mirror of
https://github.com/frida/tinycc
synced 2025-01-13 15:19:16 +03:00
003c532bf3
This version looks rigth. Comparing to the original algorithm: 1) Loop breaking. We remember a start point after wich we can try next path. Do not search include stack after this. 2) But compare next file patch with the start point. Skip if it the same. Remove "./" before comparing. PS: a problems with compaling a coreutils-8.24.51-8802e remain. There are errors messages like: src/chgrp src/chown-core.c:42: multiple definition of `make_timespec' src/chgrp.c:42: first defined here A problem is in the lib/config.h #define _GL_INLINE_ extern inline // gcc #define _GL_INLINE_ inline // tcc A long description from the lib/config.h * suppress extern inline with HP-UX cc, as it appears to be broken * suppress extern inline with Sun C in standards-conformance mode * suppress extern inline on configurations that mistakenly use 'static inline' to implement functions or macros in standard C headers like <ctype.h>. GCC and Clang are excluded from this list. Why not tcc? |
||
---|---|---|
examples | ||
include | ||
lib | ||
tests | ||
win32 | ||
.gitignore | ||
arm64-gen.c | ||
arm-gen.c | ||
c67-gen.c | ||
Changelog | ||
CMakeLists.txt | ||
CodingStyle | ||
coff.h | ||
config.h.in | ||
config.texi.in | ||
configure | ||
conftest.c | ||
COPYING | ||
elf.h | ||
i386-asm.c | ||
i386-asm.h | ||
i386-gen.c | ||
i386-tok.h | ||
il-gen.c | ||
il-opcodes.h | ||
libtcc.c | ||
libtcc.h | ||
Makefile | ||
README | ||
RELICENSING | ||
stab.def | ||
stab.h | ||
tcc-doc.texi | ||
tcc.c | ||
tcc.h | ||
tccasm.c | ||
tcccoff.c | ||
tccelf.c | ||
tccgen.c | ||
tcclib.h | ||
tccpe.c | ||
tccpp.c | ||
tccrun.c | ||
tcctok.h | ||
texi2pod.pl | ||
TODO | ||
VERSION | ||
x86_64-asm.h | ||
x86_64-gen.c |
Tiny C Compiler - C Scripting Everywhere - The Smallest ANSI C compiler ----------------------------------------------------------------------- Features: -------- - SMALL! You can compile and execute C code everywhere, for example on rescue disks. - FAST! tcc generates optimized x86 code. No byte code overhead. Compile, assemble and link about 7 times faster than 'gcc -O0'. - UNLIMITED! Any C dynamic library can be used directly. TCC is heading torward full ISOC99 compliance. TCC can of course compile itself. - SAFE! tcc includes an optional memory and bound checker. Bound checked code can be mixed freely with standard code. - Compile and execute C source directly. No linking or assembly necessary. Full C preprocessor included. - C script supported : just add '#!/usr/local/bin/tcc -run' at the first line of your C source, and execute it directly from the command line. Documentation: ------------- 1) Installation on a i386/x86_64/arm Linux/OSX/FreeBSD host (for Windows read tcc-win32.txt) Note: For OSX and FreeBSD, gmake should be used instead of make. ./configure make make test make install Alternatively, out-of-tree builds are supported: you may use different directories to hold build objects, kept separate from your source tree: mkdir _build cd _build ../configure make make test make install Texi2html must be installed to compile the doc. By default, tcc is installed in /usr/local/bin. ./configure --help shows configuration options. 2) Introduction We assume here that you know ANSI C. Look at the example ex1.c to know what the programs look like. The include file <tcclib.h> can be used if you want a small basic libc include support (especially useful for floppy disks). Of course, you can also use standard headers, although they are slower to compile. You can begin your C script with '#!/usr/local/bin/tcc -run' on the first line and set its execute bits (chmod a+x your_script). Then, you can launch the C code as a shell or perl script :-) The command line arguments are put in 'argc' and 'argv' of the main functions, as in ANSI C. 3) Examples ex1.c: simplest example (hello world). Can also be launched directly as a script: './ex1.c'. ex2.c: more complicated example: find a number with the four operations given a list of numbers (benchmark). ex3.c: compute fibonacci numbers (benchmark). ex4.c: more complicated: X11 program. Very complicated test in fact because standard headers are being used ! As for ex1.c, can also be launched directly as a script: './ex4.c'. ex5.c: 'hello world' with standard glibc headers. tcc.c: TCC can of course compile itself. Used to check the code generator. tcctest.c: auto test for TCC which tests many subtle possible bugs. Used when doing 'make test'. 4) Full Documentation Please read tcc-doc.html to have all the features of TCC. Additional information is available for the Windows port in tcc-win32.txt. License: ------- TCC is distributed under the GNU Lesser General Public License (see COPYING file). Fabrice Bellard.