mirror of
https://github.com/frida/tinycc
synced 2024-11-25 00:59:37 +03:00
0bdbd49eac
avoid c++/c99 style comments in preprocessor directives avoid leadings whitespaces in preprocessor directives mention implemented variable length arrays in documentation fixed ambiguous option in texi2html call (Austin English)
1499 lines
43 KiB
C
1499 lines
43 KiB
C
/*
|
|
* i386 specific functions for TCC assembler
|
|
*
|
|
* Copyright (c) 2001, 2002 Fabrice Bellard
|
|
* Copyright (c) 2009 Frédéric Feret (x86_64 support)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "tcc.h"
|
|
|
|
/* #define NB_ASM_REGS 8 */
|
|
#define MAX_OPERANDS 3
|
|
#define NB_SAVED_REGS 3
|
|
|
|
#define TOK_ASM_first TOK_ASM_clc
|
|
#define TOK_ASM_last TOK_ASM_emms
|
|
|
|
#define OPC_JMP 0x01 /* jmp operand */
|
|
#define OPC_B 0x02 /* only used with OPC_WL */
|
|
#define OPC_WL 0x04 /* accepts w, l or no suffix */
|
|
#define OPC_BWL (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */
|
|
#define OPC_REG 0x08 /* register is added to opcode */
|
|
#define OPC_MODRM 0x10 /* modrm encoding */
|
|
#define OPC_FWAIT 0x20 /* add fwait opcode */
|
|
#define OPC_TEST 0x40 /* test opcodes */
|
|
#define OPC_SHIFT 0x80 /* shift opcodes */
|
|
#define OPC_D16 0x0100 /* generate data16 prefix */
|
|
#define OPC_ARITH 0x0200 /* arithmetic opcodes */
|
|
#define OPC_SHORTJMP 0x0400 /* short jmp operand */
|
|
#define OPC_FARITH 0x0800 /* FPU arithmetic opcodes */
|
|
#ifdef TCC_TARGET_X86_64
|
|
# define OPC_WLQ 0x1000 /* accepts w, l, q or no suffix */
|
|
# define OPC_BWLQ (OPC_B | OPC_WLQ) /* accepts b, w, l, q or no suffix */
|
|
# define OPC_WLX OPC_WLQ
|
|
#else
|
|
# define OPC_WLX OPC_WL
|
|
#endif
|
|
|
|
#define OPC_GROUP_SHIFT 13
|
|
|
|
/* in order to compress the operand type, we use specific operands and
|
|
we or only with EA */
|
|
enum {
|
|
OPT_REG8=0, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_REG16, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_REG32, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
#ifdef TCC_TARGET_X86_64
|
|
OPT_REG64, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
#endif
|
|
OPT_MMX, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_SSE, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_CR, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_TR, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_DB, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_SEG,
|
|
OPT_ST,
|
|
OPT_IM8,
|
|
OPT_IM8S,
|
|
OPT_IM16,
|
|
OPT_IM32,
|
|
#ifdef TCC_TARGET_X86_64
|
|
OPT_IM64,
|
|
#endif
|
|
OPT_EAX, /* %al, %ax, %eax or %rax register */
|
|
OPT_ST0, /* %st(0) register */
|
|
OPT_CL, /* %cl register */
|
|
OPT_DX, /* %dx register */
|
|
OPT_ADDR, /* OP_EA with only offset */
|
|
OPT_INDIR, /* *(expr) */
|
|
/* composite types */
|
|
OPT_COMPOSITE_FIRST,
|
|
OPT_IM, /* IM8 | IM16 | IM32 | IM64 */
|
|
OPT_REG, /* REG8 | REG16 | REG32 | REG64 */
|
|
OPT_REGW, /* REG16 | REG32 | REG64 */
|
|
OPT_IMW, /* IM16 | IM32 | IM64 */
|
|
#ifdef TCC_TARGET_X86_64
|
|
OPT_IMNO64, /* IM16 | IM32 */
|
|
#endif
|
|
/* can be ored with any OPT_xxx */
|
|
OPT_EA = 0x80
|
|
};
|
|
|
|
#define OP_REG8 (1 << OPT_REG8)
|
|
#define OP_REG16 (1 << OPT_REG16)
|
|
#define OP_REG32 (1 << OPT_REG32)
|
|
#define OP_MMX (1 << OPT_MMX)
|
|
#define OP_SSE (1 << OPT_SSE)
|
|
#define OP_CR (1 << OPT_CR)
|
|
#define OP_TR (1 << OPT_TR)
|
|
#define OP_DB (1 << OPT_DB)
|
|
#define OP_SEG (1 << OPT_SEG)
|
|
#define OP_ST (1 << OPT_ST)
|
|
#define OP_IM8 (1 << OPT_IM8)
|
|
#define OP_IM8S (1 << OPT_IM8S)
|
|
#define OP_IM16 (1 << OPT_IM16)
|
|
#define OP_IM32 (1 << OPT_IM32)
|
|
#define OP_EAX (1 << OPT_EAX)
|
|
#define OP_ST0 (1 << OPT_ST0)
|
|
#define OP_CL (1 << OPT_CL)
|
|
#define OP_DX (1 << OPT_DX)
|
|
#define OP_ADDR (1 << OPT_ADDR)
|
|
#define OP_INDIR (1 << OPT_INDIR)
|
|
#ifdef TCC_TARGET_X86_64
|
|
# define OP_REG64 (1 << OPT_REG64)
|
|
# define OP_IM64 (1 << OPT_IM64)
|
|
#else
|
|
# define OP_REG64 0
|
|
# define OP_IM64 0
|
|
#endif
|
|
|
|
#define OP_EA 0x40000000
|
|
#define OP_REG (OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64)
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
# define OP_IM OP_IM64
|
|
# define TREG_XAX TREG_RAX
|
|
# define TREG_XCX TREG_RCX
|
|
# define TREG_XDX TREG_RDX
|
|
#else
|
|
# define OP_IM OP_IM32
|
|
# define TREG_XAX TREG_EAX
|
|
# define TREG_XCX TREG_ECX
|
|
# define TREG_XDX TREG_EDX
|
|
#endif
|
|
|
|
typedef struct ASMInstr {
|
|
uint16_t sym;
|
|
uint16_t opcode;
|
|
uint16_t instr_type;
|
|
uint8_t nb_ops;
|
|
uint8_t op_type[MAX_OPERANDS]; /* see OP_xxx */
|
|
} ASMInstr;
|
|
|
|
typedef struct Operand {
|
|
uint32_t type;
|
|
int8_t reg; /* register, -1 if none */
|
|
int8_t reg2; /* second register, -1 if none */
|
