mirror of
https://github.com/frida/tinycc
synced 2024-11-25 00:59:37 +03:00
721 lines
19 KiB
C
721 lines
19 KiB
C
/*
|
|
* X86 code generator for TCC
|
|
*
|
|
* Copyright (c) 2001 Fabrice Bellard
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/* number of available registers */
|
|
#define NB_REGS 4
|
|
|
|
/* a register can belong to several classes */
|
|
#define RC_INT 0x0001 /* generic integer register */
|
|
#define RC_FLOAT 0x0002 /* generic float register */
|
|
#define RC_EAX 0x0004
|
|
#define RC_FRET 0x0008 /* function return: float register */
|
|
#define RC_ECX 0x0010
|
|
#define RC_EDX 0x0020
|
|
#define RC_IRET RC_EAX /* function return: integer register */
|
|
#define RC_LRET RC_EDX /* function return: second integer register */
|
|
|
|
/* pretty names for the registers */
|
|
enum {
|
|
REG_EAX = 0,
|
|
REG_ECX,
|
|
REG_EDX,
|
|
REG_ST0,
|
|
};
|
|
|
|
int reg_classes[NB_REGS] = {
|
|
/* eax */ RC_INT | RC_IRET,
|
|
/* ecx */ RC_INT | RC_ECX,
|
|
/* edx */ RC_INT | RC_EDX,
|
|
/* st0 */ RC_FLOAT | RC_FRET,
|
|
};
|
|
|
|
/* return registers for function */
|
|
#define REG_IRET REG_EAX /* single word int return register */
|
|
#define REG_LRET REG_EDX /* second word return register (for long long) */
|
|
#define REG_FRET REG_ST0 /* float return register */
|
|
|
|
/* defined if function parameters must be evaluated in reverse order */
|
|
#define INVERT_FUNC_PARAMS
|
|
|
|
/* defined if structures are passed as pointers. Otherwise structures
|
|
are directly pushed on stack. */
|
|
//#define FUNC_STRUCT_PARAM_AS_PTR
|
|
|
|
/* pointer size, in bytes */
|
|
#define PTR_SIZE 4
|
|
|
|
/* long double size and alignment, in bytes */
|
|
#define LDOUBLE_SIZE 12
|
|
#define LDOUBLE_ALIGN 4
|
|
|
|
/* function call context */
|
|
typedef struct GFuncContext {
|
|
int args_size;
|
|
} GFuncContext;
|
|
|
|
/******************************************************/
|
|
|
|
void g(int c)
|
|
{
|
|
*(char *)ind++ = c;
|
|
}
|
|
|
|
void o(int c)
|
|
{
|
|
while (c) {
|
|
g(c);
|
|
c = c / 256;
|
|
}
|
|
}
|
|
|
|
void gen_le32(int c)
|
|
{
|
|
g(c);
|
|
g(c >> 8);
|
|
g(c >> 16);
|
|
g(c >> 24);
|
|
}
|
|
|
|
/* patch relocation entry with value 'val' */
|
|
void greloc_patch1(Reloc *p, int val)
|
|
{
|
|
switch(p->type) {
|
|
case RELOC_ADDR32:
|
|
*(int *)p->addr = val;
|
|
break;
|
|
case RELOC_REL32:
|
|
*(int *)p->addr = val - p->addr - 4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* output a symbol and patch all calls to it */
|
|
void gsym_addr(t, a)
|
|
{
|
|
int n;
|
|
while (t) {
|
|
n = *(int *)t; /* next value */
|
|
*(int *)t = a - t - 4;
|
|
t = n;
|
|
}
|
|
}
|
|
|
|
void gsym(t)
|
|
{
|
|
gsym_addr(t, ind);
|
|
}
|
|
|
|
/* psym is used to put an instruction with a data field which is a
|
|
reference to a symbol. It is in fact the same as oad ! */
|
|
