mirror of
https://github.com/frida/tinycc
synced 2024-11-25 00:59:37 +03:00
2162 lines
54 KiB
C
2162 lines
54 KiB
C
/*
|
|
* ARMv4 code generator for TCC
|
|
*
|
|
* Copyright (c) 2003 Daniel Glöckner
|
|
* Copyright (c) 2012 Thomas Preud'homme
|
|
*
|
|
* Based on i386-gen.c by Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#ifdef TARGET_DEFS_ONLY
|
|
|
|
#if defined(TCC_ARM_EABI) && !defined(TCC_ARM_VFP)
|
|
#error "Currently TinyCC only supports float computation with VFP instructions"
|
|
#endif
|
|
|
|
/* number of available registers */
|
|
#ifdef TCC_ARM_VFP
|
|
#define NB_REGS 13
|
|
#else
|
|
#define NB_REGS 9
|
|
#endif
|
|
|
|
#ifndef TCC_ARM_VERSION
|
|
# define TCC_ARM_VERSION 5
|
|
#endif
|
|
|
|
/* a register can belong to several classes. The classes must be
|
|
sorted from more general to more precise (see gv2() code which does
|
|
assumptions on it). */
|
|
#define RC_INT 0x0001 /* generic integer register */
|
|
#define RC_FLOAT 0x0002 /* generic float register */
|
|
#define RC_R0 0x0004
|
|
#define RC_R1 0x0008
|
|
#define RC_R2 0x0010
|
|
#define RC_R3 0x0020
|
|
#define RC_R12 0x0040
|
|
#define RC_F0 0x0080
|
|
#define RC_F1 0x0100
|
|
#define RC_F2 0x0200
|
|
#define RC_F3 0x0400
|
|
#ifdef TCC_ARM_VFP
|
|
#define RC_F4 0x0800
|
|
#define RC_F5 0x1000
|
|
#define RC_F6 0x2000
|
|
#define RC_F7 0x4000
|
|
#endif
|
|
#define RC_IRET RC_R0 /* function return: integer register */
|
|
#define RC_LRET RC_R1 /* function return: second integer register */
|
|
#define RC_FRET RC_F0 /* function return: float register */
|
|
|
|
/* pretty names for the registers */
|
|
enum {
|
|
TREG_R0 = 0,
|
|
TREG_R1,
|
|
TREG_R2,
|
|
TREG_R3,
|
|
TREG_R12,
|
|
TREG_F0,
|
|
TREG_F1,
|
|
TREG_F2,
|
|
TREG_F3,
|
|
#ifdef TCC_ARM_VFP
|
|
TREG_F4,
|
|
TREG_F5,
|
|
TREG_F6,
|
|
TREG_F7,
|
|
#endif
|
|
TREG_SP = 13,
|
|
TREG_LR,
|
|
};
|
|
|
|
#ifdef TCC_ARM_VFP
|
|
#define T2CPR(t) (((t) & VT_BTYPE) != VT_FLOAT ? 0x100 : 0)
|
|
#endif
|
|
|
|
/* return registers for function */
|
|
#define REG_IRET TREG_R0 /* single word int return register */
|
|
#define REG_LRET TREG_R1 /* second word return register (for long long) */
|
|
#define REG_FRET TREG_F0 /* float return register */
|
|
|
|
#ifdef TCC_ARM_EABI
|
|
#define TOK___divdi3 TOK___aeabi_ldivmod
|
|
#define TOK___moddi3 TOK___aeabi_ldivmod
|
|
#define TOK___udivdi3 TOK___aeabi_uldivmod
|
|
#define TOK___umoddi3 TOK___aeabi_uldivmod
|
|
#endif
|
|
|
|
/* defined if function parameters must be evaluated in reverse order */
|
|
#define INVERT_FUNC_PARAMS
|
|
|
|
/* defined if structures are passed as pointers. Otherwise structures
|
|
are directly pushed on stack. */
|
|
/* #define FUNC_STRUCT_PARAM_AS_PTR */
|
|
|
|
/* pointer size, in bytes */
|
|
#define PTR_SIZE 4
|
|
|
|
/* long double size and alignment, in bytes */
|
|
#ifdef TCC_ARM_VFP
|
|
#define LDOUBLE_SIZE 8
|
|
#endif
|
|
|
|
#ifndef LDOUBLE_SIZE
|
|
#define LDOUBLE_SIZE 8
|
|
#endif
|
|
|
|
#ifdef TCC_ARM_EABI
|
|
#define LDOUBLE_ALIGN 8
|
|
#else
|
|
#define LDOUBLE_ALIGN 4
|
|
#endif
|
|
|
|
/* maximum alignment (for aligned attribute support) */
|
|
#define MAX_ALIGN 8
|
|
|
|
#define CHAR_IS_UNSIGNED
|
|
|
|
/******************************************************/
|
|
/* ELF defines */
|
|
|
|
#define EM_TCC_TARGET EM_ARM
|
|
|
|
/* relocation type for 32 bit data relocation */
|
|
#define R_DATA_32 R_ARM_ABS32
|
|
#define R_DATA_PTR R_ARM_ABS32
|
|
#define R_JMP_SLOT R_ARM_JUMP_SLOT
|
|
#define R_COPY R_ARM_COPY
|
|
|
|
#define ELF_START_ADDR 0x00008000
|
|
#define ELF_PAGE_SIZE 0x1000
|
|
|
|
enum float_abi {
|
|
ARM_SOFTFP_FLOAT,
|
|
ARM_HARD_FLOAT,
|
|
};
|
|
|
|
/******************************************************/
|
|
#else /* ! TARGET_DEFS_ONLY */
|
|
/******************************************************/
|
|
#include "tcc.h"
|
|
|
|
enum float_abi float_abi;
|
|
|
|
ST_DATA const int reg_classes[NB_REGS] = {
|
|
/* r0 */ RC_INT | RC_R0,
|
|
/* r1 */ RC_INT | RC_R1,
|
|
/* r2 */ RC_INT | RC_R2,
|
|
/* r3 */ RC_INT | RC_R3,
|
|
/* r12 */ RC_INT | RC_R12,
|
|
/* f0 */ RC_FLOAT | RC_F0,
|
|
/* f1 */ RC_FLOAT | RC_F1,
|
|
/* f2 */ RC_FLOAT | RC_F2,
|
|
/* f3 */ RC_FLOAT | RC_F3,
|
|
#ifdef TCC_ARM_VFP
|
|
/* d4/s8 */ RC_FLOAT | RC_F4,
|
|
/* d5/s10 */ RC_FLOAT | RC_F5,
|
|
/* d6/s12 */ RC_FLOAT | RC_F6,
|
|
/* d7/s14 */ RC_FLOAT | RC_F7,
|
|
#endif
|
|
};
|
|
|
|
static int func_sub_sp_offset, last_itod_magic;
|
|
static int leaffunc;
|
|
|
|
#if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
|
|
static CType float_type, double_type, func_float_type, func_double_type;
|
|
ST_FUNC void arm_init(struct TCCState *s)
|
|
{
|
|
float_type.t = VT_FLOAT;
|
|
double_type.t = VT_DOUBLE;
|
|
func_float_type.t = VT_FUNC;
|
|
func_float_type.ref = sym_push(SYM_FIELD, &float_type, FUNC_CDECL, FUNC_OLD);
|
|
func_double_type.t = VT_FUNC;
|
|
func_double_type.ref = sym_push(SYM_FIELD, &double_type, FUNC_CDECL, FUNC_OLD);
|
|
|
|
float_abi = s->float_abi;
|
|
#ifndef TCC_ARM_HARDFLOAT
|
|
tcc_warning("soft float ABI currently not supported: default to softfp");
|
|
#endif
|
|
}
|
|
#else
|
|
#define func_float_type func_old_type
|
|
#define func_double_type func_old_type
|
|
#define func_ldouble_type func_old_type
|
|
ST_FUNC void arm_init(struct TCCState *s)
|
|
{
|
|
#if !defined (TCC_ARM_VFP)
|
|
tcc_warning("Support for FPA is deprecated and will be removed in next"
|
|
" release");
|
|
#endif
|
|
#if !defined (TCC_ARM_EABI)
|
|
tcc_warning("Support for OABI is deprecated and will be removed in next"
|
|
" release");
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static int two2mask(int a,int b) {
|
|
return (reg_classes[a]|reg_classes[b])&~(RC_INT|RC_FLOAT);
|
|
}
|
|
|
|
static int regmask(int r) {
|
|
return reg_classes[r]&~(RC_INT|RC_FLOAT);
|
|
}
|
|
|
|
/******************************************************/
|
|
|
|
#if defined(TCC_ARM_EABI) && !defined(CONFIG_TCC_ELFINTERP)
|
|
char *default_elfinterp(struct TCCState *s)
|
|
{
|
|
if (s->float_abi == ARM_HARD_FLOAT)
|
|
return "/lib/ld-linux-armhf.so.3";
|
|
else
|
|
return "/lib/ld-linux.so.3";
|
|
}
|
|
#endif
|
|
|
|
void o(uint32_t i)
|
|
{
|
|
/* this is a good place to start adding big-endian support*/
|
|
int ind1;
|
|
|
|
ind1 = ind + 4;
|
|
if (!cur_text_section)
|
|
tcc_error("compiler error! This happens f.ex. if the compiler\n"
|
|
"can't evaluate constant expressions outside of a function.");
|
|
if (ind1 > cur_text_section->data_allocated)
|
|
section_realloc(cur_text_section, ind1);
|
|
cur_text_section->data[ind++] = i&255;
|
|
i>>=8;
|
|
cur_text_section->data[ind++] = i&255;
|
|
i>>=8;
|
|
cur_text_section->data[ind++] = i&255;
|
|
i>>=8;
|
|
cur_text_section->data[ind++] = i;
|
|
}
|
|
|
|