|
uint8_t shift;
|
|
ExprValue e;
|
|
} Operand;
|
|
|
|
static const uint8_t reg_to_size[9] = {
|
|
/*
|
|
[OP_REG8] = 0,
|
|
[OP_REG16] = 1,
|
|
[OP_REG32] = 2,
|
|
#ifdef TCC_TARGET_X86_64
|
|
[OP_REG64] = 3,
|
|
#endif
|
|
*/
|
|
0, 0, 1, 0, 2, 0, 0, 0, 3
|
|
};
|
|
|
|
#define NB_TEST_OPCODES 30
|
|
|
|
static const uint8_t test_bits[NB_TEST_OPCODES] = {
|
|
0x00, /* o */
|
|
0x01, /* no */
|
|
0x02, /* b */
|
|
0x02, /* c */
|
|
0x02, /* nae */
|
|
0x03, /* nb */
|
|
0x03, /* nc */
|
|
0x03, /* ae */
|
|
0x04, /* e */
|
|
0x04, /* z */
|
|
0x05, /* ne */
|
|
0x05, /* nz */
|
|
0x06, /* be */
|
|
0x06, /* na */
|
|
0x07, /* nbe */
|
|
0x07, /* a */
|
|
0x08, /* s */
|
|
0x09, /* ns */
|
|
0x0a, /* p */
|
|
0x0a, /* pe */
|
|
0x0b, /* np */
|
|
0x0b, /* po */
|
|
0x0c, /* l */
|
|
0x0c, /* nge */
|
|
0x0d, /* nl */
|
|
0x0d, /* ge */
|
|
0x0e, /* le */
|
|
0x0e, /* ng */
|
|
0x0f, /* nle */
|
|
0x0f, /* g */
|
|
};
|
|
|
|
static const uint8_t segment_prefixes[] = {
|
|
0x26, /* es */
|
|
0x2e, /* cs */
|
|
0x36, /* ss */
|
|
0x3e, /* ds */
|
|
0x64, /* fs */
|
|
0x65 /* gs */
|
|
};
|
|
|
|
static const ASMInstr asm_instrs[] = {
|
|
#define ALT(x) x
|
|
#define DEF_ASM_OP0(name, opcode)
|
|
#define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 0 },
|
|
#define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 1, { op0 }},
|
|
#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 2, { op0, op1 }},
|
|
#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 3, { op0, op1, op2 }},
|
|
#ifdef TCC_TARGET_X86_64
|
|
# include "x86_64-asm.h"
|
|
#else
|
|
# include "i386-asm.h"
|
|
#endif
|
|
/* last operation */
|
|
{ 0, },
|
|
};
|
|
|
|
static const uint16_t op0_codes[] = {
|
|
#define ALT(x)
|
|
#define DEF_ASM_OP0(x, opcode) opcode,
|
|
#define DEF_ASM_OP0L(name, opcode, group, instr_type)
|
|
#define DEF_ASM_OP1(name, opcode, group, instr_type, op0)
|
|
#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1)
|
|
#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2)
|
|
#ifdef TCC_TARGET_X86_64
|
|
# include "x86_64-asm.h"
|
|
#else
|
|
# include "i386-asm.h"
|
|
#endif
|
|
};
|
|
|
|
static inline int get_reg_shift(TCCState *s1)
|
|
{
|
|
int shift, v;
|
|
#ifdef I386_ASM_16
|
|
if (s1->seg_size == 16)
|
|
tcc_error("invalid effective address");
|
|
#endif
|
|
v = asm_int_expr(s1);
|
|
switch(v) {
|
|
case 1:
|
|
shift = 0;
|
|
break;
|
|
case 2:
|
|
shift = 1;
|
|
break;
|
|
case 4:
|
|
shift = 2;
|
|
break;
|
|
case 8:
|
|
shift = 3;
|
|
break;
|
|
default:
|
|
expect("1, 2, 4 or 8 constant");
|
|
shift = 0;
|
|
break;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
static int asm_parse_reg(void)
|
|
{
|
|
int reg = 0;
|
|
if (tok != '%')
|
|
goto error_32;
|
|
next();
|
|
if (tok >= TOK_ASM_eax && tok <= TOK_ASM_edi) {
|
|
reg = tok - TOK_ASM_eax;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (tok >= TOK_ASM_rax && tok <= TOK_ASM_rdi) {
|
|
reg = tok - TOK_ASM_rax;
|
|
#endif
|
|
#ifdef I386_ASM_16
|
|
} else if (tok >= TOK_ASM_ax && tok <= TOK_ASM_di) {
|
|
reg = tok - TOK_ASM_ax;
|
|
#endif
|
|
} else {
|
|
error_32:
|
|
expect("register");
|
|
}
|
|
next();
|
|
return reg;
|
|
}
|
|
|
|
static void parse_operand(TCCState *s1, Operand *op)
|
|
{
|
|
ExprValue e;
|
|
int reg, indir;
|
|
const char *p;
|
|
|
|
indir = 0;
|
|
if (tok == '*') {
|
|
next();
|
|
indir = OP_INDIR;
|
|
}
|
|
|
|
if (tok == '%') {
|
|
next();
|
|
if (tok >= TOK_ASM_al && tok <= TOK_ASM_db7) {
|
|
reg = tok - TOK_ASM_al;
|
|
op->type = 1 << (reg >> 3); /* WARNING: do not change constant order */
|
|
op->reg = reg & 7;
|
|
if ((op->type & OP_REG) && op->reg == TREG_XAX)
|
|
op->type |= OP_EAX;
|
|
else if (op->type == OP_REG8 && op->reg == TREG_XCX)
|
|
op->type |= OP_CL;
|
|
else if (op->type == OP_REG16 && op->reg == TREG_XDX)
|
|
op->type |= OP_DX;
|
|
} else if (tok >= TOK_ASM_dr0 && tok <= TOK_ASM_dr7) {
|
|
op->type = OP_DB;
|
|
op->reg = tok - TOK_ASM_dr0;
|
|
} else if (tok >= TOK_ASM_es && tok <= TOK_ASM_gs) {
|
|
op->type = OP_SEG;
|
|
op->reg = tok - TOK_ASM_es;
|
|
} else if (tok == TOK_ASM_st) {
|
|
op->type = OP_ST;
|
|
op->reg = 0;
|
|
next();
|
|
if (tok == '(') {
|
|
next();
|
|
if (tok != TOK_PPNUM)
|
|
goto reg_error;
|
|
p = tokc.cstr->data;
|
|
reg = p[0] - '0';
|
|
if ((unsigned)reg >= 8 || p[1] != '\0')
|
|
goto reg_error;
|
|
op->reg = reg;
|
|
next();
|
|
skip(')');
|
|
}
|
|
if (op->reg == 0)
|
|
op->type |= OP_ST0;
|
|
goto no_skip;
|
|
} else {
|
|
reg_error:
|
|
tcc_error("unknown register");
|
|
}
|
|
next();
|
|
no_skip: ;
|
|
} else if (tok == '$') {
|
|
/* constant value */
|
|
next();
|
|
asm_expr(s1, &e);
|
|
op->type = OP_IM;
|
|
op->e.v = e.v;
|
|
op->e.sym = e.sym;
|
|
if (!op->e.sym) {
|
|
if (op->e.v == (uint8_t)op->e.v)
|
|
