mirror of
https://github.com/frida/tinycc
synced 2025-02-26 04:04:35 +03:00

On my x86_64 box in i386 mode with address space randomization turned off, I've observed the following: tests$ ../tcc -B.. -b -run boundtest.c 1 Runtime error: dereferencing invalid pointer boundtest.c:222: at 0x808da73 main() With diagnostic patch (like in efd9d92b "lib/bcheck: Don't assume heap goes right after bss") and bcheck traces for __bound_new_region, __bound_ptr_indir, etc... here is how the program run looks like: >>> TCC etext: 0x8067ed8 edata: 0x807321d end: 0x807d95c brk: 0x807e000 stack: 0xffffd0b4 &errno: 0xf7dbd688 mark_invalid 0xfff80000 - (nil) mark_invalid 0x80fa000 - 0x100fa000 new 808fdb0 808ff40 101 101 fd0 ff0 new 808ff44 808ff48 101 101 ff0 ff0 new 808ff49 8090049 101 101 ff0 1000 new 808fd20 808fd29 101 101 fd0 fd0 new 808fd2c 808fd6c 101 101 fd0 fd0 new 808fd6d 808fda0 101 101 fd0 fd0 E: __bound_ptr_indir4(0xffffd184, 0x4) Runtime error: dereferencing invalid pointer boundtest.c:222: at 0x808ea83 main() So we are accessing something on stack, above stack entry for compiled main. Investigating with gdb shows that this is argv: tests$ gdb ../tcc Reading symbols from /home/kirr/src/tools/tinycc/tcc...done. (gdb) set args -B.. -b -run boundtest.c 1 (gdb) r Starting program: /home/kirr/src/tools/tinycc/tests/../tcc -B.. -b -run boundtest.c 1 warning: Could not load shared library symbols for linux-gate.so.1. Do you need "set solib-search-path" or "set sysroot"? >>> TCC etext: 0x8067ed8 edata: 0x807321d end: 0x807d95c brk: 0x807e000 stack: 0xffffd074 &errno: 0xf7dbd688 mark_invalid 0xfff80000 - (nil) mark_invalid 0x80fa000 - 0x100fa000 new 808fdb0 808ff40 101 101 fd0 ff0 new 808ff44 808ff48 101 101 ff0 ff0 new 808ff49 8090049 101 101 ff0 1000 new 808fd20 808fd29 101 101 fd0 fd0 new 808fd2c 808fd6c 101 101 fd0 fd0 new 808fd6d 808fda0 101 101 fd0 fd0 E: __bound_ptr_indir4(0xffffd144, 0x4) Program received signal SIGSEGV, Segmentation fault. 0x0808ea83 in ?? () (gdb) bt #0 0x0808ea83 in ?? () #1 0x080639b3 in tcc_run (s1=s1@entry=0x807e008, argc=argc@entry=2, argv=argv@entry=0xffffd144) at tccrun.c:132 #2 0x080492b0 in main (argc=6, argv=0xffffd134) at tcc.c:346 (gdb) f 1 #1 0x080639b3 in tcc_run (s1=s1@entry=0x807e008, argc=argc@entry=2, argv=argv@entry=0xffffd144) at tccrun.c:132 132 ret = (*prog_main)(argc, argv); 132 ret = (*prog_main)(argc, argv); (gdb) p argv $1 = (char **) 0xffffd144 So before running compiled program, mark argv as valid region and we are done - now the test passes. P.S. maybe it would be better to just mark the whole vector kernel passes to program (argv, env, auxv, etc...) as valid all at once...
…
…
…
…
…
Tiny C Compiler - C Scripting Everywhere - The Smallest ANSI C compiler ----------------------------------------------------------------------- Features: -------- - SMALL! You can compile and execute C code everywhere, for example on rescue disks. - FAST! tcc generates optimized x86 code. No byte code overhead. Compile, assemble and link about 7 times faster than 'gcc -O0'. - UNLIMITED! Any C dynamic library can be used directly. TCC is heading torward full ISOC99 compliance. TCC can of course compile itself. - SAFE! tcc includes an optional memory and bound checker. Bound checked code can be mixed freely with standard code. - Compile and execute C source directly. No linking or assembly necessary. Full C preprocessor included. - C script supported : just add '#!/usr/local/bin/tcc -run' at the first line of your C source, and execute it directly from the command line. Documentation: ------------- 1) Installation on a i386/x86_64/arm Linux/OSX/FreeBSD host (for Windows read tcc-win32.txt) Note: For OSX and FreeBSD, gmake should be used instead of make. ./configure make make test make install Alternatively, out-of-tree builds are supported: you may use different directories to hold build objects, kept separate from your source tree: mkdir _build cd _build ../configure make make test make install Texi2html must be installed to compile the doc. By default, tcc is installed in /usr/local/bin. ./configure --help shows configuration options. 2) Introduction We assume here that you know ANSI C. Look at the example ex1.c to know what the programs look like. The include file <tcclib.h> can be used if you want a small basic libc include support (especially useful for floppy disks). Of course, you can also use standard headers, although they are slower to compile. You can begin your C script with '#!/usr/local/bin/tcc -run' on the first line and set its execute bits (chmod a+x your_script). Then, you can launch the C code as a shell or perl script :-) The command line arguments are put in 'argc' and 'argv' of the main functions, as in ANSI C. 3) Examples ex1.c: simplest example (hello world). Can also be launched directly as a script: './ex1.c'. ex2.c: more complicated example: find a number with the four operations given a list of numbers (benchmark). ex3.c: compute fibonacci numbers (benchmark). ex4.c: more complicated: X11 program. Very complicated test in fact because standard headers are being used ! As for ex1.c, can also be launched directly as a script: './ex4.c'. ex5.c: 'hello world' with standard glibc headers. tcc.c: TCC can of course compile itself. Used to check the code generator. tcctest.c: auto test for TCC which tests many subtle possible bugs. Used when doing 'make test'. 4) Full Documentation Please read tcc-doc.html to have all the features of TCC. Additional information is available for the Windows port in tcc-win32.txt. License: ------- TCC is distributed under the GNU Lesser General Public License (see COPYING file). Fabrice Bellard.
Description
Languages
C
97.2%
Makefile
1%
Assembly
0.6%
C++
0.6%
Prolog
0.3%
Other
0.2%