#define psym oad
|
|
|
|
/* instruction + 4 bytes data. Return the address of the data */
|
|
int oad(int c, int s)
|
|
{
|
|
o(c);
|
|
*(int *)ind = s;
|
|
s = ind;
|
|
ind = ind + 4;
|
|
return s;
|
|
}
|
|
|
|
/* output constant with relocation if 'r & VT_FORWARD' is true */
|
|
void gen_addr32(int r, int c)
|
|
{
|
|
if (!(r & VT_FORWARD)) {
|
|
gen_le32(c);
|
|
} else {
|
|
greloc((Sym *)c, ind, RELOC_ADDR32);
|
|
gen_le32(0);
|
|
}
|
|
}
|
|
|
|
/* generate a modrm reference. 'op_reg' contains the addtionnal 3
|
|
opcode bits */
|
|
void gen_modrm(int op_reg, int r, int c)
|
|
{
|
|
op_reg = op_reg << 3;
|
|
if ((r & VT_VALMASK) == VT_CONST) {
|
|
/* constant memory reference */
|
|
o(0x05 | op_reg);
|
|
gen_addr32(r, c);
|
|
} else if ((r & VT_VALMASK) == VT_LOCAL) {
|
|
/* currently, we use only ebp as base */
|
|
if (c == (char)c) {
|
|
/* short reference */
|
|
o(0x45 | op_reg);
|
|
g(c);
|
|
} else {
|
|
oad(0x85 | op_reg, c);
|
|
}
|
|
} else {
|
|
g(0x00 | op_reg | (r & VT_VALMASK));
|
|
}
|
|
}
|
|
|
|
|
|
/* load 'r' from value 'sv' */
|
|
void load(int r, SValue *sv)
|
|
{
|
|
int v, t, ft, fc, fr;
|
|
SValue v1;
|
|
|
|
fr = sv->r;
|
|
ft = sv->t;
|
|
fc = sv->c.ul;
|
|
|
|
v = fr & VT_VALMASK;
|
|
if (fr & VT_LVAL) {
|
|
if (v == VT_LLOCAL) {
|
|
v1.t = VT_INT;
|
|
v1.r = VT_LOCAL | VT_LVAL;
|
|
v1.c.ul = fc;
|
|
load(r, &v1);
|
|
fr = r;
|
|
}
|
|
if ((ft & VT_BTYPE) == VT_FLOAT) {
|
|
o(0xd9); /* flds */
|
|
r = 0;
|
|
} else if ((ft & VT_BTYPE) == VT_DOUBLE) {
|
|
o(0xdd); /* fldl */
|
|
r = 0;
|
|
} else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
|
|
o(0xdb); /* fldt */
|
|
r = 5;
|
|
} else if ((ft & VT_TYPE) == VT_BYTE)
|
|
o(0xbe0f); /* movsbl */
|
|
else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED))
|
|
o(0xb60f); /* movzbl */
|
|
else if ((ft & VT_TYPE) == VT_SHORT)
|
|
o(0xbf0f); /* movswl */
|
|
else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED))
|
|
o(0xb70f); /* movzwl */
|
|
else
|
|
o(0x8b); /* movl */
|
|
gen_modrm(r, fr, fc);
|
|
} else {
|
|
if (v == VT_CONST) {
|
|
o(0xb8 + r); /* mov $xx, r */
|
|
gen_addr32(fr, fc);
|
|
} else if (v == VT_LOCAL) {
|
|
o(0x8d); /* lea xxx(%ebp), r */
|
|
gen_modrm(r, VT_LOCAL, fc);
|
|
} else if (v == VT_CMP) {
|
|
oad(0xb8 + r, 0); /* mov $0, r */
|
|
o(0x0f); /* setxx %br */
|
|
o(fc);
|
|
o(0xc0 + r);
|
|
} else if (v == VT_JMP || v == VT_JMPI) {
|
|
t = v & 1;
|
|
oad(0xb8 + r, t); /* mov $1, r */
|
|
oad(0xe9, 5); /* jmp after */
|
|
gsym(fc);
|
|
oad(0xb8 + r, t ^ 1); /* mov $0, r */
|
|
} else if (v != r) {
|
|
o(0x89);
|
|
o(0xc0 + r + v * 8); /* mov v, r */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* store register 'r' in lvalue 'v' */
|
|
void store(int r, SValue *v)
|
|
{
|
|
int fr, bt, ft, fc;
|
|
|
|
ft = v->t;
|
|
fc = v->c.ul;
|
|
fr = v->r & VT_VALMASK;
|
