(uc, ADDRESS, 0, 0, 2);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
2021-10-03 17:14:44 +03:00
}
printf(">>> Emulation done. Below is the result.\n");
uc_mem_read(uc, ADDRESS + 3, (void *)&result, 4);
if (result == (0x3ea98b13 ^ 0xbc4177e6)) {
printf(">>> SMC emulation is correct. 0x3ea98b13 ^ 0xbc4177e6 = 0x%x\n",
result);
2021-10-03 17:14:44 +03:00
} else {
printf(">>> SMC emulation is wrong. 0x3ea98b13 ^ 0xbc4177e6 = 0x%x\n",
result);
2021-10-03 17:14:44 +03:00
}
uc_close(uc);
}
static uint64_t mmio_read_callback(uc_engine *uc, uint64_t offset,
unsigned size, void *user_data)
2021-10-03 17:14:44 +03:00
{
printf(">>> Read IO memory at offset 0x%" PRIu64 " with 0x%" PRIu32
" bytes and return 0x19260817\n",
offset, size);
2021-10-03 17:14:44 +03:00
// The value returned here would be written to ecx.
return 0x19260817;
}
static void mmio_write_callback(uc_engine *uc, uint64_t offset, unsigned size,
uint64_t value, void *user_data)
2021-10-03 17:14:44 +03:00
{
printf(">>> Write value 0x%" PRIu64 " to IO memory at offset 0x%" PRIu64
" with 0x%" PRIu32 " bytes\n",
value, offset, size);
2021-10-03 17:14:44 +03:00
return;
}
static void test_i386_mmio()
{
uc_engine *uc;
2021-10-03 17:14:44 +03:00
int r_ecx = 0xdeadbeef;
uc_err err;
printf("===================================\n");
printf("Emulate i386 code that uses MMIO\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 1KB memory for this emulation
err = uc_mem_map(uc, ADDRESS, 0x1000, UC_PROT_ALL);
if (err) {
printf("Failed on uc_mem_map() with error returned: %u\n", err);
return;
}
// write machine code to be emulated to memory
err = uc_mem_write(uc, ADDRESS, X86_MMIO_CODE, sizeof(X86_MMIO_CODE) - 1);
if (err) {
printf("Failed on uc_mem_write() with error returned: %u\n", err);
return;
}
err = uc_mmio_map(uc, 0x20000, 0x4000, mmio_read_callback, NULL,
mmio_write_callback, NULL);
2021-10-03 17:14:44 +03:00
if (err) {
printf("Failed on uc_mmio_map() with error returned: %u\n", err);
return;
}
// prepare ecx
err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
if (err) {
printf("Failed on uc_reg_write() with error returned: %u\n", err);
return;
}
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_MMIO_CODE) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned: %u\n", err);
return;
}
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
printf(">>> Emulation done. ECX=0x%x\n", r_ecx);
uc_close(uc);
}
static bool test_i386_hook_mem_invalid_cb(uc_engine *uc, uc_mem_type type,
uint64_t address, int size,
uint64_t value, void *user_data)
{
if (type == UC_MEM_READ_UNMAPPED || type == UC_MEM_WRITE_UNMAPPED) {
printf(">>> We have to add a map at 0x%" PRIx64
" before continue execution!\n",
address);
uc_mem_map(uc, address, 0x1000, UC_PROT_ALL);
}
// If you really would like to continue the execution, make sure the memory
// is already mapped properly!
return true;
}
static void test_i386_hook_mem_invalid()
{
uc_engine *uc;
uc_hook hook;
// mov eax, 0xdeadbeef;
// mov [0x8000], eax;
// mov eax, [0x10000];
char code[] =
"\xb8\xef\xbe\xad\xde\xa3\x00\x80\x00\x00\xa1\x00\x00\x01\x00";
uc_err err;
printf("===================================\n");
2022-10-12 09:39:10 +03:00
printf("Emulate i386 code that triggers invalid memory read/write.\n");
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
err = uc_mem_map(uc, ADDRESS, 0x1000, UC_PROT_ALL);
if (err) {
printf("Failed on uc_mem_map() with error returned: %u\n", err);
return;
}
err = uc_mem_write(uc, ADDRESS, code, sizeof(code) - 1);
if (err) {
printf("Failed on uc_mem_write() with error returned: %u\n", err);
return;
}
err = uc_hook_add(uc, &hook, UC_HOOK_MEM_VALID | UC_HOOK_MEM_INVALID,
test_i386_hook_mem_invalid_cb, NULL, 1, 0);
if (err) {
printf("Failed on uc_hook_add() with error returned: %u\n", err);
return;
}
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(code) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned: %u\n", err);
return;
}
uc_hook_del(uc, hook);
uc_close(uc);
}
2015-08-21 10:04:50 +03:00
int main(int argc, char **argv, char **envp)
{
if (argc == 2) {
if (!strcmp(argv[1], "-16")) {
test_x86_16();
} else if (!strcmp(argv[1], "-32")) {
2021-10-03 17:14:44 +03:00
test_miss_code();
test_i386();
test_i386_map_ptr();
2015-08-21 10:04:50 +03:00
test_i386_inout();
2016-10-31 13:19:53 +03:00
test_i386_context_save();
2015-08-21 10:04:50 +03:00
test_i386_jump();
test_i386_loop();
test_i386_invalid_mem_read();
test_i386_invalid_mem_write();
test_i386_jump_invalid();
// test_i386_invalid_c6c7();
} else if (!strcmp(argv[1], "-64")) {
2015-08-21 10:04:50 +03:00
test_x86_64();
test_x86_64_syscall();
} else if (!strcmp(argv[1], "-h")) {
printf("Syntax: %s <-16|-32|-64>\n", argv[0]);
2015-08-26 04:25:29 +03:00
}
} else {
test_x86_16();
2021-10-03 17:14:44 +03:00
test_miss_code();
test_i386();
test_i386_map_ptr();
test_i386_inout();
test_i386_context_save();
test_i386_jump();
test_i386_loop();
test_i386_invalid_mem_read();
test_i386_invalid_mem_write();
test_i386_jump_invalid();
// test_i386_invalid_c6c7();
test_x86_64();
test_x86_64_syscall();
test_i386_invalid_mem_read_in_tb();
2021-10-03 17:14:44 +03:00
test_i386_smc_xor();
test_i386_mmio();
test_i386_hook_mem_invalid();
}
2015-08-21 10:04:50 +03:00
return 0;
}