static uint32_t stuff_const(uint32_t op, uint32_t c)
|
|
{
|
|
int try_neg=0;
|
|
uint32_t nc = 0, negop = 0;
|
|
|
|
switch(op&0x1F00000)
|
|
{
|
|
case 0x800000: //add
|
|
case 0x400000: //sub
|
|
try_neg=1;
|
|
negop=op^0xC00000;
|
|
nc=-c;
|
|
break;
|
|
case 0x1A00000: //mov
|
|
case 0x1E00000: //mvn
|
|
try_neg=1;
|
|
negop=op^0x400000;
|
|
nc=~c;
|
|
break;
|
|
case 0x200000: //xor
|
|
if(c==~0)
|
|
return (op&0xF010F000)|((op>>16)&0xF)|0x1E00000;
|
|
break;
|
|
case 0x0: //and
|
|
if(c==~0)
|
|
return (op&0xF010F000)|((op>>16)&0xF)|0x1A00000;
|
|
case 0x1C00000: //bic
|
|
try_neg=1;
|
|
negop=op^0x1C00000;
|
|
nc=~c;
|
|
break;
|
|
case 0x1800000: //orr
|
|
if(c==~0)
|
|
return (op&0xFFF0FFFF)|0x1E00000;
|
|
break;
|
|
}
|
|
do {
|
|
uint32_t m;
|
|
int i;
|
|
if(c<256) /* catch undefined <<32 */
|
|
return op|c;
|
|
for(i=2;i<32;i+=2) {
|
|
m=(0xff>>i)|(0xff<<(32-i));
|
|
if(!(c&~m))
|
|
return op|(i<<7)|(c<<i)|(c>>(32-i));
|
|
}
|
|
op=negop;
|
|
c=nc;
|
|
} while(try_neg--);
|
|
return 0;
|
|
}
|
|
|
|
|
|
//only add,sub
|
|
void stuff_const_harder(uint32_t op, uint32_t v) {
|
|
uint32_t x;
|
|
x=stuff_const(op,v);
|
|
if(x)
|
|
o(x);
|
|
else {
|
|
uint32_t a[16], nv, no, o2, n2;
|
|
int i,j,k;
|
|
a[0]=0xff;
|
|
o2=(op&0xfff0ffff)|((op&0xf000)<<4);;
|
|
for(i=1;i<16;i++)
|
|
a[i]=(a[i-1]>>2)|(a[i-1]<<30);
|
|
for(i=0;i<12;i++)
|
|
for(j=i<4?i+12:15;j>=i+4;j--)
|
|
if((v&(a[i]|a[j]))==v) {
|
|
o(stuff_const(op,v&a[i]));
|
|
o(stuff_const(o2,v&a[j]));
|
|
return;
|
|
}
|
|
no=op^0xC00000;
|
|
n2=o2^0xC00000;
|
|
nv=-v;
|
|
for(i=0;i<12;i++)
|
|
for(j=i<4?i+12:15;j>=i+4;j--)
|
|
if((nv&(a[i]|a[j]))==nv) {
|
|
o(stuff_const(no,nv&a[i]));
|
|
o(stuff_const(n2,nv&a[j]));
|
|
return;
|
|
}
|
|
for(i=0;i<8;i++)
|
|
for(j=i+4;j<12;j++)
|
|
for(k=i<4?i+12:15;k>=j+4;k--)
|
|
if((v&(a[i]|a[j]|a[k]))==v) {
|
|
o(stuff_const(op,v&a[i]));
|
|
o(stuff_const(o2,v&a[j]));
|
|
o(stuff_const(o2,v&a[k]));
|
|
return;
|
|
}
|
|
no=op^0xC00000;
|
|
nv=-v;
|
|
for(i=0;i<8;i++)
|
|
for(j=i+4;j<12;j++)
|
|
for(k=i<4?i+12:15;k>=j+4;k--)
|
|
if((nv&(a[i]|a[j]|a[k]))==nv) {
|
|
o(stuff_const(no,nv&a[i]));
|
|
o(stuff_const(n2,nv&a[j]));
|
|
o(stuff_const(n2,nv&a[k]));
|
|
return;
|
|
}
|
|
o(stuff_const(op,v&a[0]));
|
|
o(stuff_const(o2,v&a[4]));
|
|
o(stuff_const(o2,v&a[8]));
|
|
o(stuff_const(o2,v&a[12]));
|
|
}
|
|
}
|
|
|
|
ST_FUNC uint32_t encbranch(int pos, int addr, int fail)
|
|
{
|
|
addr-=pos+8;
|
|
addr/=4;
|
|
if(addr>=0x1000000 || addr<-0x1000000) {
|
|
if(fail)
|
|
tcc_error("FIXME: function bigger than 32MB");
|
|
return 0;
|
|
}
|
|
return 0x0A000000|(addr&0xffffff);
|
|
}
|
|
|
|
int decbranch(int pos)
|
|
{
|
|
int x;
|
|
x=*(uint32_t *)(cur_text_section->data + pos);
|
|
x&=0x00ffffff;
|
|
if(x&0x800000)
|
|
x-=0x1000000;
|
|
return x*4+pos+8;
|
|
}
|
|
|
|
/* output a symbol and patch all calls to it */
|
|
void gsym_addr(int t, int a)
|
|
{
|
|
uint32_t *x;
|
|
int lt;
|
|
while(t) {
|
|
x=(uint32_t *)(cur_text_section->data + t);
|
|
t=decbranch(lt=t);
|
|
if(a==lt+4)
|
|
*x=0xE1A00000; // nop
|
|
else {
|
|
*x &= 0xff000000;
|
|
*x |= encbranch(lt,a,1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void gsym(int t)
|
|
{
|
|
gsym_addr(t, ind);
|
|
}
|
|
|
|
#ifdef TCC_ARM_VFP
|
|
static uint32_t vfpr(int r)
|
|
{
|
|
if(r<TREG_F0 || r>TREG_F7)
|
|
tcc_error("compiler error! register %i is no vfp register",r);
|
|
return r - TREG_F0;
|
|
}
|
|
#else
|
|
static uint32_t fpr(int r)
|
|
{
|
|
if(r<TREG_F0 || r>TREG_F3)
|
|
tcc_error("compiler error! register %i is no fpa register",r);
|
|
return r - TREG_F0;
|
|
}
|
|
#endif
|
|
|
|
static uint32_t intr(int r)
|
|
{
|
|
if(r == TREG_R12)
|
|
return 12;
|
|
if(r >= TREG_R0 && r <= TREG_R3)
|
|
return r - TREG_R0;
|
|
if (r >= TREG_SP && r <= TREG_LR)
|
|
return r + (13 - TREG_SP);
|
|
tcc_error("compiler error! register %i is no int register",r);
|
|
}
|
|
|
|
static void calcaddr(uint32_t *base, int *off, int *sgn, int maxoff, unsigned shift)
|
|
{
|
|
if(*off>maxoff || *off&((1<<shift)-1)) {
|
|
uint32_t x, y;
|
|
x=0xE280E000;
|
|
if(*sgn)
|
|
x=0xE240E000;
|
|
x|=(*base)<<16;
|
|
*base=14; // lr
|
|
y=stuff_const(x,*off&~maxoff);
|
|
if(y) {
|
|
o(y);
|
|
*off&=maxoff;
|
|
return;
|
|
}
|
|
y=stuff_const(x,(*off+maxoff)&~maxoff);
|
|
if(y) {
|
|
o(y);
|
|
*sgn=!*sgn;
|
|
*off=((*off+maxoff)&~maxoff)-*off;
|
|
return;
|
|
}
|
|
stuff_const_harder(x,*off&~maxoff);
|
|
*off&=maxoff;
|
|
}
|
|
}
|
|
|
|
static uint32_t mapcc(int cc)
|
|
{
|
|
switch(cc)
|
|
{
|
|
case TOK_ULT:
|
|
return 0x30000000; /* CC/LO */
|
|
case TOK_UGE:
|
|
return 0x20000000; /* CS/HS */
|
|
case TOK_EQ:
|
|
return 0x00000000; /* EQ */
|
|
case TOK_NE:
|
|
return 0x10000000; /* NE */
|
|
case TOK_ULE:
|
|
return 0x90000000; /* LS */
|
|
case TOK_UGT:
|
|
return 0x80000000; /* HI */
|
|
case TOK_Nset:
|
|
return 0x40000000; /* MI */
|
|
case TOK_Nclear:
|
|
return 0x50000000; /* PL */
|
|
case TOK_LT:
|
|
return 0xB0000000; /* LT */
|
|
case TOK_GE:
|
|
return 0xA0000000; /* GE */
|
|
case TOK_LE:
|
|
return 0xD0000000; /* LE */
|
|
case TOK_GT:
|
|
return 0xC0000000; /* GT */
|
|
}
|
|
tcc_error("unexpected condition code");
|
|
return 0xE0000000; /* AL */
|
|
}
|
|
|
|
static int negcc(int cc)
|
|
{
|
|
switch(cc)
|
|
{
|
|
case TOK_ULT:
|
|
return TOK_UGE;
|
|
case TOK_UGE:
|
|
return TOK_ULT;
|
|
case TOK_EQ:
|
|
return TOK_NE;
|
|
case TOK_NE:
|
|
return TOK_EQ;
|
|
case TOK_ULE:
|
|
return TOK_UGT;
|
|
case TOK_UGT:
|
|
return TOK_ULE;
|
|
case TOK_Nset:
|
|
return TOK_Nclear;
|
|
case TOK_Nclear:
|
|
return TOK_Nset;
|
|
case TOK_LT:
|
|
return TOK_GE;
|
|
case TOK_GE:
|
|
return TOK_LT;
|
|
case TOK_LE:
|
|
return TOK_GT;
|
|
case TOK_GT:
|
|
return TOK_LE;
|
|
}
|
|
tcc_error("unexpected condition code");
|
|
return TOK_NE;
|
|
}
|
|
|
|
/* load 'r' from value 'sv' */
|
|
void load(int r, SValue *sv)
|
|
{
|
|
int v, ft, fc, fr, sign;
|
|
uint32_t op;
|
|
SValue v1;
|
|
|
|
fr = sv->r;
|
|
ft = sv->type.t;
|
|
fc = sv->c.i;
|
|
|
|
if(fc>=0)
|
|
sign=0;
|
|
else {
|
|
sign=1;
|
|
fc=-fc;
|
|
}
|
|
|
|
v = fr & VT_VALMASK;
|
|
if (fr & VT_LVAL) {
|
|
uint32_t base = 0xB; // fp
|
|
if(v == VT_LLOCAL) {
|
|
v1.type.t = VT_PTR;
|
|
v1.r = VT_LOCAL | VT_LVAL;
|
|
v1.c.i = sv->c.i;
|
|
load(TREG_LR, &v1);
|
|
base = 14; /* lr */
|
|
fc=sign=0;
|
|
v=VT_LOCAL;
|
|
} else if(v == VT_CONST) {
|
|
v1.type.t = VT_PTR;
|
|
v1.r = fr&~VT_LVAL;
|
|
v1.c.i = sv->c.i;
|
|
v1.sym=sv->sym;
|
|
load(TREG_LR, &v1);
|
|
base = 14; /* lr */
|
|
fc=sign=0;
|
|
v=VT_LOCAL;
|
|
} else if(v < VT_CONST) {
|
|
base=intr(v);
|
|
fc=sign=0;
|
|
v=VT_LOCAL;
|
|
}
|
|
if(v == VT_LOCAL) {
|
|
if(is_float(ft)) {
|
|
calcaddr(&base,&fc,&sign,1020,2);
|
|
#ifdef TCC_ARM_VFP
|
|
op=0xED100A00; /* flds */
|
|
if(!sign)
|
|
op|=0x800000;
|