op->type |= OP_IM8;
|
|
if (op->e.v == (int8_t)op->e.v)
|
|
op->type |= OP_IM8S;
|
|
if (op->e.v == (uint16_t)op->e.v)
|
|
op->type |= OP_IM16;
|
|
#ifdef TCC_TARGET_X86_64
|
|
if (op->e.v == (uint32_t)op->e.v)
|
|
op->type |= OP_IM32;
|
|
#endif
|
|
}
|
|
} else {
|
|
/* address(reg,reg2,shift) with all variants */
|
|
op->type = OP_EA;
|
|
op->reg = -1;
|
|
op->reg2 = -1;
|
|
op->shift = 0;
|
|
if (tok != '(') {
|
|
asm_expr(s1, &e);
|
|
op->e.v = e.v;
|
|
op->e.sym = e.sym;
|
|
} else {
|
|
next();
|
|
if (tok == '%') {
|
|
unget_tok('(');
|
|
op->e.v = 0;
|
|
op->e.sym = NULL;
|
|
} else {
|
|
/* bracketed offset expression */
|
|
asm_expr(s1, &e);
|
|
if (tok != ')')
|
|
expect(")");
|
|
next();
|
|
op->e.v = e.v;
|
|
op->e.sym = e.sym;
|
|
}
|
|
}
|
|
if (tok == '(') {
|
|
next();
|
|
if (tok != ',') {
|
|
op->reg = asm_parse_reg();
|
|
}
|
|
if (tok == ',') {
|
|
next();
|
|
if (tok != ',') {
|
|
op->reg2 = asm_parse_reg();
|
|
}
|
|
if (tok == ',') {
|
|
next();
|
|
op->shift = get_reg_shift(s1);
|
|
}
|
|
}
|
|
skip(')');
|
|
}
|
|
if (op->reg == -1 && op->reg2 == -1)
|
|
op->type |= OP_ADDR;
|
|
}
|
|
op->type |= indir;
|
|
}
|
|
|
|
/* XXX: unify with C code output ? */
|
|
ST_FUNC void gen_expr32(ExprValue *pe)
|
|
{
|
|
gen_addr32(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
|
|
}
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
static void gen_expr64(ExprValue *pe)
|
|
{
|
|
gen_addr64(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
|
|
}
|
|
#endif
|
|
|
|
/* XXX: unify with C code output ? */
|
|
static void gen_disp32(ExprValue *pe)
|
|
{
|
|
Sym *sym = pe->sym;
|
|
if (sym && sym->r == cur_text_section->sh_num) {
|
|
/* same section: we can output an absolute value. Note
|
|
that the TCC compiler behaves differently here because
|
|
it always outputs a relocation to ease (future) code
|
|
elimination in the linker */
|
|
gen_le32(pe->v + sym->jnext - ind - 4);
|
|
} else {
|
|
if (sym && sym->type.t == VT_VOID) {
|
|
sym->type.t = VT_FUNC;
|
|
sym->type.ref = NULL;
|
|
}
|
|
gen_addrpc32(VT_SYM, sym, pe->v);
|
|
}
|
|
}
|
|
|
|
#ifdef I386_ASM_16
|
|
static void gen_expr16(ExprValue *pe)
|
|
{
|
|
if (pe->sym)
|
|
greloc(cur_text_section, pe->sym, ind, R_386_16);
|
|
gen_le16(pe->v);
|
|
}
|
|
static void gen_disp16(ExprValue *pe)
|
|
{
|
|
Sym *sym;
|
|
sym = pe->sym;
|
|
if (sym) {
|
|
if (sym->r == cur_text_section->sh_num) {
|
|
/* same section: we can output an absolute value. Note
|
|
that the TCC compiler behaves differently here because
|
|
it always outputs a relocation to ease (future) code
|
|
elimination in the linker */
|
|
gen_le16(pe->v + sym->jnext - ind - 2);
|
|
} else {
|
|
greloc(cur_text_section, sym, ind, R_386_PC16);
|
|
gen_le16(pe->v - 2);
|
|
}
|
|
} else {
|
|
/* put an empty PC32 relocation */
|
|
put_elf_reloc(symtab_section, cur_text_section,
|
|
ind, R_386_PC16, 0);
|
|
gen_le16(pe->v - 2);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* generate the modrm operand */
|
|
static inline void asm_modrm(int reg, Operand *op)
|
|
{
|
|
int mod, reg1, reg2, sib_reg1;
|
|
|
|
if (op->type & (OP_REG | OP_MMX | OP_SSE)) {
|
|
g(0xc0 + (reg << 3) + op->reg);
|
|
} else if (op->reg == -1 && op->reg2 == -1) {
|
|
/* displacement only */
|
|
#ifdef I386_ASM_16
|
|
if (tcc_state->seg_size == 16) {
|
|
g(0x06 + (reg << 3));
|
|
gen_expr16(&op->e);
|
|
} else if (tcc_state->seg_size == 32)
|
|
#endif
|
|
{
|
|
g(0x05 + (reg << 3));
|
|
gen_expr32(&op->e);
|
|
}
|
|
} else {
|
|
sib_reg1 = op->reg;
|
|
/* fist compute displacement encoding */
|
|
if (sib_reg1 == -1) {
|
|
sib_reg1 = 5;
|
|
mod = 0x00;
|
|
} else if (op->e.v == 0 && !op->e.sym && op->reg != 5) {
|
|
mod = 0x00;
|
|
} else if (op->e.v == (int8_t)op->e.v && !op->e.sym) {
|
|
mod = 0x40;
|
|
} else {
|
|
mod = 0x80;
|
|
}
|
|
/* compute if sib byte needed */
|
|
reg1 = op->reg;
|
|
if (op->reg2 != -1)
|
|
reg1 = 4;
|
|
#ifdef I386_ASM_16
|
|
if (tcc_state->seg_size == 32) {
|
|
#endif
|
|
g(mod + (reg << 3) + reg1);
|
|
if (reg1 == 4) {
|
|
/* add sib byte */
|
|
reg2 = op->reg2;
|
|
if (reg2 == -1)
|
|
reg2 = 4; /* indicate no index */
|
|
g((op->shift << 6) + (reg2 << 3) + sib_reg1);
|
|
}
|
|
#ifdef I386_ASM_16
|
|
} else if (tcc_state->seg_size == 16) {
|
|
/* edi = 7, esi = 6 --> di = 5, si = 4 */
|
|
if ((reg1 == 6) || (reg1 == 7)) {
|
|
reg1 -= 2;
|
|
/* ebx = 3 --> bx = 7 */
|
|
} else if (reg1 == 3) {
|
|
reg1 = 7;
|
|
/* o32 = 5 --> o16 = 6 */
|
|
} else if (reg1 == 5) {
|
|
reg1 = 6;
|
|
/* sib not valid in 16-bit mode */
|
|
} else if (reg1 == 4) {
|
|
reg2 = op->reg2;
|
|
/* bp + si + offset */
|
|
if ((sib_reg1 == 5) && (reg2 == 6)) {
|
|
reg1 = 2;
|
|
/* bp + di + offset */
|
|
} else if ((sib_reg1 == 5) && (reg2 == 7)) {
|
|
reg1 = 3;
|
|