|
bt = ft & VT_BTYPE;
|
|
/* XXX: incorrect if float reg to reg */
|
|
if (bt == VT_FLOAT) {
|
|
o(0xd9); /* fsts */
|
|
r = 2;
|
|
} else if (bt == VT_DOUBLE) {
|
|
o(0xdd); /* fstpl */
|
|
r = 2;
|
|
} else if (bt == VT_LDOUBLE) {
|
|
o(0xc0d9); /* fld %st(0) */
|
|
o(0xdb); /* fstpt */
|
|
r = 7;
|
|
} else {
|
|
if (bt == VT_SHORT)
|
|
o(0x66);
|
|
if (bt == VT_BYTE)
|
|
o(0x88);
|
|
else
|
|
o(0x89);
|
|
}
|
|
if (fr == VT_CONST ||
|
|
fr == VT_LOCAL ||
|
|
(v->r & VT_LVAL)) {
|
|
gen_modrm(r, v->r, fc);
|
|
} else if (fr != r) {
|
|
o(0xc0 + fr + r * 8); /* mov r, fr */
|
|
}
|
|
}
|
|
|
|
/* start function call and return function call context */
|
|
void gfunc_start(GFuncContext *c)
|
|
{
|
|
c->args_size = 0;
|
|
}
|
|
|
|
/* push function parameter which is in (vtop->t, vtop->c). Stack entry
|
|
is then popped. */
|
|
void gfunc_param(GFuncContext *c)
|
|
{
|
|
int size, align, r;
|
|
|
|
if ((vtop->t & VT_BTYPE) == VT_STRUCT) {
|
|
size = type_size(vtop->t, &align);
|
|
/* align to stack align size */
|
|
size = (size + 3) & ~3;
|
|
/* allocate the necessary size on stack */
|
|
oad(0xec81, size); /* sub $xxx, %esp */
|
|
/* generate structure store */
|
|
r = get_reg(RC_INT);
|
|
o(0x89); /* mov %esp, r */
|
|
o(0xe0 + r);
|
|
vset(VT_INT, r, 0);
|
|
vswap();
|
|
vstore();
|
|
c->args_size += size;
|
|
} else if (is_float(vtop->t)) {
|
|
gv(RC_FLOAT); /* only one float register */
|
|
if ((vtop->t & VT_BTYPE) == VT_FLOAT)
|
|
size = 4;
|
|
else if ((vtop->t & VT_BTYPE) == VT_DOUBLE)
|
|
size = 8;
|
|
else
|
|
size = 12;
|
|
oad(0xec81, size); /* sub $xxx, %esp */
|
|
if (size == 12)
|
|
o(0x7cdb);
|
|
else
|
|
o(0x5cd9 + size - 4); /* fstp[s|l] 0(%esp) */
|
|
g(0x24);
|
|
g(0x00);
|
|
c->args_size += size;
|
|
} else {
|
|
/* simple type (currently always same size) */
|
|
/* XXX: implicit cast ? */
|
|
r = gv(RC_INT);
|
|
if ((vtop->t & VT_BTYPE) == VT_LLONG) {
|
|
size = 8;
|
|
o(0x50 + vtop->r2); /* push r */
|
|
} else {
|
|
size = 4;
|
|
}
|
|
o(0x50 + r); /* push r */
|
|
c->args_size += size;
|
|
}
|
|
vtop--;
|
|
}
|
|
|
|
/* generate function call with address in (vtop->t, vtop->c) and free function
|
|
context. Stack entry is popped */
|
|
void gfunc_call(GFuncContext *c)
|
|
{
|
|
int r;
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
|
|
/* constant case */
|
|
/* forward reference */
|
|
if (vtop->r & VT_FORWARD) {
|
|
greloc(vtop->c.sym, ind + 1, RELOC_REL32);
|
|
oad(0xe8, 0);
|
|
} else {
|
|
oad(0xe8, vtop->c.ul - ind - 5);
|
|
}
|
|
} else {
|
|
/* otherwise, indirect call */
|
|
r = gv(RC_INT);
|
|
o(0xff); /* call *r */
|
|
o(0xd0 + r);
|
|
}
|
|
if (c->args_size)
|
|
oad(0xc481, c->args_size); /* add $xxx, %esp */
|
|
vtop--;
|
|
}
|
|
|
|
int gjmp(int t)
|
|
{
|
|
return psym(0xe9, t);
|
|
}
|
|
|
|
/* generate a test. set 'inv' to invert test. Stack entry is popped */