|
if ((ft & VT_BTYPE) != VT_FLOAT)
|
|
op|=0x100; /* flds -> fldd */
|
|
o(op|(vfpr(r)<<12)|(fc>>2)|(base<<16));
|
|
#else
|
|
op=0xED100100;
|
|
if(!sign)
|
|
op|=0x800000;
|
|
#if LDOUBLE_SIZE == 8
|
|
if ((ft & VT_BTYPE) != VT_FLOAT)
|
|
op|=0x8000;
|
|
#else
|
|
if ((ft & VT_BTYPE) == VT_DOUBLE)
|
|
op|=0x8000;
|
|
else if ((ft & VT_BTYPE) == VT_LDOUBLE)
|
|
op|=0x400000;
|
|
#endif
|
|
o(op|(fpr(r)<<12)|(fc>>2)|(base<<16));
|
|
#endif
|
|
} else if((ft & (VT_BTYPE|VT_UNSIGNED)) == VT_BYTE
|
|
|| (ft & VT_BTYPE) == VT_SHORT) {
|
|
calcaddr(&base,&fc,&sign,255,0);
|
|
op=0xE1500090;
|
|
if ((ft & VT_BTYPE) == VT_SHORT)
|
|
op|=0x20;
|
|
if ((ft & VT_UNSIGNED) == 0)
|
|
op|=0x40;
|
|
if(!sign)
|
|
op|=0x800000;
|
|
o(op|(intr(r)<<12)|(base<<16)|((fc&0xf0)<<4)|(fc&0xf));
|
|
} else {
|
|
calcaddr(&base,&fc,&sign,4095,0);
|
|
op=0xE5100000;
|
|
if(!sign)
|
|
op|=0x800000;
|
|
if ((ft & VT_BTYPE) == VT_BYTE || (ft & VT_BTYPE) == VT_BOOL)
|
|
op|=0x400000;
|
|
o(op|(intr(r)<<12)|fc|(base<<16));
|
|
}
|
|
return;
|
|
}
|
|
} else {
|
|
if (v == VT_CONST) {
|
|
op=stuff_const(0xE3A00000|(intr(r)<<12),sv->c.i);
|
|
if (fr & VT_SYM || !op) {
|
|
o(0xE59F0000|(intr(r)<<12));
|
|
o(0xEA000000);
|
|
if(fr & VT_SYM)
|
|
greloc(cur_text_section, sv->sym, ind, R_ARM_ABS32);
|
|
o(sv->c.i);
|
|
} else
|
|
o(op);
|
|
return;
|
|
} else if (v == VT_LOCAL) {
|
|
op=stuff_const(0xE28B0000|(intr(r)<<12),sv->c.i);
|
|
if (fr & VT_SYM || !op) {
|
|
o(0xE59F0000|(intr(r)<<12));
|
|
o(0xEA000000);
|
|
if(fr & VT_SYM) // needed ?
|
|
greloc(cur_text_section, sv->sym, ind, R_ARM_ABS32);
|
|
o(sv->c.i);
|
|
o(0xE08B0000|(intr(r)<<12)|intr(r));
|
|
} else
|
|
o(op);
|
|
return;
|
|
} else if(v == VT_CMP) {
|
|
o(mapcc(sv->c.i)|0x3A00001|(intr(r)<<12));
|
|
o(mapcc(negcc(sv->c.i))|0x3A00000|(intr(r)<<12));
|
|
return;
|
|
} else if (v == VT_JMP || v == VT_JMPI) {
|
|
int t;
|
|
t = v & 1;
|
|
o(0xE3A00000|(intr(r)<<12)|t);
|
|
o(0xEA000000);
|
|
gsym(sv->c.i);
|
|
o(0xE3A00000|(intr(r)<<12)|(t^1));
|
|
return;
|
|
} else if (v < VT_CONST) {
|
|
if(is_float(ft))
|
|
#ifdef TCC_ARM_VFP
|
|
o(0xEEB00A40|(vfpr(r)<<12)|vfpr(v)|T2CPR(ft)); /* fcpyX */
|
|
#else
|
|
o(0xEE008180|(fpr(r)<<12)|fpr(v));
|
|
#endif
|
|
else
|
|
o(0xE1A00000|(intr(r)<<12)|intr(v));
|
|
return;
|
|
}
|
|
}
|
|
tcc_error("load unimplemented!");
|
|
}
|
|
|
|
/* store register 'r' in lvalue 'v' */
|
|
void store(int r, SValue *sv)
|
|
{
|
|
SValue v1;
|
|
int v, ft, fc, fr, sign;
|
|
uint32_t op;
|
|
|
|
fr = sv->r;
|
|
ft = sv->type.t;
|
|
fc = sv->c.i;
|
|
|
|
if(fc>=0)
|
|
sign=0;
|
|
else {
|
|
sign=1;
|
|
fc=-fc;
|
|
}
|
|
|
|
v = fr & VT_VALMASK;
|
|
if (fr & VT_LVAL || fr == VT_LOCAL) {
|
|
uint32_t base = 0xb; /* fp */
|
|
if(v < VT_CONST) {
|
|
base=intr(v);
|
|
v=VT_LOCAL;
|
|
fc=sign=0;
|
|
} else if(v == VT_CONST) {
|
|
v1.type.t = ft;
|
|
v1.r = fr&~VT_LVAL;
|
|
v1.c.i = sv->c.i;
|
|
v1.sym=sv->sym;
|
|
load(TREG_LR, &v1);
|
|
base = 14; /* lr */
|
|
fc=sign=0;
|
|
v=VT_LOCAL;
|
|
}
|
|
if(v == VT_LOCAL) {
|
|
if(is_float(ft)) {
|
|
calcaddr(&base,&fc,&sign,1020,2);
|
|
#ifdef TCC_ARM_VFP
|
|
op=0xED000A00; /* fsts */
|
|
if(!sign)
|
|
op|=0x800000;
|
|
if ((ft & VT_BTYPE) != VT_FLOAT)
|
|
op|=0x100; /* fsts -> fstd */
|
|
o(op|(vfpr(r)<<12)|(fc>>2)|(base<<16));
|
|
#else
|
|
op=0xED000100;
|
|
if(!sign)
|
|
op|=0x800000;
|
|
#if LDOUBLE_SIZE == 8
|
|
if ((ft & VT_BTYPE) != VT_FLOAT)
|
|
op|=0x8000;
|
|
#else
|
|
if ((ft & VT_BTYPE) == VT_DOUBLE)
|
|
op|=0x8000;
|
|
if ((ft & VT_BTYPE) == VT_LDOUBLE)
|
|
op|=0x400000;
|
|
#endif
|
|
o(op|(fpr(r)<<12)|(fc>>2)|(base<<16));
|
|
#endif
|
|
return;
|
|
} else if((ft & VT_BTYPE) == VT_SHORT) {
|
|
calcaddr(&base,&fc,&sign,255,0);
|
|
op=0xE14000B0;
|
|
if(!sign)
|
|
op|=0x800000;
|
|
o(op|(intr(r)<<12)|(base<<16)|((fc&0xf0)<<4)|(fc&0xf));
|
|
} else {
|
|
calcaddr(&base,&fc,&sign,4095,0);
|
|
op=0xE5000000;
|
|
if(!sign)
|
|
op|=0x800000;
|
|
if ((ft & VT_BTYPE) == VT_BYTE || (ft & VT_BTYPE) == VT_BOOL)
|
|
op|=0x400000;
|
|
o(op|(intr(r)<<12)|fc|(base<<16));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
tcc_error("store unimplemented");
|
|
}
|
|
|
|
static void gadd_sp(int val)
|
|
{
|
|
stuff_const_harder(0xE28DD000,val);
|
|
}
|
|
|
|
/* 'is_jmp' is '1' if it is a jump */
|
|
static void gcall_or_jmp(int is_jmp)
|
|
{
|
|
int r;
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
|
|
uint32_t x;
|
|
/* constant case */
|
|
x=encbranch(ind,ind+vtop->c.i,0);
|
|
if(x) {
|
|
if (vtop->r & VT_SYM) {
|
|
/* relocation case */
|
|
greloc(cur_text_section, vtop->sym, ind, R_ARM_PC24);
|
|
} else
|
|
put_elf_reloc(symtab_section, cur_text_section, ind, R_ARM_PC24, 0);
|
|
o(x|(is_jmp?0xE0000000:0xE1000000));
|
|
} else {
|
|
if(!is_jmp)
|
|
o(0xE28FE004); // add lr,pc,#4
|
|
o(0xE51FF004); // ldr pc,[pc,#-4]
|
|
if (vtop->r & VT_SYM)
|
|
greloc(cur_text_section, vtop->sym, ind, R_ARM_ABS32);
|
|
o(vtop->c.i);
|
|
}
|
|
} else {
|
|
/* otherwise, indirect call */
|
|
r = gv(RC_INT);
|
|
if(!is_jmp)
|
|
o(0xE1A0E00F); // mov lr,pc
|
|
o(0xE1A0F000|intr(r)); // mov pc,r
|
|
}
|
|
}
|
|
|
|
static int unalias_ldbl(int btype)
|
|
{
|
|
#if LDOUBLE_SIZE == 8
|
|
if (btype == VT_LDOUBLE)
|
|
btype = VT_DOUBLE;
|
|
#endif
|
|
return btype;
|
|
}
|
|
|
|
/* Return whether a structure is an homogeneous float aggregate or not.
|
|
The answer is true if all the elements of the structure are of the same
|
|
primitive float type and there is less than 4 elements.
|
|
|
|
type: the type corresponding to the structure to be tested */
|
|
static int is_hgen_float_aggr(CType *type)
|
|
{
|
|
if ((type->t & VT_BTYPE) == VT_STRUCT) {
|
|
struct Sym *ref;
|
|
int btype, nb_fields = 0;
|
|
|
|
ref = type->ref->next;
|
|
btype = unalias_ldbl(ref->type.t & VT_BTYPE);
|
|
if (btype == VT_FLOAT || btype == VT_DOUBLE) {
|
|
for(; ref && btype == unalias_ldbl(ref->type.t & VT_BTYPE); ref = ref->next, nb_fields++);
|
|
return !ref && nb_fields <= 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct avail_regs {
|
|
signed char avail[3]; /* 3 holes max with only float and double alignments */
|
|
int first_hole; /* first available hole */
|
|
int last_hole; /* last available hole (none if equal to first_hole) */
|
|
int first_free_reg; /* next free register in the sequence, hole excluded */
|
|
};
|
|
|
|
#define AVAIL_REGS_INITIALIZER (struct avail_regs) { { 0, 0, 0}, 0, 0, 0 }
|
|
|
|
/* Find suitable registers for a VFP Co-Processor Register Candidate (VFP CPRC
|
|
param) according to the rules described in the procedure call standard for
|
|
the ARM architecture (AAPCS). If found, the registers are assigned to this
|
|
VFP CPRC parameter. Registers are allocated in sequence unless a hole exists
|
|
and the parameter is a single float.