/* bx + si + offset */
|
|
} else if ((sib_reg1 == 3) && (reg2 == 6)) {
|
|
reg1 = 0;
|
|
/* bx + di + offset */
|
|
} else if ((sib_reg1 == 3) && (reg2 == 7)) {
|
|
reg1 = 1;
|
|
} else {
|
|
tcc_error("invalid effective address");
|
|
}
|
|
if (op->e.v == 0)
|
|
mod = 0;
|
|
} else {
|
|
tcc_error("invalid register");
|
|
}
|
|
g(mod + (reg << 3) + reg1);
|
|
}
|
|
#endif
|
|
/* add offset */
|
|
if (mod == 0x40) {
|
|
g(op->e.v);
|
|
} else if (mod == 0x80 || op->reg == -1) {
|
|
#ifdef I386_ASM_16
|
|
if (tcc_state->seg_size == 16)
|
|
gen_expr16(&op->e);
|
|
else if (tcc_state->seg_size == 32)
|
|
#endif
|
|
gen_expr32(&op->e);
|
|
}
|
|
}
|
|
}
|
|
|
|
ST_FUNC void asm_opcode(TCCState *s1, int opcode)
|
|
{
|
|
const ASMInstr *pa;
|
|
int i, modrm_index, reg, v, op1, is_short_jmp, seg_prefix;
|
|
int nb_ops, s;
|
|
Operand ops[MAX_OPERANDS], *pop;
|
|
int op_type[3]; /* decoded op type */
|
|
#ifdef I386_ASM_16
|
|
static int a32 = 0, o32 = 0, addr32 = 0, data32 = 0;
|
|
#endif
|
|
|
|
/* force synthetic ';' after prefix instruction, so we can handle */
|
|
/* one-line things like "rep stosb" instead of only "rep\nstosb" */
|
|
if (opcode >= TOK_ASM_wait && opcode <= TOK_ASM_repnz)
|
|
unget_tok(';');
|
|
|
|
/* get operands */
|
|
pop = ops;
|
|
nb_ops = 0;
|
|
seg_prefix = 0;
|
|
for(;;) {
|
|
if (tok == ';' || tok == TOK_LINEFEED)
|
|
break;
|
|
if (nb_ops >= MAX_OPERANDS) {
|
|
tcc_error("incorrect number of operands");
|
|
}
|
|
parse_operand(s1, pop);
|
|
if (tok == ':') {
|
|
if (pop->type != OP_SEG || seg_prefix)
|
|
tcc_error("incorrect prefix");
|
|
seg_prefix = segment_prefixes[pop->reg];
|
|
next();
|
|
parse_operand(s1, pop);
|
|
#ifndef I386_ASM_16
|
|
if (!(pop->type & OP_EA)) {
|
|
tcc_error("segment prefix must be followed by memory reference");
|
|
}
|
|
#endif
|
|
}
|
|
pop++;
|
|
nb_ops++;
|
|
if (tok != ',')
|
|
break;
|
|
next();
|
|
}
|
|
|
|
is_short_jmp = 0;
|
|
s = 0; /* avoid warning */
|
|
|
|
/* optimize matching by using a lookup table (no hashing is needed
|
|
!) */
|
|
for(pa = asm_instrs; pa->sym != 0; pa++) {
|
|
s = 0;
|
|
if (pa->instr_type & OPC_FARITH) {
|
|
v = opcode - pa->sym;
|
|
if (!((unsigned)v < 8 * 6 && (v % 6) == 0))
|
|
continue;
|
|
} else if (pa->instr_type & OPC_ARITH) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + 8*NBWLX))
|
|
continue;
|
|
s = (opcode - pa->sym) % NBWLX;
|
|
} else if (pa->instr_type & OPC_SHIFT) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + 7*NBWLX))
|
|
continue;
|
|
s = (opcode - pa->sym) % NBWLX;
|
|
} else if (pa->instr_type & OPC_TEST) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + NB_TEST_OPCODES))
|
|
continue;
|
|
} else if (pa->instr_type & OPC_B) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX))
|
|
continue;
|
|
s = opcode - pa->sym;
|
|
} else if (pa->instr_type & OPC_WLX) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX-1))
|
|
continue;
|
|
s = opcode - pa->sym + 1;
|
|
} else {
|
|
if (pa->sym != opcode)
|
|
continue;
|
|
}
|
|
if (pa->nb_ops != nb_ops)
|
|
continue;
|
|
/* now decode and check each operand */
|
|
for(i = 0; i < nb_ops; i++) {
|
|
int op1, op2;
|
|
op1 = pa->op_type[i];
|
|
op2 = op1 & 0x1f;
|
|
switch(op2) {
|
|
case OPT_IM:
|
|
v = OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64;
|
|
break;
|
|
case OPT_REG:
|
|
v = OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64;
|
|
break;
|
|
case OPT_REGW:
|
|
v = OP_REG16 | OP_REG32 | OP_REG64;
|
|
break;
|
|
case OPT_IMW:
|
|
v = OP_IM16 | OP_IM32 | OP_IM64;
|
|
break;
|
|
#ifdef TCC_TARGET_X86_64
|
|
case OPT_IMNO64:
|
|
v = OP_IM16 | OP_IM32;
|
|
break;
|
|
#endif
|
|
default:
|
|
v = 1 << op2;
|
|
break;
|
|
}
|
|
if (op1 & OPT_EA)
|
|
v |= OP_EA;
|
|
op_type[i] = v;
|
|
if ((ops[i].type & v) == 0)
|
|
goto next;
|
|
}
|
|
/* all is matching ! */
|
|
break;
|
|
next: ;
|
|
}
|
|
if (pa->sym == 0) {
|
|
if (opcode >= TOK_ASM_first && opcode <= TOK_ASM_last) {
|
|
int b;
|
|
b = op0_codes[opcode - TOK_ASM_first];
|
|
#ifdef I386_ASM_16
|
|
if (opcode == TOK_ASM_o32) {
|
|
if (s1->seg_size == 32)
|
|
tcc_error("incorrect prefix");
|
|
else
|
|
o32 = data32 = 1;
|
|
} else if (opcode == TOK_ASM_a32) {
|
|
if (s1->seg_size == 32)
|
|
tcc_error("incorrect prefix");
|
|
else
|
|
a32 = addr32 = 1;
|
|
}
|
|
#endif
|
|
if (b & 0xff00)
|
|
g(b >> 8);
|
|
g(b);
|
|
return;
|
|
} else {
|
|
tcc_error("unknown opcode '%s'",
|
|
get_tok_str(opcode, NULL));
|
|
}
|
|
}
|
|
/* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */
|
|
if (s == NBWLX-1) {
|
|
for(i = 0; s == NBWLX-1 && i < nb_ops; i++) {
|
|
if ((ops[i].type & OP_REG) && !(op_type[i] & (OP_CL | OP_DX)))
|
|
s = reg_to_size[ops[i].type & OP_REG];
|
|
}
|
|
if (s == NBWLX-1) {
|
|
if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) &&
