mirror of
https://github.com/frida/tinycc
synced 2025-01-23 03:32:03 +03:00
56db092ab7
- revert Makefiles to state before last bcheck additions Instead, just load bcheck.o explicitly if that is what is wanted. - move tcc_add_bcheck() to the <target>-link.c files and remove revently added arguments. This function is to support tccelf.c with linking, not for tccgen.c to support compilation. - remove -ba option: It said: "-ba Enable better address checking with bounds checker" Okay, if it is better then to have it is not an option. - remove va_copy. It is C99 and we try to stay C89 in tinycc when possible. For example, MS compilers do not have va_copy. - win64: revert any 'fixes' to alloca It was correct as it was before, except for bound_checking where it was not implemented. This should now work too. - remove parasitic filename:linenum features Such feature is already present with rt_printline in tccrun.c. If it doesn't work it can be fixed. - revert changes to gen_bounded_ptr_add() gen_bounded_ptr_add() was working as it should before (mostly). For the sake of simplicity I switched it to CDECL. Anyway, FASTCALL means SLOWCALL with tinycc. In exchange you get one addition which is required for bounds_cnecking function arguments. The important thing is to check them *BEFORE* they are loaded into registers. New function gbound_args() does that. In any case, code instrumentation with the bounds-check functions as such now seems to work flawlessly again, which means when they are inserted as NOPs, any code that tcc can compile, seems to behave just the same as without them. What these functions then do when fully enabled, is a differnt story. I did not touch this. |
||
---|---|---|
examples | ||
include | ||
lib | ||
tests | ||
win32 | ||
.gitignore | ||
arm64-gen.c | ||
arm64-link.c | ||
arm-asm.c | ||
arm-gen.c | ||
arm-link.c | ||
c67-gen.c | ||
c67-link.c | ||
Changelog | ||
CodingStyle | ||
coff.h | ||
configure | ||
conftest.c | ||
COPYING | ||
elf.h | ||
i386-asm.c | ||
i386-asm.h | ||
i386-gen.c | ||
i386-link.c | ||
i386-tok.h | ||
il-gen.c | ||
il-opcodes.h | ||
libtcc.c | ||
libtcc.h | ||
Makefile | ||
README | ||
RELICENSING | ||
riscv64-gen.c | ||
riscv64-link.c | ||
stab.def | ||
stab.h | ||
tcc-doc.texi | ||
tcc.c | ||
tcc.h | ||
tccasm.c | ||
tcccoff.c | ||
tccelf.c | ||
tccgen.c | ||
tcclib.h | ||
tccpe.c | ||
tccpp.c | ||
tccrun.c | ||
tcctok.h | ||
tcctools.c | ||
texi2pod.pl | ||
TODO | ||
VERSION | ||
x86_64-asm.h | ||
x86_64-gen.c | ||
x86_64-link.c |
Tiny C Compiler - C Scripting Everywhere - The Smallest ANSI C compiler ----------------------------------------------------------------------- Features: -------- - SMALL! You can compile and execute C code everywhere, for example on rescue disks. - FAST! tcc generates optimized x86 code. No byte code overhead. Compile, assemble and link about 7 times faster than 'gcc -O0'. - UNLIMITED! Any C dynamic library can be used directly. TCC is heading toward full ISOC99 compliance. TCC can of course compile itself. - SAFE! tcc includes an optional memory and bound checker. Bound checked code can be mixed freely with standard code. - Compile and execute C source directly. No linking or assembly necessary. Full C preprocessor included. - C script supported : just add '#!/usr/local/bin/tcc -run' at the first line of your C source, and execute it directly from the command line. Documentation: ------------- 1) Installation on a i386/x86_64/arm Linux/OSX/FreeBSD host ./configure make make test make install Notes: For OSX and FreeBSD, gmake should be used instead of make. For Windows read tcc-win32.txt. makeinfo must be installed to compile the doc. By default, tcc is installed in /usr/local/bin. ./configure --help shows configuration options. 2) Introduction We assume here that you know ANSI C. Look at the example ex1.c to know what the programs look like. The include file <tcclib.h> can be used if you want a small basic libc include support (especially useful for floppy disks). Of course, you can also use standard headers, although they are slower to compile. You can begin your C script with '#!/usr/local/bin/tcc -run' on the first line and set its execute bits (chmod a+x your_script). Then, you can launch the C code as a shell or perl script :-) The command line arguments are put in 'argc' and 'argv' of the main functions, as in ANSI C. 3) Examples ex1.c: simplest example (hello world). Can also be launched directly as a script: './ex1.c'. ex2.c: more complicated example: find a number with the four operations given a list of numbers (benchmark). ex3.c: compute fibonacci numbers (benchmark). ex4.c: more complicated: X11 program. Very complicated test in fact because standard headers are being used ! As for ex1.c, can also be launched directly as a script: './ex4.c'. ex5.c: 'hello world' with standard glibc headers. tcc.c: TCC can of course compile itself. Used to check the code generator. tcctest.c: auto test for TCC which tests many subtle possible bugs. Used when doing 'make test'. 4) Full Documentation Please read tcc-doc.html to have all the features of TCC. Additional information is available for the Windows port in tcc-win32.txt. License: ------- TCC is distributed under the GNU Lesser General Public License (see COPYING file). Fabrice Bellard.