|
|
|
|
avregs: opaque structure to keep track of available VFP co-processor regs
|
|
align: alignment contraints for the param, as returned by type_size()
|
|
size: size of the parameter, as returned by type_size() */
|
|
int assign_vfpreg(struct avail_regs *avregs, int align, int size)
|
|
{
|
|
int first_reg = 0;
|
|
|
|
if (avregs->first_free_reg == -1)
|
|
return -1;
|
|
if (align >> 3) { /* double alignment */
|
|
first_reg = avregs->first_free_reg;
|
|
/* alignment contraint not respected so use next reg and record hole */
|
|
if (first_reg & 1)
|
|
avregs->avail[avregs->last_hole++] = first_reg++;
|
|
} else { /* no special alignment (float or array of float) */
|
|
/* if single float and a hole is available, assign the param to it */
|
|
if (size == 4 && avregs->first_hole != avregs->last_hole)
|
|
return avregs->avail[avregs->first_hole++];
|
|
else
|
|
first_reg = avregs->first_free_reg;
|
|
}
|
|
if (first_reg + size / 4 <= 16) {
|
|
avregs->first_free_reg = first_reg + size / 4;
|
|
return first_reg;
|
|
}
|
|
avregs->first_free_reg = -1;
|
|
return -1;
|
|
}
|
|
|
|
/* Returns whether all params need to be passed in core registers or not.
|
|
This is the case for function part of the runtime ABI. */
|
|
int floats_in_core_regs(SValue *sval)
|
|
{
|
|
if (!sval->sym)
|
|
return 0;
|
|
|
|
switch (sval->sym->v) {
|
|
case TOK___floatundisf:
|
|
case TOK___floatundidf:
|
|
case TOK___fixunssfdi:
|
|
case TOK___fixunsdfdi:
|
|
#ifndef TCC_ARM_VFP
|
|
case TOK___fixunsxfdi:
|
|
#endif
|
|
case TOK___floatdisf:
|
|
case TOK___floatdidf:
|
|
case TOK___fixsfdi:
|
|
case TOK___fixdfdi:
|
|
return 1;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Return the number of registers needed to return the struct, or 0 if
|
|
returning via struct pointer. */
|
|
ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize) {
|
|
#ifdef TCC_ARM_EABI
|
|
int size, align;
|
|
size = type_size(vt, &align);
|
|
if (float_abi == ARM_HARD_FLOAT && !variadic &&
|
|
(is_float(vt->t) || is_hgen_float_aggr(vt))) {
|
|
*ret_align = 8;
|
|
*regsize = 8;
|
|
ret->ref = NULL;
|
|
ret->t = VT_DOUBLE;
|
|
return (size + 7) >> 3;
|
|
} else if (size <= 4) {
|
|
*ret_align = 4;
|
|
*regsize = 4;
|
|
ret->ref = NULL;
|
|
ret->t = VT_INT;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Parameters are classified according to how they are copied to their final
|
|
destination for the function call. Because the copying is performed class
|
|
after class according to the order in the union below, it is important that
|
|
some constraints about the order of the members of this union are respected:
|
|
- CORE_STRUCT_CLASS must come after STACK_CLASS;
|
|
- CORE_CLASS must come after STACK_CLASS, CORE_STRUCT_CLASS and
|
|
VFP_STRUCT_CLASS;
|
|
- VFP_STRUCT_CLASS must come after VFP_CLASS.
|
|
See the comment for the main loop in copy_params() for the reason. */
|
|
enum reg_class {
|
|
STACK_CLASS = 0,
|
|
CORE_STRUCT_CLASS,
|
|
VFP_CLASS,
|
|
VFP_STRUCT_CLASS,
|
|
CORE_CLASS,
|
|
NB_CLASSES
|
|
};
|
|
|
|
struct param_plan {
|
|
int start; /* first reg or addr used depending on the class */
|
|
int end; /* last reg used or next free addr depending on the class */
|
|
SValue *sval; /* pointer to SValue on the value stack */
|
|
struct param_plan *prev; /* previous element in this class */
|
|
};
|
|
|
|
struct plan {
|
|
struct param_plan *pplans; /* array of all the param plans */
|
|
struct param_plan *clsplans[NB_CLASSES]; /* per class lists of param plans */
|
|
};
|
|
|
|
#define add_param_plan(plan,pplan,class) \
|
|
do { \
|
|
pplan.prev = plan->clsplans[class]; \
|
|
plan->pplans[plan ## _nb] = pplan; \
|
|
plan->clsplans[class] = &plan->pplans[plan ## _nb++]; \
|
|
} while(0)
|
|
|
|
/* Assign parameters to registers and stack with alignment according to the
|
|
rules in the procedure call standard for the ARM architecture (AAPCS).
|
|
The overall assignment is recorded in an array of per parameter structures
|
|
called parameter plans. The parameter plans are also further organized in a
|
|
number of linked lists, one per class of parameter (see the comment for the
|
|
definition of union reg_class).
|
|
|
|
nb_args: number of parameters of the function for which a call is generated
|
|
float_abi: float ABI in use for this function call
|
|
plan: the structure where the overall assignment is recorded
|
|
todo: a bitmap that record which core registers hold a parameter
|
|
|
|
Returns the amount of stack space needed for parameter passing
|
|
|
|
Note: this function allocated an array in plan->pplans with tcc_malloc. It
|
|
is the responsibility of the caller to free this array once used (ie not
|
|
before copy_params). */
|
|
static int assign_regs(int nb_args, int float_abi, struct plan *plan, int *todo)
|
|
{
|
|
int i, size, align;
|
|
int ncrn /* next core register number */, nsaa /* next stacked argument address*/;
|
|
int plan_nb = 0;
|
|
struct param_plan pplan;
|
|
struct avail_regs avregs = AVAIL_REGS_INITIALIZER;
|
|
|
|
ncrn = nsaa = 0;
|
|
*todo = 0;
|
|
plan->pplans = tcc_malloc(nb_args * sizeof(*plan->pplans));
|
|
memset(plan->clsplans, 0, sizeof(plan->clsplans));
|
|
for(i = nb_args; i-- ;) {
|
|
int j, start_vfpreg = 0;
|
|
CType type = vtop[-i].type;
|
|
type.t &= ~VT_ARRAY;
|
|
size = type_size(&type, &align);
|
|
size = (size + 3) & ~3;
|
|
align = (align + 3) & ~3;
|
|
switch(vtop[-i].type.t & VT_BTYPE) {
|
|
case VT_STRUCT:
|
|
case VT_FLOAT:
|
|
case VT_DOUBLE:
|
|
case VT_LDOUBLE:
|
|
if (float_abi == ARM_HARD_FLOAT) {
|
|
int is_hfa = 0; /* Homogeneous float aggregate */
|
|
|
|
if (is_float(vtop[-i].type.t)
|
|
|| (is_hfa = is_hgen_float_aggr(&vtop[-i].type))) {
|
|
int end_vfpreg;
|
|
|
|
start_vfpreg = assign_vfpreg(&avregs, align, size);
|
|
end_vfpreg = start_vfpreg + ((size - 1) >> 2);
|
|
if (start_vfpreg >= 0) {
|
|
pplan = (struct param_plan) {start_vfpreg, end_vfpreg, &vtop[-i]};
|
|
if (is_hfa)
|
|
add_param_plan(plan, pplan, VFP_STRUCT_CLASS);
|
|
else
|
|
add_param_plan(plan, pplan, VFP_CLASS);
|
|
continue;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
ncrn = (ncrn + (align-1)/4) & ~((align/4) - 1);
|
|
if (ncrn + size/4 <= 4 || (ncrn < 4 && start_vfpreg != -1)) {
|
|
/* The parameter is allocated both in core register and on stack. As
|
|
* such, it can be of either class: it would either be the last of
|
|
* CORE_STRUCT_CLASS or the first of STACK_CLASS. */
|
|
for (j = ncrn; j < 4 && j < ncrn + size / 4; j++)
|
|
*todo|=(1<<j);
|
|
pplan = (struct param_plan) {ncrn, j, &vtop[-i]};
|
|
add_param_plan(plan, pplan, CORE_STRUCT_CLASS);
|
|
ncrn += size/4;
|
|
if (ncrn > 4)
|
|
nsaa = (ncrn - 4) * 4;
|
|
} else {
|
|
ncrn = 4;
|
|
break;
|
|
}
|
|
continue;
|
|
default:
|
|
if (ncrn < 4) {
|
|
int is_long = (vtop[-i].type.t & VT_BTYPE) == VT_LLONG;
|
|
|
|
if (is_long) {
|
|
ncrn = (ncrn + 1) & -2;
|
|
if (ncrn == 4)
|
|
break;
|
|
}
|
|
pplan = (struct param_plan) {ncrn, ncrn, &vtop[-i]};
|
|
ncrn++;
|
|
if (is_long)
|
|
pplan.end = ncrn++;
|
|
add_param_plan(plan, pplan, CORE_CLASS);
|
|
continue;
|
|
}
|
|
}
|
|
nsaa = (nsaa + (align - 1)) & ~(align - 1);
|
|
pplan = (struct param_plan) {nsaa, nsaa + size, &vtop[-i]};
|
|
add_param_plan(plan, pplan, STACK_CLASS);
|
|
nsaa += size; /* size already rounded up before */
|
|
}
|
|
return nsaa;
|
|
}
|
|
|
|
#undef add_param_plan
|
|
|
|
/* Copy parameters to their final destination (core reg, VFP reg or stack) for
|
|
function call.
|
|
|
|
nb_args: number of parameters the function take
|
|
plan: the overall assignment plan for parameters
|
|
todo: a bitmap indicating what core reg will hold a parameter
|
|
|
|
Returns the number of SValue added by this function on the value stack */
|
|
static int copy_params(int nb_args, struct plan *plan, int todo)
|
|
{
|
|
int size, align, r, i, nb_extra_sval = 0;
|
|
struct param_plan *pplan;
|
|
int pass = 0;
|
|
|
|
/* Several constraints require parameters to be copied in a specific order:
|
|
- structures are copied to the stack before being loaded in a reg;
|
|
- floats loaded to an odd numbered VFP reg are first copied to the
|
|
preceding even numbered VFP reg and then moved to the next VFP reg.