|
|
(ops[0].type & (OP_SEG | OP_IM8S | OP_IM32 | OP_IM64)))
|
|
s = 2;
|
|
else
|
|
tcc_error("cannot infer opcode suffix");
|
|
}
|
|
}
|
|
|
|
#ifdef I386_ASM_16
|
|
for(i = 0; i < nb_ops; i++) {
|
|
if (ops[i].type & OP_REG32) {
|
|
if (s1->seg_size == 16)
|
|
o32 = 1;
|
|
} else if (!(ops[i].type & OP_REG32)) {
|
|
if (s1->seg_size == 32)
|
|
o32 = 1;
|
|
}
|
|
}
|
|
|
|
|
|
if (s == 1 || (pa->instr_type & OPC_D16)) {
|
|
if (s1->seg_size == 32)
|
|
o32 = 1;
|
|
} else if (s == 2) {
|
|
if (s1->seg_size == 16) {
|
|
if (!(pa->instr_type & OPC_D16))
|
|
o32 = 1;
|
|
}
|
|
}
|
|
|
|
/* generate a16/a32 prefix if needed */
|
|
if ((a32 == 1) && (addr32 == 0))
|
|
g(0x67);
|
|
/* generate o16/o32 prefix if needed */
|
|
if ((o32 == 1) && (data32 == 0))
|
|
g(0x66);
|
|
|
|
addr32 = data32 = 0;
|
|
#else
|
|
/* generate data16 prefix if needed */
|
|
if (s == 1 || (pa->instr_type & OPC_D16))
|
|
g(0x66);
|
|
#ifdef TCC_TARGET_X86_64
|
|
else if (s == 3) {
|
|
/* generate REX prefix */
|
|
if ((opcode != TOK_ASM_push && opcode != TOK_ASM_pop)
|
|
|| !(ops[0].type & OP_REG64))
|
|
g(0x48);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* now generates the operation */
|
|
if (pa->instr_type & OPC_FWAIT)
|
|
g(0x9b);
|
|
if (seg_prefix)
|
|
g(seg_prefix);
|
|
|
|
v = pa->opcode;
|
|
if ((v == 0x69 || v == 0x6b) && nb_ops == 2) {
|
|
/* kludge for imul $im, %reg */
|
|
nb_ops = 3;
|
|
ops[2] = ops[1];
|
|
op_type[2] = op_type[1];
|
|
} else if (v == 0xcd && ops[0].e.v == 3 && !ops[0].e.sym) {
|
|
v--; /* int $3 case */
|
|
nb_ops = 0;
|
|
} else if ((v == 0x06 || v == 0x07)) {
|
|
if (ops[0].reg >= 4) {
|
|
/* push/pop %fs or %gs */
|
|
v = 0x0fa0 + (v - 0x06) + ((ops[0].reg - 4) << 3);
|
|
} else {
|
|
v += ops[0].reg << 3;
|
|
}
|
|
nb_ops = 0;
|
|
} else if (v <= 0x05) {
|
|
/* arith case */
|
|
v += ((opcode - TOK_ASM_addb) / NBWLX) << 3;
|
|
} else if ((pa->instr_type & (OPC_FARITH | OPC_MODRM)) == OPC_FARITH) {
|
|
/* fpu arith case */
|
|
v += ((opcode - pa->sym) / 6) << 3;
|
|
}
|
|
if (pa->instr_type & OPC_REG) {
|
|
for(i = 0; i < nb_ops; i++) {
|
|
if (op_type[i] & (OP_REG | OP_ST)) {
|
|
v += ops[i].reg;
|
|
break;
|
|
}
|
|
}
|
|
/* mov $im, %reg case */
|
|
if (pa->opcode == 0xb0 && s >= 1)
|
|
v += 7;
|
|
}
|
|
if (pa->instr_type & OPC_B)
|
|
v += s >= 1;
|
|
if (pa->instr_type & OPC_TEST)
|
|
v += test_bits[opcode - pa->sym];
|
|
if (pa->instr_type & OPC_SHORTJMP) {
|
|
Sym *sym;
|
|
int jmp_disp;
|
|
|
|
/* see if we can really generate the jump with a byte offset */
|
|
sym = ops[0].e.sym;
|
|
if (!sym)
|
|
goto no_short_jump;
|
|
if (sym->r != cur_text_section->sh_num)
|
|
goto no_short_jump;
|
|
jmp_disp = ops[0].e.v + sym->jnext - ind - 2;
|
|
if (jmp_disp == (int8_t)jmp_disp) {
|
|
/* OK to generate jump */
|
|
is_short_jmp = 1;
|
|
ops[0].e.v = jmp_disp;
|
|
} else {
|
|
no_short_jump:
|
|
if (pa->instr_type & OPC_JMP) {
|
|
/* long jump will be allowed. need to modify the
|
|
opcode slightly */
|
|
if (v == 0xeb)
|
|
v = 0xe9;
|
|
else
|
|
v += 0x0f10;
|
|
} else {
|
|
tcc_error("invalid displacement");
|
|
}
|
|
}
|
|
}
|
|
op1 = v >> 8;
|
|
if (op1)
|
|
g(op1);
|
|
g(v);
|
|
|
|
/* search which operand will used for modrm */
|
|
modrm_index = 0;
|
|
if (pa->instr_type & OPC_SHIFT) {
|
|
reg = (opcode - pa->sym) / NBWLX;
|
|
if (reg == 6)
|
|
reg = 7;
|
|
} else if (pa->instr_type & OPC_ARITH) {
|
|
reg = (opcode - pa->sym) / NBWLX;
|
|
} else if (pa->instr_type & OPC_FARITH) {
|
|
reg = (opcode - pa->sym) / 6;
|
|
} else {
|
|
reg = (pa->instr_type >> OPC_GROUP_SHIFT) & 7;
|
|
}
|
|
if (pa->instr_type & OPC_MODRM) {
|
|
/* first look for an ea operand */
|
|
for(i = 0;i < nb_ops; i++) {
|
|
if (op_type[i] & OP_EA)
|
|
goto modrm_found;
|
|
}
|
|
/* then if not found, a register or indirection (shift instructions) */
|
|
for(i = 0;i < nb_ops; i++) {
|
|
if (op_type[i] & (OP_REG | OP_MMX | OP_SSE | OP_INDIR))
|
|
goto modrm_found;
|
|
}
|
|
#ifdef ASM_DEBUG
|
|
tcc_error("bad op table");
|
|
#endif
|
|
modrm_found:
|
|
modrm_index = i;
|
|
/* if a register is used in another operand then it is
|
|
used instead of group */
|
|
for(i = 0;i < nb_ops; i++) {
|
|
v = op_type[i];
|
|
if (i != modrm_index &&
|
|
(v & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_TR | OP_DB | OP_SEG))) {
|
|
reg = ops[i].reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
asm_modrm(reg, &ops[modrm_index]);
|
|
}
|
|
|
|
/* emit constants */
|
|
#ifndef TCC_TARGET_X86_64
|
|
if (pa->opcode == 0x9a || pa->opcode == 0xea) {
|
|
/* ljmp or lcall kludge */
|
|
#ifdef I386_ASM_16
|
|
if (s1->seg_size == 16 && o32 == 0)
|
|
gen_expr16(&ops[1].e);
|
|
else
|
|
#endif
|
|
gen_expr32(&ops[1].e);
|
|
if (ops[0].e.sym)
|
|
tcc_error("cannot relocate");
|
|
gen_le16(ops[0].e.v);