|
|
int gtst(int inv, int t)
|
|
{
|
|
int v, *p;
|
|
v = vtop->r & VT_VALMASK;
|
|
if (v == VT_CMP) {
|
|
/* fast case : can jump directly since flags are set */
|
|
g(0x0f);
|
|
t = psym((vtop->c.i - 16) ^ inv, t);
|
|
} else if (v == VT_JMP || v == VT_JMPI) {
|
|
/* && or || optimization */
|
|
if ((v & 1) == inv) {
|
|
/* insert vtop->c jump list in t */
|
|
p = &vtop->c.i;
|
|
while (*p != 0)
|
|
p = (int *)*p;
|
|
*p = t;
|
|
t = vtop->c.i;
|
|
} else {
|
|
t = gjmp(t);
|
|
gsym(vtop->c.i);
|
|
}
|
|
} else {
|
|
if (is_float(vtop->t)) {
|
|
vpushi(0);
|
|
gen_op(TOK_NE);
|
|
}
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_FORWARD)) == VT_CONST) {
|
|
/* constant jmp optimization */
|
|
if ((vtop->c.i != 0) != inv)
|
|
t = gjmp(t);
|
|
} else {
|
|
v = gv(RC_INT);
|
|
o(0x85);
|
|
o(0xc0 + v * 9);
|
|
g(0x0f);
|
|
t = psym(0x85 ^ inv, t);
|
|
}
|
|
}
|
|
vtop--;
|
|
return t;
|
|
}
|
|
|
|
/* generate an integer binary operation */
|
|
void gen_opi(int op)
|
|
{
|
|
int r, fr, opc, c;
|
|
|
|
switch(op) {
|
|
case '+':
|
|
case TOK_ADDC1: /* add with carry generation */
|
|
opc = 0;
|
|
gen_op8:
|
|
vswap();
|
|
r = gv(RC_INT);
|
|
vswap();
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_FORWARD)) == VT_CONST) {
|
|
/* constant case */
|
|
c = vtop->c.i;
|
|
if (c == (char)c) {
|
|
/* XXX: generate inc and dec for smaller code ? */
|
|
o(0x83);
|
|
o(0xc0 | (opc << 3) | r);
|
|
g(c);
|
|
} else {
|
|
o(0x81);
|
|
oad(0xc0 | (opc << 3) | r, c);
|
|
}
|
|
} else {
|
|
fr = gv(RC_INT);
|
|
o((opc << 3) | 0x01);
|
|
o(0xc0 + r + fr * 8);
|
|
}
|
|
vtop--;
|
|
if (op >= TOK_ULT && op <= TOK_GT) {
|
|
vtop--;
|
|
vset(VT_INT, VT_CMP, op);
|
|
}
|
|
break;
|
|
case '-':
|
|
case TOK_SUBC1: /* sub with carry generation */
|
|
opc = 5;
|
|
goto gen_op8;
|
|
case TOK_ADDC2: /* add with carry use */
|
|
opc = 2;
|
|
goto gen_op8;
|
|
case TOK_SUBC2: /* sub with carry use */
|
|
opc = 3;
|
|
goto gen_op8;
|
|
case '&':
|
|
opc = 4;
|
|
goto gen_op8;
|
|
case '^':
|
|
opc = 6;
|
|
goto gen_op8;
|
|
case '|':
|
|
opc = 1;
|
|
goto gen_op8;
|
|
case '*':
|
|
vswap();
|
|
r = gv(RC_INT);
|
|
vswap();
|
|
fr = gv(RC_INT);
|
|
vtop--;
|
|
o(0xaf0f); /* imul fr, r */
|
|
o(0xc0 + fr + r * 8);
|
|
break;
|
|
case TOK_SHL:
|
|
opc = 4;
|
|
goto gen_shift;
|
|
case TOK_SHR:
|
|
opc = 5;
|
|
goto gen_shift;
|
|
case TOK_SAR:
|
|
opc = 7;
|
|
gen_shift:
|
|
vswap();
|
|
r = gv(RC_INT);
|
|
vswap();
|
|
opc = 0xc0 | (opc << 3);
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_FORWARD)) == VT_CONST) {
|
|
/* constant case */
|
|
c = vtop->c.i & 0x1f;
|
|
o(0xc1); /* shl/shr/sar $xxx, r */
|
|
o(opc | r);
|
|
g(c);
|
|
} else {
|
|
/* we generate the shift in ecx */
|
|
gv(RC_ECX);
|
|
/* the first op may have been spilled, so we reload it if
|
|
needed */
|
|