|
|
|
|
It is thus important that:
|
|
- structures assigned to core regs must be copied after parameters
|
|
assigned to the stack but before structures assigned to VFP regs because
|
|
a structure can lie partly in core registers and partly on the stack;
|
|
- parameters assigned to the stack and all structures be copied before
|
|
parameters assigned to a core reg since copying a parameter to the stack
|
|
require using a core reg;
|
|
- parameters assigned to VFP regs be copied before structures assigned to
|
|
VFP regs as the copy might use an even numbered VFP reg that already
|
|
holds part of a structure. */
|
|
again:
|
|
for(i = 0; i < NB_CLASSES; i++) {
|
|
for(pplan = plan->clsplans[i]; pplan; pplan = pplan->prev) {
|
|
|
|
if (pass
|
|
&& (i != CORE_CLASS || pplan->sval->r < VT_CONST))
|
|
continue;
|
|
|
|
vpushv(pplan->sval);
|
|
pplan->sval->r = pplan->sval->r2 = VT_CONST; /* disable entry */
|
|
switch(i) {
|
|
case STACK_CLASS:
|
|
case CORE_STRUCT_CLASS:
|
|
case VFP_STRUCT_CLASS:
|
|
if ((pplan->sval->type.t & VT_BTYPE) == VT_STRUCT) {
|
|
int padding = 0;
|
|
size = type_size(&pplan->sval->type, &align);
|
|
/* align to stack align size */
|
|
size = (size + 3) & ~3;
|
|
if (i == STACK_CLASS && pplan->prev)
|
|
padding = pplan->start - pplan->prev->end;
|
|
size += padding; /* Add padding if any */
|
|
/* allocate the necessary size on stack */
|
|
gadd_sp(-size);
|
|
/* generate structure store */
|
|
r = get_reg(RC_INT);
|
|
o(0xE28D0000|(intr(r)<<12)|padding); /* add r, sp, padding */
|
|
vset(&vtop->type, r | VT_LVAL, 0);
|
|
vswap();
|
|
vstore(); /* memcpy to current sp + potential padding */
|
|
|
|
/* Homogeneous float aggregate are loaded to VFP registers
|
|
immediately since there is no way of loading data in multiple
|
|
non consecutive VFP registers as what is done for other
|
|
structures (see the use of todo). */
|
|
if (i == VFP_STRUCT_CLASS) {
|
|
int first = pplan->start, nb = pplan->end - first + 1;
|
|
/* vpop.32 {pplan->start, ..., pplan->end} */
|
|
o(0xECBD0A00|(first&1)<<22|(first>>1)<<12|nb);
|
|
/* No need to write the register used to a SValue since VFP regs
|
|
cannot be used for gcall_or_jmp */
|
|
}
|
|
} else {
|
|
if (is_float(pplan->sval->type.t)) {
|
|
#ifdef TCC_ARM_VFP
|
|
r = vfpr(gv(RC_FLOAT)) << 12;
|
|
if ((pplan->sval->type.t & VT_BTYPE) == VT_FLOAT)
|
|
size = 4;
|
|
else {
|
|
size = 8;
|
|
r |= 0x101; /* vpush.32 -> vpush.64 */
|
|
}
|
|
o(0xED2D0A01 + r); /* vpush */
|
|
#else
|
|
r = fpr(gv(RC_FLOAT)) << 12;
|
|
if ((pplan->sval->type.t & VT_BTYPE) == VT_FLOAT)
|
|
size = 4;
|
|
else if ((pplan->sval->type.t & VT_BTYPE) == VT_DOUBLE)
|
|
size = 8;
|
|
else
|
|
size = LDOUBLE_SIZE;
|
|
|
|
if (size == 12)
|
|
r |= 0x400000;
|
|
else if(size == 8)
|
|
r|=0x8000;
|
|
|
|
o(0xED2D0100|r|(size>>2)); /* some kind of vpush for FPA */
|
|
#endif
|
|
} else {
|
|
/* simple type (currently always same size) */
|
|
/* XXX: implicit cast ? */
|
|
size=4;
|
|
if ((pplan->sval->type.t & VT_BTYPE) == VT_LLONG) {
|
|
lexpand_nr();
|
|
size = 8;
|
|
r = gv(RC_INT);
|
|
o(0xE52D0004|(intr(r)<<12)); /* push r */
|
|
vtop--;
|
|
}
|
|
r = gv(RC_INT);
|
|
o(0xE52D0004|(intr(r)<<12)); /* push r */
|
|
}
|
|
if (i == STACK_CLASS && pplan->prev)
|
|
gadd_sp(pplan->prev->end - pplan->start); /* Add padding if any */
|
|
}
|
|
break;
|
|
|
|
case VFP_CLASS:
|
|
gv(regmask(TREG_F0 + (pplan->start >> 1)));
|
|
if (pplan->start & 1) { /* Must be in upper part of double register */
|
|
o(0xEEF00A40|((pplan->start>>1)<<12)|(pplan->start>>1)); /* vmov.f32 s(n+1), sn */
|
|
vtop->r = VT_CONST; /* avoid being saved on stack by gv for next float */
|
|
}
|
|
break;
|
|
|
|
case CORE_CLASS:
|
|
if ((pplan->sval->type.t & VT_BTYPE) == VT_LLONG) {
|
|
lexpand_nr();
|
|
gv(regmask(pplan->end));
|
|
pplan->sval->r2 = vtop->r;
|
|
vtop--;
|
|
}
|
|
gv(regmask(pplan->start));
|
|
/* Mark register as used so that gcall_or_jmp use another one
|
|
(regs >=4 are free as never used to pass parameters) */
|
|
pplan->sval->r = vtop->r;
|
|
break;
|
|
}
|
|
vtop--;
|
|
}
|
|
}
|
|
|
|
/* second pass to restore registers that were saved on stack by accident.
|
|
Maybe redundant after the "lvalue_save" patch in tccgen.c:gv() */
|
|
if (++pass < 2)
|
|
goto again;
|
|
|
|
/* Manually free remaining registers since next parameters are loaded
|
|
* manually, without the help of gv(int). */
|
|
save_regs(nb_args);
|
|
|
|
if(todo) {
|
|
o(0xE8BD0000|todo); /* pop {todo} */
|
|
for(pplan = plan->clsplans[CORE_STRUCT_CLASS]; pplan; pplan = pplan->prev) {
|
|
int r;
|
|
pplan->sval->r = pplan->start;
|
|
/* An SValue can only pin 2 registers at best (r and r2) but a structure
|
|
can occupy more than 2 registers. Thus, we need to push on the value
|
|
stack some fake parameter to have on SValue for each registers used
|
|
by a structure (r2 is not used). */
|
|
for (r = pplan->start + 1; r <= pplan->end; r++) {
|
|
if (todo & (1 << r)) {
|
|
nb_extra_sval++;
|
|
vpushi(0);
|
|
vtop->r = r;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nb_extra_sval;
|
|
}
|
|
|
|
/* Generate function call. The function address is pushed first, then
|
|
all the parameters in call order. This functions pops all the
|
|
parameters and the function address. */
|
|
void gfunc_call(int nb_args)
|
|
{
|
|
int r, args_size;
|
|
int def_float_abi = float_abi;
|
|
int todo;
|
|
struct plan plan;
|
|
|
|
#ifdef TCC_ARM_EABI
|
|
int variadic;
|
|
|
|
if (float_abi == ARM_HARD_FLOAT) {
|
|
variadic = (vtop[-nb_args].type.ref->c == FUNC_ELLIPSIS);
|
|
if (variadic || floats_in_core_regs(&vtop[-nb_args]))
|
|
float_abi = ARM_SOFTFP_FLOAT;
|
|
}
|
|
#endif
|
|
/* cannot let cpu flags if other instruction are generated. Also avoid leaving
|
|
VT_JMP anywhere except on the top of the stack because it would complicate
|
|
the code generator. */
|
|
r = vtop->r & VT_VALMASK;
|
|
if (r == VT_CMP || (r & ~1) == VT_JMP)
|
|
gv(RC_INT);
|
|
|
|
args_size = assign_regs(nb_args, float_abi, &plan, &todo);
|
|
|
|
#ifdef TCC_ARM_EABI
|
|
if (args_size & 7) { /* Stack must be 8 byte aligned at fct call for EABI */
|
|
args_size = (args_size + 7) & ~7;
|
|
o(0xE24DD004); /* sub sp, sp, #4 */
|
|
}
|
|
#endif
|
|
|
|
nb_args += copy_params(nb_args, &plan, todo);
|
|
tcc_free(plan.pplans);
|
|
|
|
/* Move fct SValue on top as required by gcall_or_jmp */
|
|
vrotb(nb_args + 1);
|
|
gcall_or_jmp(0);
|
|
if (args_size)
|
|
gadd_sp(args_size); /* pop all parameters passed on the stack */
|
|
#if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
|
|
if(float_abi == ARM_SOFTFP_FLOAT && is_float(vtop->type.ref->type.t)) {
|
|
if((vtop->type.ref->type.t & VT_BTYPE) == VT_FLOAT) {
|
|
o(0xEE000A10); /*vmov s0, r0 */