|
|
return;
|
|
}
|
|
#endif
|
|
for(i = 0;i < nb_ops; i++) {
|
|
v = op_type[i];
|
|
if (v & (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64 | OP_IM8S | OP_ADDR)) {
|
|
/* if multiple sizes are given it means we must look
|
|
at the op size */
|
|
if ((v | OP_IM8 | OP_IM64) == (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64)) {
|
|
if (s == 0)
|
|
v = OP_IM8;
|
|
else if (s == 1)
|
|
v = OP_IM16;
|
|
else if (s == 2 || (v & OP_IM64) == 0)
|
|
v = OP_IM32;
|
|
else
|
|
v = OP_IM64;
|
|
}
|
|
if (v & (OP_IM8 | OP_IM8S)) {
|
|
if (ops[i].e.sym)
|
|
goto error_relocate;
|
|
g(ops[i].e.v);
|
|
} else if (v & OP_IM16) {
|
|
#ifdef I386_ASM_16
|
|
if (s1->seg_size == 16)
|
|
gen_expr16(&ops[i].e);
|
|
else
|
|
#endif
|
|
if (ops[i].e.sym)
|
|
error_relocate:
|
|
tcc_error("cannot relocate");
|
|
else
|
|
gen_le16(ops[i].e.v);
|
|
} else {
|
|
if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
|
|
if (is_short_jmp)
|
|
g(ops[i].e.v);
|
|
#ifdef I386_ASM_16
|
|
else if (s1->seg_size == 16)
|
|
gen_disp16(&ops[i].e);
|
|
#endif
|
|
else
|
|
gen_disp32(&ops[i].e);
|
|
} else {
|
|
#ifdef I386_ASM_16
|
|
if (s1->seg_size == 16 && !((o32 == 1) && (v & OP_IM32)))
|
|
gen_expr16(&ops[i].e);
|
|
else
|
|
#endif
|
|
#ifdef TCC_TARGET_X86_64
|
|
if (v & OP_IM64)
|
|
gen_expr64(&ops[i].e);
|
|
else
|
|
#endif
|
|
gen_expr32(&ops[i].e);
|
|
}
|
|
}
|
|
#ifdef I386_ASM_16
|
|
} else if (v & (OP_REG16 | OP_REG32)) {
|
|
if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
|
|
/* jmp $r */
|
|
g(0xE0 + ops[i].reg);
|
|
}
|
|
#endif
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (v & (OP_REG32 | OP_REG64)) {
|
|
if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
|
|
/* jmp $r */
|
|
g(0xE0 + ops[i].reg);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef I386_ASM_16
|
|
a32 = o32 = 0;
|
|
#endif
|
|
}
|
|
|
|
/* return the constraint priority (we allocate first the lowest
|
|
numbered constraints) */
|
|
static inline int constraint_priority(const char *str)
|
|
{
|
|
int priority, c, pr;
|
|
|
|
/* we take the lowest priority */
|
|
priority = 0;
|
|
for(;;) {
|
|
c = *str;
|
|
if (c == '\0')
|
|
break;
|
|
str++;
|
|
switch(c) {
|
|
case 'A':
|
|
pr = 0;
|
|
break;
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'S':
|
|
case 'D':
|
|
pr = 1;
|
|
break;
|
|
case 'q':
|
|
pr = 2;
|
|
break;
|
|
case 'r':
|
|
pr = 3;
|
|
break;
|
|
case 'N':
|
|
case 'M':
|
|
case 'I':
|
|
case 'i':
|
|
case 'm':
|
|
case 'g':
|
|
pr = 4;
|
|
break;
|
|
default:
|
|
tcc_error("unknown constraint '%c'", c);
|
|
pr = 0;
|
|
}
|
|
if (pr > priority)
|
|
priority = pr;
|
|
}
|
|
return priority;
|
|
}
|
|
|
|
static const char *skip_constraint_modifiers(const char *p)
|
|
{
|
|
while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
|
|
p++;
|
|
return p;
|
|
}
|
|
|
|
#define REG_OUT_MASK 0x01
|
|
#define REG_IN_MASK 0x02
|
|
|
|
#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
|
|
|
|
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
|
|
int nb_operands, int nb_outputs,
|
|
const uint8_t *clobber_regs,
|
|
int *pout_reg)
|
|
{
|
|
ASMOperand *op;
|
|
int sorted_op[MAX_ASM_OPERANDS];
|
|
int i, j, k, p1, p2, tmp, reg, c, reg_mask;
|
|
const char *str;
|
|
uint8_t regs_allocated[NB_ASM_REGS];
|
|
|
|
/* init fields */
|
|
for(i=0;i<nb_operands;i++) {
|
|
op = &operands[i];
|
|
op->input_index = -1;
|
|
op->ref_index = -1;
|
|
op->reg = -1;
|
|
op->is_memory = 0;
|
|
op->is_rw = 0;
|
|
}
|
|
/* compute constraint priority and evaluate references to output
|
|
constraints if input constraints */
|
|
for(i=0;i<nb_operands;i++) {
|
|
op = &operands[i];
|
|
str = op->constraint;
|
|
str = skip_constraint_modifiers(str);
|
|
if (isnum(*str) || *str == '[') {
|
|
/* this is a reference to another constraint */
|
|
k = find_constraint(operands, nb_operands, str, NULL);
|
|
if ((unsigned)k >= i || i < nb_outputs)
|
|
tcc_error("invalid reference in constraint %d ('%s')",
|
|
i, str);
|
|
op->ref_index = k;
|
|
if (operands[k].input_index >= 0)
|
|
tcc_error("cannot reference twice the same operand");
|
|
operands[k].input_index = i;
|
|
op->priority = 5;
|
|
} else {
|
|
op->priority = constraint_priority(str);
|
|
}
|
|
}
|
|
|
|
/* sort operands according to their priority */
|
|
for(i=0;i<nb_operands;i++)
|
|
sorted_op[i] = i;
|
|
for(i=0;i<nb_operands - 1;i++) {
|
|
for(j=i+1;j<nb_operands;j++) {
|
|
p1 = operands[sorted_op[i]].priority;
|
|
p2 = operands[sorted_op[j]].priority;
|
|
if (p2 < p1) {
|
|
tmp = sorted_op[i];
|
|
sorted_op[i] = sorted_op[j];
|
|
sorted_op[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(i = 0;i < NB_ASM_REGS; i++) {
|
|
if (clobber_regs[i])
|
|
regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
|
|
else
|
|