vswap();
|
|
r = gv(RC_INT);
|
|
vswap();
|
|
o(0xd3); /* shl/shr/sar %cl, r */
|
|
o(opc | r);
|
|
}
|
|
vtop--;
|
|
vtop->r = r;
|
|
break;
|
|
case '/':
|
|
case TOK_UDIV:
|
|
case TOK_PDIV:
|
|
case '%':
|
|
case TOK_UMOD:
|
|
case TOK_UMULL:
|
|
vswap();
|
|
r = gv(RC_EAX); /* first operand must be in eax */
|
|
vswap();
|
|
/* XXX: need better constraint */
|
|
fr = gv(RC_ECX); /* second operand in ecx */
|
|
vswap();
|
|
r = gv(RC_EAX); /* reload first operand if flushed */
|
|
vswap();
|
|
vtop--;
|
|
save_reg(REG_EDX);
|
|
if (op == TOK_UMULL) {
|
|
o(0xf7); /* mul fr */
|
|
o(0xe0 + fr);
|
|
vtop->r2 = REG_EDX;
|
|
r = REG_EAX;
|
|
} else {
|
|
if (op == TOK_UDIV || op == TOK_UMOD) {
|
|
o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
|
|
o(0xf0 + fr);
|
|
} else {
|
|
o(0xf799); /* cltd, idiv fr, %eax */
|
|
o(0xf8 + fr);
|
|
}
|
|
if (op == '%' || op == TOK_UMOD)
|
|
r = REG_EDX;
|
|
else
|
|
r = REG_EAX;
|
|
}
|
|
vtop->r = r;
|
|
break;
|
|
default:
|
|
opc = 7;
|
|
goto gen_op8;
|
|
}
|
|
}
|
|
|
|
/* generate a floating point operation 'v = t1 op t2' instruction. The
|
|
two operands are guaranted to have the same floating point type */
|
|
/* NOTE: currently floats can only be lvalues */
|
|
void gen_opf(int op)
|
|
{
|
|
int a, ft, fc, swapped;
|
|
|
|
/* convert constants to memory references */
|
|
if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
|
|
vswap();
|
|
gv(RC_FLOAT);
|
|
vswap();
|
|
}
|
|
if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
|
|
gv(RC_FLOAT);
|
|
|
|
/* must put at least one value in the floating point register */
|
|
if ((vtop[-1].r & VT_LVAL) &&
|
|
(vtop[0].r & VT_LVAL)) {
|
|
vswap();
|
|
gv(RC_FLOAT);
|
|
vswap();
|
|
}
|
|
if (op >= TOK_ULT && op <= TOK_GT) {
|
|
/* load on stack second operand */
|
|
load(REG_ST0, vtop);
|
|
if (op == TOK_GE || op == TOK_GT)
|
|
o(0xc9d9); /* fxch %st(1) */
|
|
o(0xe9da); /* fucompp */
|
|
o(0xe0df); /* fnstsw %ax */
|
|
if (op == TOK_EQ) {
|
|
o(0x45e480); /* and $0x45, %ah */
|
|
o(0x40fC80); /* cmp $0x40, %ah */
|
|
} else if (op == TOK_NE) {
|
|
o(0x45e480); /* and $0x45, %ah */
|
|
o(0x40f480); /* xor $0x40, %ah */
|
|
op = TOK_NE;
|
|
} else if (op == TOK_GE || op == TOK_LE) {
|
|
o(0x05c4f6); /* test $0x05, %ah */
|
|
op = TOK_EQ;
|
|
} else {
|
|
o(0x45c4f6); /* test $0x45, %ah */
|
|
op = TOK_EQ;
|
|
}
|
|
vtop--;
|
|
vtop->r = VT_CMP;
|
|
vtop->c.i = op;
|
|
} else {
|
|
swapped = 0;
|
|
/* swap the stack if needed so that t1 is the register and t2 is
|
|
the memory reference */
|
|
if (vtop[-1].r & VT_LVAL) {
|
|
vswap();
|
|
swapped = 1;
|
|
}
|
|
/* no memory reference possible for long double operations */
|
|
if ((vtop->t & VT_BTYPE) == VT_LDOUBLE) {
|
|
load(REG_ST0, vtop);
|
|
swapped = !swapped;
|
|
}
|
|
|
|
switch(op) {
|
|
default:
|
|
case '+':
|
|
a = 0;
|
|