|
|
} else {
|
|
o(0xEE000B10); /* vmov.32 d0[0], r0 */
|
|
o(0xEE201B10); /* vmov.32 d0[1], r1 */
|
|
}
|
|
}
|
|
#endif
|
|
vtop -= nb_args + 1; /* Pop all params and fct address from value stack */
|
|
leaffunc = 0; /* we are calling a function, so we aren't in a leaf function */
|
|
float_abi = def_float_abi;
|
|
}
|
|
|
|
/* generate function prolog of type 't' */
|
|
void gfunc_prolog(CType *func_type)
|
|
{
|
|
Sym *sym,*sym2;
|
|
int n, nf, size, align, rs, struct_ret = 0;
|
|
int addr, pn, sn; /* pn=core, sn=stack */
|
|
CType ret_type;
|
|
|
|
#ifdef TCC_ARM_EABI
|
|
struct avail_regs avregs = AVAIL_REGS_INITIALIZER;
|
|
#endif
|
|
|
|
sym = func_type->ref;
|
|
func_vt = sym->type;
|
|
func_var = (func_type->ref->c == FUNC_ELLIPSIS);
|
|
|
|
n = nf = 0;
|
|
if ((func_vt.t & VT_BTYPE) == VT_STRUCT &&
|
|
!gfunc_sret(&func_vt, func_var, &ret_type, &align, &rs))
|
|
{
|
|
n++;
|
|
struct_ret = 1;
|
|
func_vc = 12; /* Offset from fp of the place to store the result */
|
|
}
|
|
for(sym2 = sym->next; sym2 && (n < 4 || nf < 16); sym2 = sym2->next) {
|
|
size = type_size(&sym2->type, &align);
|
|
#ifdef TCC_ARM_EABI
|
|
if (float_abi == ARM_HARD_FLOAT && !func_var &&
|
|
(is_float(sym2->type.t) || is_hgen_float_aggr(&sym2->type))) {
|
|
int tmpnf = assign_vfpreg(&avregs, align, size);
|
|
tmpnf += (size + 3) / 4;
|
|
nf = (tmpnf > nf) ? tmpnf : nf;
|
|
} else
|
|
#endif
|
|
if (n < 4)
|
|
n += (size + 3) / 4;
|
|
}
|
|
o(0xE1A0C00D); /* mov ip,sp */
|
|
if (func_var)
|
|
n=4;
|
|
if (n) {
|
|
if(n>4)
|
|
n=4;
|
|
#ifdef TCC_ARM_EABI
|
|
n=(n+1)&-2;
|
|
#endif
|
|
o(0xE92D0000|((1<<n)-1)); /* save r0-r4 on stack if needed */
|
|
}
|
|
if (nf) {
|
|
if (nf>16)
|
|
nf=16;
|
|
nf=(nf+1)&-2; /* nf => HARDFLOAT => EABI */
|
|
o(0xED2D0A00|nf); /* save s0-s15 on stack if needed */
|
|
}
|
|
o(0xE92D5800); /* save fp, ip, lr */
|
|
o(0xE1A0B00D); /* mov fp, sp */
|
|
func_sub_sp_offset = ind;
|
|
o(0xE1A00000); /* nop, leave space for stack adjustment in epilog */
|
|
|
|
#ifdef TCC_ARM_EABI
|
|
if (float_abi == ARM_HARD_FLOAT) {
|
|
func_vc += nf * 4;
|
|
avregs = AVAIL_REGS_INITIALIZER;
|
|
}
|
|
#endif
|
|
pn = struct_ret, sn = 0;
|
|
while ((sym = sym->next)) {
|
|
CType *type;
|
|
type = &sym->type;
|
|
size = type_size(type, &align);
|
|
size = (size + 3) >> 2;
|
|
align = (align + 3) & ~3;
|
|
#ifdef TCC_ARM_EABI
|
|
if (float_abi == ARM_HARD_FLOAT && !func_var && (is_float(sym->type.t)
|
|
|| is_hgen_float_aggr(&sym->type))) {
|
|
int fpn = assign_vfpreg(&avregs, align, size << 2);
|
|
if (fpn >= 0)
|
|
addr = fpn * 4;
|
|
else
|
|
goto from_stack;
|
|
} else
|
|
#endif
|
|
if (pn < 4) {
|
|
#ifdef TCC_ARM_EABI
|
|
pn = (pn + (align-1)/4) & -(align/4);
|
|
#endif
|
|
addr = (nf + pn) * 4;
|
|
pn += size;
|
|
if (!sn && pn > 4)
|
|
sn = (pn - 4);
|
|
} else {
|
|
#ifdef TCC_ARM_EABI
|
|
from_stack:
|
|
sn = (sn + (align-1)/4) & -(align/4);
|
|
#endif
|
|
addr = (n + nf + sn) * 4;
|
|
sn += size;
|
|
}
|
|
sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | lvalue_type(type->t),
|
|
addr + 12);
|
|
}
|
|
last_itod_magic=0;
|
|
leaffunc = 1;
|
|
loc = 0;
|
|
}
|
|
|
|
/* generate function epilog */
|
|
void gfunc_epilog(void)
|
|
{
|
|
uint32_t x;
|
|
int diff;
|
|
/* Copy float return value to core register if base standard is used and
|
|
float computation is made with VFP */
|
|
#if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
|
|
if ((float_abi == ARM_SOFTFP_FLOAT || func_var) && is_float(func_vt.t)) {
|
|
if((func_vt.t & VT_BTYPE) == VT_FLOAT)
|
|
o(0xEE100A10); /* fmrs r0, s0 */
|
|
else {
|
|
o(0xEE100B10); /* fmrdl r0, d0 */
|
|
o(0xEE301B10); /* fmrdh r1, d0 */
|
|
}
|
|
}
|
|
#endif
|
|
o(0xE89BA800); /* restore fp, sp, pc */
|
|
diff = (-loc + 3) & -4;
|
|
#ifdef TCC_ARM_EABI
|
|
if(!leaffunc)
|
|
diff = ((diff + 11) & -8) - 4;
|
|
#endif
|
|
if(diff > 0) {
|
|
x=stuff_const(0xE24BD000, diff); /* sub sp,fp,# */
|
|
if(x)
|
|
*(uint32_t *)(cur_text_section->data + func_sub_sp_offset) = x;
|
|
else {
|
|
int addr;
|
|
addr=ind;
|
|
o(0xE59FC004); /* ldr ip,[pc+4] */
|
|
o(0xE04BD00C); /* sub sp,fp,ip */
|
|
o(0xE1A0F00E); /* mov pc,lr */
|
|
o(diff);
|
|
*(uint32_t *)(cur_text_section->data + func_sub_sp_offset) = 0xE1000000|encbranch(func_sub_sp_offset,addr,1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* generate a jump to a label */
|
|
int gjmp(int t)
|
|
{
|
|
int r;
|
|
r=ind;
|
|
o(0xE0000000|encbranch(r,t,1));
|
|
return r;
|
|
}
|
|
|
|
/* generate a jump to a fixed address */
|
|
void gjmp_addr(int a)
|
|
{
|
|
gjmp(a);
|
|
}
|
|
|
|
/* generate a test. set 'inv' to invert test. Stack entry is popped */
|
|
int gtst(int inv, int t)
|
|
{
|
|
int v, r;
|
|
uint32_t op;
|
|
v = vtop->r & VT_VALMASK;
|
|
r=ind;
|
|
if (v == VT_CMP) {
|
|
op=mapcc(inv?negcc(vtop->c.i):vtop->c.i);
|
|
op|=encbranch(r,t,1);
|
|
o(op);
|
|
t=r;
|
|
} else if (v == VT_JMP || v == VT_JMPI) {
|
|
if ((v & 1) == inv) {
|
|
if(!vtop->c.i)
|
|
vtop->c.i=t;
|
|
else {
|
|
uint32_t *x;
|
|
int p,lp;
|
|
if(t) {
|
|
p = vtop->c.i;
|
|
do {
|
|
p = decbranch(lp=p);
|
|
} while(p);
|
|
x = (uint32_t *)(cur_text_section->data + lp);
|
|
*x &= 0xff000000;
|
|
*x |= encbranch(lp,t,1);
|
|
}
|
|
t = vtop->c.i;
|
|
}
|
|
} else {
|
|
t = gjmp(t);
|
|
gsym(vtop->c.i);
|
|
}
|
|
}
|
|
vtop--;
|
|
return t;
|
|
}
|
|
|
|
/* generate an integer binary operation */
|
|
void gen_opi(int op)
|
|
{
|
|
int c, func = 0;
|
|
uint32_t opc = 0, r, fr;
|
|
unsigned short retreg = REG_IRET;
|
|
|
|
c=0;
|
|
switch(op) {
|
|
case '+':
|
|
opc = 0x8;
|
|
c=1;
|
|
break;
|
|
case TOK_ADDC1: /* add with carry generation */
|
|
opc = 0x9;
|
|
c=1;
|
|
break;
|
|
case '-':
|
|
opc = 0x4;
|
|
c=1;
|
|
break;
|
|
case TOK_SUBC1: /* sub with carry generation */
|
|
opc = 0x5;
|
|
c=1;
|
|
break;
|
|
case TOK_ADDC2: /* add with carry use */
|
|
opc = 0xA;
|
|
c=1;
|
|
break;
|
|
case TOK_SUBC2: /* sub with carry use */
|
|
opc = 0xC;
|
|
c=1;
|
|
break;
|
|
case '&':
|
|
opc = 0x0;
|
|
c=1;
|
|
break;
|
|
case '^':
|
|
opc = 0x2;
|
|
c=1;
|
|
break;
|
|
case '|':
|
|
opc = 0x18;
|
|
c=1;
|
|
break;
|
|
case '*':
|
|
gv2(RC_INT, RC_INT);
|
|
r = vtop[-1].r;
|
|
fr = vtop[0].r;
|
|
vtop--;
|
|
o(0xE0000090|(intr(r)<<16)|(intr(r)<<8)|intr(fr));
|
|
return;
|
|
case TOK_SHL:
|
|
opc = 0;
|
|
c=2;
|
|
break;
|
|
case TOK_SHR:
|
|
opc = 1;
|
|
c=2;
|
|
break;
|
|
case TOK_SAR:
|
|
opc = 2;
|
|
c=2;
|
|
break;
|
|
case '/':
|
|
case TOK_PDIV:
|
|
func=TOK___divsi3;
|
|
c=3;
|
|
break;
|
|
case TOK_UDIV:
|
|
func=TOK___udivsi3;
|
|
c=3;
|
|
break;
|
|
case '%':
|
|
#ifdef TCC_ARM_EABI
|
|
func=TOK___aeabi_idivmod;
|
|
retreg=REG_LRET;
|
|
#else
|
|
func=TOK___modsi3;
|
|
#endif
|
|
c=3;
|
|