regs_allocated[i] = 0;
|
|
}
|
|
/* esp cannot be used */
|
|
regs_allocated[4] = REG_IN_MASK | REG_OUT_MASK;
|
|
/* ebp cannot be used yet */
|
|
regs_allocated[5] = REG_IN_MASK | REG_OUT_MASK;
|
|
|
|
/* allocate registers and generate corresponding asm moves */
|
|
for(i=0;i<nb_operands;i++) {
|
|
j = sorted_op[i];
|
|
op = &operands[j];
|
|
str = op->constraint;
|
|
/* no need to allocate references */
|
|
if (op->ref_index >= 0)
|
|
continue;
|
|
/* select if register is used for output, input or both */
|
|
if (op->input_index >= 0) {
|
|
reg_mask = REG_IN_MASK | REG_OUT_MASK;
|
|
} else if (j < nb_outputs) {
|
|
reg_mask = REG_OUT_MASK;
|
|
} else {
|
|
reg_mask = REG_IN_MASK;
|
|
}
|
|
try_next:
|
|
c = *str++;
|
|
switch(c) {
|
|
case '=':
|
|
goto try_next;
|
|
case '+':
|
|
op->is_rw = 1;
|
|
/* FALL THRU */
|
|
case '&':
|
|
if (j >= nb_outputs)
|
|
tcc_error("'%c' modifier can only be applied to outputs", c);
|
|
reg_mask = REG_IN_MASK | REG_OUT_MASK;
|
|
goto try_next;
|
|
case 'A':
|
|
/* allocate both eax and edx */
|
|
if (is_reg_allocated(TREG_XAX) ||
|
|
is_reg_allocated(TREG_XDX))
|
|
goto try_next;
|
|
op->is_llong = 1;
|
|
op->reg = TREG_XAX;
|
|
regs_allocated[TREG_XAX] |= reg_mask;
|
|
regs_allocated[TREG_XDX] |= reg_mask;
|
|
break;
|
|
case 'a':
|
|
reg = TREG_XAX;
|
|
goto alloc_reg;
|
|
case 'b':
|
|
reg = 3;
|
|
goto alloc_reg;
|
|
case 'c':
|
|
reg = TREG_XCX;
|
|
goto alloc_reg;
|
|
case 'd':
|
|
reg = TREG_XDX;
|
|
goto alloc_reg;
|
|
case 'S':
|
|
reg = 6;
|
|
goto alloc_reg;
|
|
case 'D':
|
|
reg = 7;
|
|
alloc_reg:
|
|
if (is_reg_allocated(reg))
|
|
goto try_next;
|
|
goto reg_found;
|
|
case 'q':
|
|
/* eax, ebx, ecx or edx */
|
|
for(reg = 0; reg < 4; reg++) {
|
|
if (!is_reg_allocated(reg))
|
|
goto reg_found;
|
|
}
|
|
goto try_next;
|
|
case 'r':
|
|
/* any general register */
|
|
for(reg = 0; reg < 8; reg++) {
|
|
if (!is_reg_allocated(reg))
|
|
goto reg_found;
|
|
}
|
|
goto try_next;
|
|
reg_found:
|
|
/* now we can reload in the register */
|
|
op->is_llong = 0;
|
|
op->reg = reg;
|
|
regs_allocated[reg] |= reg_mask;
|
|
break;
|
|
case 'i':
|
|
if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
|
|
goto try_next;
|
|
break;
|
|
case 'I':
|
|
case 'N':
|
|
case 'M':
|
|
if (!((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST))
|
|
goto try_next;
|
|
break;
|
|
case 'm':
|
|
case 'g':
|
|
/* nothing special to do because the operand is already in
|
|
memory, except if the pointer itself is stored in a
|
|
memory variable (VT_LLOCAL case) */
|
|
/* XXX: fix constant case */
|
|
/* if it is a reference to a memory zone, it must lie
|
|
in a register, so we reserve the register in the
|
|
input registers and a load will be generated
|
|
later */
|
|
if (j < nb_outputs || c == 'm') {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
|
|
/* any general register */
|
|
for(reg = 0; reg < 8; reg++) {
|
|
if (!(regs_allocated[reg] & REG_IN_MASK))
|
|
goto reg_found1;
|
|
}
|
|
goto try_next;
|
|
reg_found1:
|
|
/* now we can reload in the register */
|
|
regs_allocated[reg] |= REG_IN_MASK;
|
|
op->reg = reg;
|
|
op->is_memory = 1;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
tcc_error("asm constraint %d ('%s') could not be satisfied",
|
|
j, op->constraint);
|
|
break;
|
|
}
|
|
/* if a reference is present for that operand, we assign it too */
|
|
if (op->input_index >= 0) {
|
|
operands[op->input_index].reg = op->reg;
|
|
operands[op->input_index].is_llong = op->is_llong;
|
|
}
|
|
}
|
|
|
|
/* compute out_reg. It is used to store outputs registers to memory
|
|
locations references by pointers (VT_LLOCAL case) */
|
|
*pout_reg = -1;
|
|
for(i=0;i<nb_operands;i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0 &&
|
|
(op->vt->r & VT_VALMASK) == VT_LLOCAL &&
|
|
!op->is_memory) {
|
|
for(reg = 0; reg < 8; reg++) {
|
|
if (!(regs_allocated[reg] & REG_OUT_MASK))
|
|
goto reg_found2;
|
|
}
|
|
tcc_error("could not find free output register for reloading");
|
|
reg_found2:
|
|
*pout_reg = reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* print sorted constraints */
|
|
#ifdef ASM_DEBUG
|
|
for(i=0;i<nb_operands;i++) {
|
|
j = sorted_op[i];
|
|
op = &operands[j];
|
|
printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
|
|
j,
|
|
op->id ? get_tok_str(op->id, NULL) : "",
|
|
op->constraint,
|
|
op->vt->r,
|
|
op->reg);
|
|
}
|
|
if (*pout_reg >= 0)
|
|
printf("out_reg=%d\n", *pout_reg);
|
|
#endif
|
|
}
|
|
|
|
ST_FUNC void subst_asm_operand(CString *add_str,
|
|
SValue *sv, int modifier)
|
|
{
|
|
int r, reg, size, val;
|
|
char buf[64];
|
|
|
|
r = sv->r;
|
|
if ((r & VT_VALMASK) == VT_CONST) {
|
|
if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n')
|
|
cstr_ccat(add_str, '$');
|
|
if (r & VT_SYM) {
|
|