break;
|
|
case '-':
|
|
a = 4;
|
|
if (swapped)
|
|
a++;
|
|
break;
|
|
case '*':
|
|
a = 1;
|
|
break;
|
|
case '/':
|
|
a = 6;
|
|
if (swapped)
|
|
a++;
|
|
break;
|
|
}
|
|
ft = vtop->t;
|
|
fc = vtop->c.ul;
|
|
if ((ft & VT_BTYPE) == VT_LDOUBLE) {
|
|
o(0xde); /* fxxxp %st, %st(1) */
|
|
o(0xc1 + (a << 3));
|
|
} else {
|
|
if ((ft & VT_BTYPE) == VT_DOUBLE)
|
|
o(0xdc);
|
|
else
|
|
o(0xd8);
|
|
gen_modrm(a, vtop->r, fc);
|
|
}
|
|
vtop--;
|
|
}
|
|
}
|
|
|
|
/* FPU control word for rounding to nearest mode */
|
|
/* XXX: should move that into tcc lib support code ! */
|
|
static unsigned short __tcc_fpu_control = 0x137f;
|
|
/* FPU control word for round to zero mode for int convertion */
|
|
static unsigned short __tcc_int_fpu_control = 0x137f | 0x0c00;
|
|
|
|
/* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
|
|
and 'long long' cases. */
|
|
void gen_cvt_itof(int t)
|
|
{
|
|
gv(RC_INT);
|
|
if ((vtop->t & VT_BTYPE) == VT_LLONG) {
|
|
/* signed long long to float/double/long double (unsigned case
|
|
is handled generically) */
|
|
o(0x50 + vtop->r2); /* push r2 */
|
|
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
|
|
o(0x242cdf); /* fildll (%esp) */
|
|
o(0x08c483); /* add $8, %esp */
|
|
} else if ((vtop->t & (VT_BTYPE | VT_UNSIGNED)) ==
|
|
(VT_INT | VT_UNSIGNED)) {
|
|
/* unsigned int to float/double/long double */
|
|
o(0x6a); /* push $0 */
|
|
g(0x00);
|
|
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
|
|
o(0x242cdf); /* fildll (%esp) */
|
|
o(0x08c483); /* add $8, %esp */
|
|
} else {
|
|
/* int to float/double/long double */
|
|
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
|
|
o(0x2404db); /* fildl (%esp) */
|
|
o(0x04c483); /* add $4, %esp */
|
|
}
|
|
vtop->r = REG_ST0;
|
|
}
|
|
|
|
/* convert fp to int 't' type */
|
|
/* XXX: handle long long case */
|
|
void gen_cvt_ftoi(int t)
|
|
{
|
|
int r, r2, size;
|
|
|
|
gv(RC_FLOAT);
|
|
if (t != VT_INT)
|
|
size = 8;
|
|
else
|
|
size = 4;
|
|
|
|
oad(0x2dd9, (int)&__tcc_int_fpu_control); /* ldcw xxx */
|
|
oad(0xec81, size); /* sub $xxx, %esp */
|
|
if (size == 4)
|
|
o(0x1cdb); /* fistpl */
|
|
else
|
|
o(0x3cdf); /* fistpll */
|
|
o(0x24);
|
|
oad(0x2dd9, (int)&__tcc_fpu_control); /* ldcw xxx */
|
|
r = get_reg(RC_INT);
|
|
o(0x58 + r); /* pop r */
|
|
if (size == 8) {
|
|
if (t == VT_LLONG) {
|
|
vtop->r = r; /* mark reg as used */
|
|
r2 = get_reg(RC_INT);
|
|
o(0x58 + r2); /* pop r2 */
|
|
vtop->r2 = r2;
|
|
} else {
|
|
o(0x04c483); /* add $4, %esp */
|
|
}
|
|
}
|
|
vtop->r = r;
|
|
}
|
|
|
|
/* convert from one floating point type to another */
|
|
void gen_cvt_ftof(int t)
|
|
{
|
|
/* all we have to do on i386 is to put the float in a register */
|
|
gv(RC_FLOAT);
|
|
}
|
|
|
|
/* end of X86 code generator */
|
|
/*************************************************************/
|
|
|