break;
|
|
case TOK_UMOD:
|
|
#ifdef TCC_ARM_EABI
|
|
func=TOK___aeabi_uidivmod;
|
|
retreg=REG_LRET;
|
|
#else
|
|
func=TOK___umodsi3;
|
|
#endif
|
|
c=3;
|
|
break;
|
|
case TOK_UMULL:
|
|
gv2(RC_INT, RC_INT);
|
|
r=intr(vtop[-1].r2=get_reg(RC_INT));
|
|
c=vtop[-1].r;
|
|
vtop[-1].r=get_reg_ex(RC_INT,regmask(c));
|
|
vtop--;
|
|
o(0xE0800090|(r<<16)|(intr(vtop->r)<<12)|(intr(c)<<8)|intr(vtop[1].r));
|
|
return;
|
|
default:
|
|
opc = 0x15;
|
|
c=1;
|
|
break;
|
|
}
|
|
switch(c) {
|
|
case 1:
|
|
if((vtop[-1].r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
|
|
if(opc == 4 || opc == 5 || opc == 0xc) {
|
|
vswap();
|
|
opc|=2; // sub -> rsb
|
|
}
|
|
}
|
|
if ((vtop->r & VT_VALMASK) == VT_CMP ||
|
|
(vtop->r & (VT_VALMASK & ~1)) == VT_JMP)
|
|
gv(RC_INT);
|
|
vswap();
|
|
c=intr(gv(RC_INT));
|
|
vswap();
|
|
opc=0xE0000000|(opc<<20)|(c<<16);
|
|
if((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
|
|
uint32_t x;
|
|
x=stuff_const(opc|0x2000000,vtop->c.i);
|
|
if(x) {
|
|
r=intr(vtop[-1].r=get_reg_ex(RC_INT,regmask(vtop[-1].r)));
|
|
o(x|(r<<12));
|
|
goto done;
|
|
}
|
|
}
|
|
fr=intr(gv(RC_INT));
|
|
r=intr(vtop[-1].r=get_reg_ex(RC_INT,two2mask(vtop->r,vtop[-1].r)));
|
|
o(opc|(r<<12)|fr);
|
|
done:
|
|
vtop--;
|
|
if (op >= TOK_ULT && op <= TOK_GT) {
|
|
vtop->r = VT_CMP;
|
|
vtop->c.i = op;
|
|
}
|
|
break;
|
|
case 2:
|
|
opc=0xE1A00000|(opc<<5);
|
|
if ((vtop->r & VT_VALMASK) == VT_CMP ||
|
|
(vtop->r & (VT_VALMASK & ~1)) == VT_JMP)
|
|
gv(RC_INT);
|
|
vswap();
|
|
r=intr(gv(RC_INT));
|
|
vswap();
|
|
opc|=r;
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
|
|
fr=intr(vtop[-1].r=get_reg_ex(RC_INT,regmask(vtop[-1].r)));
|
|
c = vtop->c.i & 0x1f;
|
|
o(opc|(c<<7)|(fr<<12));
|
|
} else {
|
|
fr=intr(gv(RC_INT));
|
|
c=intr(vtop[-1].r=get_reg_ex(RC_INT,two2mask(vtop->r,vtop[-1].r)));
|
|
o(opc|(c<<12)|(fr<<8)|0x10);
|
|
}
|
|
vtop--;
|
|
break;
|
|
case 3:
|
|
vpush_global_sym(&func_old_type, func);
|
|
vrott(3);
|
|
gfunc_call(2);
|
|
vpushi(0);
|
|
vtop->r = retreg;
|
|
break;
|
|
default:
|
|
tcc_error("gen_opi %i unimplemented!",op);
|
|
}
|
|
}
|
|
|
|
#ifdef TCC_ARM_VFP
|
|
static int is_zero(int i)
|
|
{
|
|
if((vtop[i].r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST)
|
|
return 0;
|
|
if (vtop[i].type.t == VT_FLOAT)
|
|
return (vtop[i].c.f == 0.f);
|
|
else if (vtop[i].type.t == VT_DOUBLE)
|
|
return (vtop[i].c.d == 0.0);
|
|
return (vtop[i].c.ld == 0.l);
|
|
}
|
|
|
|
/* generate a floating point operation 'v = t1 op t2' instruction. The
|
|
* two operands are guaranted to have the same floating point type */
|
|
void gen_opf(int op)
|
|
{
|
|
uint32_t x;
|
|
int fneg=0,r;
|
|
x=0xEE000A00|T2CPR(vtop->type.t);
|
|
switch(op) {
|
|
case '+':
|
|
if(is_zero(-1))
|
|
vswap();
|
|
if(is_zero(0)) {
|
|
vtop--;
|
|
return;
|
|
}
|
|
x|=0x300000;
|
|
break;
|
|
case '-':
|
|
x|=0x300040;
|
|
if(is_zero(0)) {
|
|
vtop--;
|
|
return;
|
|
}
|
|
if(is_zero(-1)) {
|
|
x|=0x810000; /* fsubX -> fnegX */
|
|
vswap();
|
|
vtop--;
|
|
fneg=1;
|
|
}
|
|
break;
|
|
case '*':
|
|
x|=0x200000;
|
|
break;
|
|
case '/':
|
|
x|=0x800000;
|
|
break;
|
|
default:
|
|
if(op < TOK_ULT || op > TOK_GT) {
|
|
tcc_error("unknown fp op %x!",op);
|
|
return;
|
|
}
|
|
if(is_zero(-1)) {
|
|
vswap();
|
|
switch(op) {
|
|
case TOK_LT: op=TOK_GT; break;
|
|
case TOK_GE: op=TOK_ULE; break;
|
|
case TOK_LE: op=TOK_GE; break;
|
|
case TOK_GT: op=TOK_ULT; break;
|
|
}
|
|
}
|
|
x|=0xB40040; /* fcmpX */
|
|
if(op!=TOK_EQ && op!=TOK_NE)
|
|
x|=0x80; /* fcmpX -> fcmpeX */
|
|
if(is_zero(0)) {
|
|
vtop--;
|
|
o(x|0x10000|(vfpr(gv(RC_FLOAT))<<12)); /* fcmp(e)X -> fcmp(e)zX */
|
|
} else {
|
|
x|=vfpr(gv(RC_FLOAT));
|
|
vswap();
|
|
o(x|(vfpr(gv(RC_FLOAT))<<12));
|
|
vtop--;
|
|
}
|
|
o(0xEEF1FA10); /* fmstat */
|
|
|
|
switch(op) {
|
|
case TOK_LE: op=TOK_ULE; break;
|
|
case TOK_LT: op=TOK_ULT; break;
|
|
case TOK_UGE: op=TOK_GE; break;
|
|
case TOK_UGT: op=TOK_GT; break;
|
|
}
|
|
|
|
vtop->r = VT_CMP;
|
|
vtop->c.i = op;
|
|
return;
|
|
}
|
|
r=gv(RC_FLOAT);
|
|
x|=vfpr(r);
|
|
r=regmask(r);
|
|
if(!fneg) {
|
|
int r2;
|
|
vswap();
|
|
r2=gv(RC_FLOAT);
|
|
x|=vfpr(r2)<<16;
|
|
r|=regmask(r2);
|
|
}
|
|
vtop->r=get_reg_ex(RC_FLOAT,r);
|
|
if(!fneg)
|
|
vtop--;
|
|
o(x|(vfpr(vtop->r)<<12));
|
|
}
|
|
|
|
#else
|
|
static uint32_t is_fconst()
|
|
{
|
|
long double f;
|
|
uint32_t r;
|
|
if((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST)
|
|
return 0;
|
|
if (vtop->type.t == VT_FLOAT)
|
|
f = vtop->c.f;
|
|
else if (vtop->type.t == VT_DOUBLE)
|
|
f = vtop->c.d;
|
|
else
|
|
f = vtop->c.ld;
|
|
if(!ieee_finite(f))
|
|
return 0;
|
|
r=0x8;
|
|
if(f<0.0) {
|
|
r=0x18;
|
|
f=-f;
|
|
}
|
|
if(f==0.0)
|
|
return r;
|
|
if(f==1.0)
|
|
return r|1;
|
|
if(f==2.0)
|
|
return r|2;
|
|
if(f==3.0)
|
|
return r|3;
|
|
if(f==4.0)
|
|
return r|4;
|
|
if(f==5.0)
|
|
return r|5;
|
|
if(f==0.5)
|
|
return r|6;
|
|
if(f==10.0)
|
|
return r|7;
|
|
return 0;
|
|
}
|
|
|
|
/* generate a floating point operation 'v = t1 op t2' instruction. The
|
|
two operands are guaranted to have the same floating point type */
|
|
void gen_opf(int op)
|
|
{
|
|
uint32_t x, r, r2, c1, c2;
|
|
//fputs("gen_opf\n",stderr);
|
|
vswap();
|
|
c1 = is_fconst();
|
|
vswap();
|
|
c2 = is_fconst();
|
|
x=0xEE000100;
|
|
#if LDOUBLE_SIZE == 8
|
|
if ((vtop->type.t & VT_BTYPE) != VT_FLOAT)
|
|
x|=0x80;
|
|
#else
|
|
if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
|
|
x|=0x80;
|
|
else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE)
|
|
x|=0x80000;
|
|
#endif
|
|
switch(op)
|
|
{
|
|
case '+':
|
|
if(!c2) {
|
|
vswap();
|
|
c2=c1;
|
|
}
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
if(c2) {
|
|
if(c2>0xf)
|
|
x|=0x200000; // suf
|
|
r2=c2&0xf;
|
|
} else {
|
|
r2=fpr(gv(RC_FLOAT));
|
|
}
|
|
break;
|
|
case '-':
|
|
if(c2) {
|
|
if(c2<=0xf)
|
|
x|=0x200000; // suf
|
|
r2=c2&0xf;
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
} else if(c1 && c1<=0xf) {
|
|
x|=0x300000; // rsf
|
|
r2=c1;
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
} else {
|
|
x|=0x200000; // suf
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
r2=fpr(gv(RC_FLOAT));
|
|
}
|
|
break;
|
|
case '*':
|
|
if(!c2 || c2>0xf) {
|
|
vswap();
|
|
c2=c1;
|
|
}
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
if(c2 && c2<=0xf)
|
|
r2=c2;
|
|
else
|
|
r2=fpr(gv(RC_FLOAT));
|
|
x|=0x100000; // muf
|
|
break;
|
|
case '/':
|
|
if(c2 && c2<=0xf) {
|
|
x|=0x400000; // dvf
|
|
r2=c2;
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
} else if(c1 && c1<=0xf) {
|
|
x|=0x500000; // rdf
|
|
r2=c1;
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
} else {
|
|
x|=0x400000; // dvf
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