cstr_cat(add_str, get_tok_str(sv->sym->v, NULL));
|
|
if (sv->c.i != 0) {
|
|
cstr_ccat(add_str, '+');
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
val = sv->c.i;
|
|
if (modifier == 'n')
|
|
val = -val;
|
|
snprintf(buf, sizeof(buf), "%d", sv->c.i);
|
|
cstr_cat(add_str, buf);
|
|
} else if ((r & VT_VALMASK) == VT_LOCAL) {
|
|
snprintf(buf, sizeof(buf), "%d(%%ebp)", sv->c.i);
|
|
cstr_cat(add_str, buf);
|
|
} else if (r & VT_LVAL) {
|
|
reg = r & VT_VALMASK;
|
|
if (reg >= VT_CONST)
|
|
tcc_error("internal compiler error");
|
|
snprintf(buf, sizeof(buf), "(%%%s)",
|
|
get_tok_str(TOK_ASM_eax + reg, NULL));
|
|
cstr_cat(add_str, buf);
|
|
} else {
|
|
/* register case */
|
|
reg = r & VT_VALMASK;
|
|
if (reg >= VT_CONST)
|
|
tcc_error("internal compiler error");
|
|
|
|
/* choose register operand size */
|
|
if ((sv->type.t & VT_BTYPE) == VT_BYTE)
|
|
size = 1;
|
|
else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
|
|
size = 2;
|
|
#ifdef TCC_TARGET_X86_64
|
|
else if ((sv->type.t & VT_BTYPE) == VT_LLONG)
|
|
size = 8;
|
|
#endif
|
|
else
|
|
size = 4;
|
|
if (size == 1 && reg >= 4)
|
|
size = 4;
|
|
|
|
if (modifier == 'b') {
|
|
if (reg >= 4)
|
|
tcc_error("cannot use byte register");
|
|
size = 1;
|
|
} else if (modifier == 'h') {
|
|
if (reg >= 4)
|
|
tcc_error("cannot use byte register");
|
|
size = -1;
|
|
} else if (modifier == 'w') {
|
|
size = 2;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (modifier == 'q') {
|
|
size = 8;
|
|
#endif
|
|
}
|
|
|
|
switch(size) {
|
|
case -1:
|
|
reg = TOK_ASM_ah + reg;
|
|
break;
|
|
case 1:
|
|
reg = TOK_ASM_al + reg;
|
|
break;
|
|
case 2:
|
|
reg = TOK_ASM_ax + reg;
|
|
break;
|
|
default:
|
|
reg = TOK_ASM_eax + reg;
|
|
break;
|
|
#ifdef TCC_TARGET_X86_64
|
|
case 8:
|
|
reg = TOK_ASM_rax + reg;
|
|
break;
|
|
#endif
|
|
}
|
|
snprintf(buf, sizeof(buf), "%%%s", get_tok_str(reg, NULL));
|
|
cstr_cat(add_str, buf);
|
|
}
|
|
}
|
|
|
|
/* generate prolog and epilog code for asm statment */
|
|
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
|
|
int nb_outputs, int is_output,
|
|
uint8_t *clobber_regs,
|
|
int out_reg)
|
|
{
|
|
uint8_t regs_allocated[NB_ASM_REGS];
|
|
ASMOperand *op;
|
|
int i, reg;
|
|
static uint8_t reg_saved[NB_SAVED_REGS] = { 3, 6, 7 };
|
|
|
|
/* mark all used registers */
|
|
memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
|
|
for(i = 0; i < nb_operands;i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0)
|
|
regs_allocated[op->reg] = 1;
|
|
}
|
|
if (!is_output) {
|
|
/* generate reg save code */
|
|
for(i = 0; i < NB_SAVED_REGS; i++) {
|
|
reg = reg_saved[i];
|
|
if (regs_allocated[reg]) {
|
|
#ifdef I386_ASM_16
|
|
if (tcc_state->seg_size == 16)
|
|
g(0x66);
|
|
#endif
|
|
g(0x50 + reg);
|
|
}
|
|
}
|
|
|
|
/* generate load code */
|
|
for(i = 0; i < nb_operands; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0) {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
|
|
op->is_memory) {
|
|
/* memory reference case (for both input and
|
|
output cases) */
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
|
|
load(op->reg, &sv);
|
|
} else if (i >= nb_outputs || op->is_rw) {
|
|
/* load value in register */
|
|
load(op->reg, op->vt);
|
|
if (op->is_llong) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.c.ul += 4;
|
|
load(TREG_XDX, &sv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* generate save code */
|
|
for(i = 0 ; i < nb_outputs; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0) {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
|
|
if (!op->is_memory) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
|
|
load(out_reg, &sv);
|
|
|
|
sv.r = (sv.r & ~VT_VALMASK) | out_reg;
|
|
store(op->reg, &sv);
|
|
}
|
|
} else {
|
|
store(op->reg, op->vt);
|
|
if (op->is_llong) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.c.ul += 4;
|
|
store(TREG_XDX, &sv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* generate reg restore code */
|
|
for(i = NB_SAVED_REGS - 1; i >= 0; i--) {
|
|
reg = reg_saved[i];
|
|
if (regs_allocated[reg]) {
|
|
#ifdef I386_ASM_16
|
|
if (tcc_state->seg_size == 16)
|
|
g(0x66);
|
|
#endif
|
|
g(0x58 + reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
|
|
{
|
|
int reg;
|
|
TokenSym *ts;
|
|
|
|
if (!strcmp(str, "memory") ||
|
|
!strcmp(str, "cc"))
|
|
return;
|
|
ts = tok_alloc(str, strlen(str));
|
|
reg = ts->tok;
|
|
if (reg >= TOK_ASM_eax && reg <= TOK_ASM_edi) {
|
|
reg -= TOK_ASM_eax;
|
|
} else if (reg >= TOK_ASM_ax && reg <= TOK_ASM_di) {
|
|
reg -= TOK_ASM_ax;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (reg >= TOK_ASM_rax && reg <= TOK_ASM_rdi) {
|
|
reg -= TOK_ASM_rax;
|
|
#endif
|
|
} else {
|
|
tcc_error("invalid clobber register '%s'", str);
|
|
}
|
|
clobber_regs[reg] = 1;
|
|
}
|