r2=fpr(gv(RC_FLOAT));
|
|
}
|
|
break;
|
|
default:
|
|
if(op >= TOK_ULT && op <= TOK_GT) {
|
|
x|=0xd0f110; // cmfe
|
|
/* bug (intention?) in Linux FPU emulator
|
|
doesn't set carry if equal */
|
|
switch(op) {
|
|
case TOK_ULT:
|
|
case TOK_UGE:
|
|
case TOK_ULE:
|
|
case TOK_UGT:
|
|
tcc_error("unsigned comparison on floats?");
|
|
break;
|
|
case TOK_LT:
|
|
op=TOK_Nset;
|
|
break;
|
|
case TOK_LE:
|
|
op=TOK_ULE; /* correct in unordered case only if AC bit in FPSR set */
|
|
break;
|
|
case TOK_EQ:
|
|
case TOK_NE:
|
|
x&=~0x400000; // cmfe -> cmf
|
|
break;
|
|
}
|
|
if(c1 && !c2) {
|
|
c2=c1;
|
|
vswap();
|
|
switch(op) {
|
|
case TOK_Nset:
|
|
op=TOK_GT;
|
|
break;
|
|
case TOK_GE:
|
|
op=TOK_ULE;
|
|
break;
|
|
case TOK_ULE:
|
|
op=TOK_GE;
|
|
break;
|
|
case TOK_GT:
|
|
op=TOK_Nset;
|
|
break;
|
|
}
|
|
}
|
|
vswap();
|
|
r=fpr(gv(RC_FLOAT));
|
|
vswap();
|
|
if(c2) {
|
|
if(c2>0xf)
|
|
x|=0x200000;
|
|
r2=c2&0xf;
|
|
} else {
|
|
r2=fpr(gv(RC_FLOAT));
|
|
}
|
|
vtop[-1].r = VT_CMP;
|
|
vtop[-1].c.i = op;
|
|
} else {
|
|
tcc_error("unknown fp op %x!",op);
|
|
return;
|
|
}
|
|
}
|
|
if(vtop[-1].r == VT_CMP)
|
|
c1=15;
|
|
else {
|
|
c1=vtop->r;
|
|
if(r2&0x8)
|
|
c1=vtop[-1].r;
|
|
vtop[-1].r=get_reg_ex(RC_FLOAT,two2mask(vtop[-1].r,c1));
|
|
c1=fpr(vtop[-1].r);
|
|
}
|
|
vtop--;
|
|
o(x|(r<<16)|(c1<<12)|r2);
|
|
}
|
|
#endif
|
|
|
|
/* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
|
|
and 'long long' cases. */
|
|
ST_FUNC void gen_cvt_itof1(int t)
|
|
{
|
|
uint32_t r, r2;
|
|
int bt;
|
|
bt=vtop->type.t & VT_BTYPE;
|
|
if(bt == VT_INT || bt == VT_SHORT || bt == VT_BYTE) {
|
|
#ifndef TCC_ARM_VFP
|
|
uint32_t dsize = 0;
|
|
#endif
|
|
r=intr(gv(RC_INT));
|
|
#ifdef TCC_ARM_VFP
|
|
r2=vfpr(vtop->r=get_reg(RC_FLOAT));
|
|
o(0xEE000A10|(r<<12)|(r2<<16)); /* fmsr */
|
|
r2|=r2<<12;
|
|
if(!(vtop->type.t & VT_UNSIGNED))
|
|
r2|=0x80; /* fuitoX -> fsituX */
|
|
o(0xEEB80A40|r2|T2CPR(t)); /* fYitoX*/
|
|
#else
|
|
r2=fpr(vtop->r=get_reg(RC_FLOAT));
|
|
if((t & VT_BTYPE) != VT_FLOAT)
|
|
dsize=0x80; /* flts -> fltd */
|
|
o(0xEE000110|dsize|(r2<<16)|(r<<12)); /* flts */
|
|
if((vtop->type.t & (VT_UNSIGNED|VT_BTYPE)) == (VT_UNSIGNED|VT_INT)) {
|
|
uint32_t off = 0;
|
|
o(0xE3500000|(r<<12)); /* cmp */
|
|
r=fpr(get_reg(RC_FLOAT));
|
|
if(last_itod_magic) {
|
|
off=ind+8-last_itod_magic;
|
|
off/=4;
|
|
if(off>255)
|
|
off=0;
|
|
}
|
|
o(0xBD1F0100|(r<<12)|off); /* ldflts */
|
|
if(!off) {
|
|
o(0xEA000000); /* b */
|
|
last_itod_magic=ind;
|
|
o(0x4F800000); /* 4294967296.0f */
|
|
}
|
|
o(0xBE000100|dsize|(r2<<16)|(r2<<12)|r); /* adflt */
|
|
}
|
|
#endif
|
|
return;
|
|
} else if(bt == VT_LLONG) {
|
|
int func;
|
|
CType *func_type = 0;
|
|
if((t & VT_BTYPE) == VT_FLOAT) {
|
|
func_type = &func_float_type;
|
|
if(vtop->type.t & VT_UNSIGNED)
|
|
func=TOK___floatundisf;
|
|
else
|
|
func=TOK___floatdisf;
|
|
#if LDOUBLE_SIZE != 8
|
|
} else if((t & VT_BTYPE) == VT_LDOUBLE) {
|
|
func_type = &func_ldouble_type;
|
|
if(vtop->type.t & VT_UNSIGNED)
|
|
func=TOK___floatundixf;
|
|
else
|
|
func=TOK___floatdixf;
|
|
} else if((t & VT_BTYPE) == VT_DOUBLE) {
|
|
#else
|
|
} else if((t & VT_BTYPE) == VT_DOUBLE || (t & VT_BTYPE) == VT_LDOUBLE) {
|
|
#endif
|
|
func_type = &func_double_type;
|
|
if(vtop->type.t & VT_UNSIGNED)
|
|
func=TOK___floatundidf;
|
|
else
|
|
func=TOK___floatdidf;
|
|
}
|
|
if(func_type) {
|
|
vpush_global_sym(func_type, func);
|
|
vswap();
|
|
gfunc_call(1);
|
|
vpushi(0);
|
|
vtop->r=TREG_F0;
|
|
return;
|
|
}
|
|
}
|
|
tcc_error("unimplemented gen_cvt_itof %x!",vtop->type.t);
|
|
}
|
|
|
|
/* convert fp to int 't' type */
|
|
void gen_cvt_ftoi(int t)
|
|
{
|
|
uint32_t r, r2;
|
|
int u, func = 0;
|
|
u=t&VT_UNSIGNED;
|
|
t&=VT_BTYPE;
|
|
r2=vtop->type.t & VT_BTYPE;
|
|
if(t==VT_INT) {
|
|
#ifdef TCC_ARM_VFP
|
|
r=vfpr(gv(RC_FLOAT));
|
|
u=u?0:0x10000;
|
|
o(0xEEBC0AC0|(r<<12)|r|T2CPR(r2)|u); /* ftoXizY */
|
|
r2=intr(vtop->r=get_reg(RC_INT));
|
|
o(0xEE100A10|(r<<16)|(r2<<12));
|
|
return;
|
|
#else
|
|
if(u) {
|
|
if(r2 == VT_FLOAT)
|
|
func=TOK___fixunssfsi;
|
|
#if LDOUBLE_SIZE != 8
|
|
else if(r2 == VT_LDOUBLE)
|
|
func=TOK___fixunsxfsi;
|
|
else if(r2 == VT_DOUBLE)
|
|
#else
|
|
else if(r2 == VT_LDOUBLE || r2 == VT_DOUBLE)
|
|
#endif
|
|
func=TOK___fixunsdfsi;
|
|
} else {
|
|
r=fpr(gv(RC_FLOAT));
|
|
r2=intr(vtop->r=get_reg(RC_INT));
|
|
o(0xEE100170|(r2<<12)|r);
|
|
return;
|
|
}
|
|
#endif
|
|
} else if(t == VT_LLONG) { // unsigned handled in gen_cvt_ftoi1
|
|
if(r2 == VT_FLOAT)
|
|
func=TOK___fixsfdi;
|
|
#if LDOUBLE_SIZE != 8
|
|
else if(r2 == VT_LDOUBLE)
|
|
func=TOK___fixxfdi;
|
|
else if(r2 == VT_DOUBLE)
|
|
#else
|
|
else if(r2 == VT_LDOUBLE || r2 == VT_DOUBLE)
|
|
#endif
|
|
func=TOK___fixdfdi;
|
|
}
|
|
if(func) {
|
|
vpush_global_sym(&func_old_type, func);
|
|
vswap();
|
|
gfunc_call(1);
|
|
vpushi(0);
|
|
if(t == VT_LLONG)
|
|
vtop->r2 = REG_LRET;
|
|
vtop->r = REG_IRET;
|
|
return;
|
|
}
|
|
tcc_error("unimplemented gen_cvt_ftoi!");
|
|
}
|
|
|
|
/* convert from one floating point type to another */
|
|
void gen_cvt_ftof(int t)
|
|
{
|
|
#ifdef TCC_ARM_VFP
|
|
if(((vtop->type.t & VT_BTYPE) == VT_FLOAT) != ((t & VT_BTYPE) == VT_FLOAT)) {
|
|
uint32_t r = vfpr(gv(RC_FLOAT));
|
|
o(0xEEB70AC0|(r<<12)|r|T2CPR(vtop->type.t));
|
|
}
|
|
#else
|
|
/* all we have to do on i386 and FPA ARM is to put the float in a register */
|
|
gv(RC_FLOAT);
|
|
#endif
|
|
}
|
|
|
|
/* computed goto support */
|
|
void ggoto(void)
|
|
{
|
|
gcall_or_jmp(1);
|
|
vtop--;
|
|
}
|
|
|
|
/* Save the stack pointer onto the stack and return the location of its address */
|
|
ST_FUNC void gen_vla_sp_save(int addr) {
|
|
SValue v;
|
|
v.type.t = VT_PTR;
|
|
v.r = VT_LOCAL | VT_LVAL;
|
|
v.c.i = addr;
|
|
store(TREG_SP, &v);
|
|
}
|
|
|
|
/* Restore the SP from a location on the stack */
|
|
ST_FUNC void gen_vla_sp_restore(int addr) {
|
|
SValue v;
|
|
v.type.t = VT_PTR;
|
|
v.r = VT_LOCAL | VT_LVAL;
|
|
v.c.i = addr;
|
|
load(TREG_SP, &v);
|
|
}
|
|
|
|
/* Subtract from the stack pointer, and push the resulting value onto the stack */
|
|
ST_FUNC void gen_vla_alloc(CType *type, int align) {
|
|
int r = intr(gv(RC_INT));
|
|
o(0xE04D0000|(r<<12)|r); /* sub r, sp, r */
|
|
#ifdef TCC_ARM_EABI
|
|
if (align < 8)
|
|
align = 8;
|
|
#else
|
|
if (align < 4)
|
|
align = 4;
|
|
#endif
|
|
if (align & (align - 1))
|
|
tcc_error("alignment is not a power of 2: %i", align);
|
|
o(stuff_const(0xE3C0D000|(r<<16), align - 1)); /* bic sp, r, #align-1 */
|
|
vpop();
|
|
}
|
|
|
|
/* end of ARM code generator */
|
|
/*************************************************************/
|
|
#endif
|
|
/*************************************************************/
|