- add tests for standard conformant inline functions
- implement it
The old tinycc failed to provide a conforming implementation
of non-static inlines. It would expose external symbols where it
shouldn't and hide them where it should expose them.
This commit provides a hopefully comprehensive test suite
for how things should be done. The .expect file can be obtained
by compiling the example c file (embedded in the test)
with a conforming compiler such as gcc, clang or icc and then
printing the exported symbols (e.g., with nm+awk+sort).
(The implementation currently reserves two new VT_ flags.
If anyone can provide an implementation without reserving
two extra flags, please replace mine.)
anonymous struct members were somewhat broken as the testcase
demonstrates. The reason is the jumping through hoops to fiddle
with the offsets I once introduced to avoid having to track
a cumulative offset. That's now not necessary anymore and actively
harmful, doing the obvious thing is now better.
see testcase, when the inner array dimension of multi-dimensional
VLAs isn't given TCC was generating invalid vstack accesses.
Those are actually invalid, so just diagnose them.
see testcases. A local 'extern int i' declaration needs to
refer to the global declaration, not to a local one it might
be shadowing. Doesn't seem to happen in the wild very often as
this was broken forever.
in presence of invalid source code we can't rely on the
next token to determine if we have or haven't already parsed
an initializer element, we really have to track it in some separate
state; it's a flag, so merge it with the other two we have (size_only
and first). Also add some syntax checks for situations which
formerly lead to vstack leaks, see the added testcases.
sometimes abstract decls in parameter lists left the returned name
uninitialized potentially leading to segfaults, like in
int f(int ()) {
return 0;
}
Deal with this.
like on 'enum myenum { L = -1 } L;'. It's a bit tedious as
there are two paths (for global vs local symbols), and because
the scope and enum_val share same storage.
when parsing the type in this cast:
(int (__attribute__(X) *)(int))foo
we ignored the attribute, which matters if it's e.g. a 'stdcall'
attribute on the function pointer. Only this particular placement
was misparsed. Putting the attribute after the '*' or outside the inner
parens worked. This idiom seems to be used on SQLite, perhaps this
fixes a compilation problem on win32 with that.
like qualifier merging the array sizes are merged as well
for the operands of ?:, and they must not statically influence
the types of decls.
Also fix some style problems, spaces aren't stinky :)
char **argv;
_Generic(argv, char**: (void)0);
_Generic(0?(char const*)0:argv[0], char const*: (void)0);
_Generic(argv, char**: (void)0);
would fail because the type of argv would get modified by the
ternary. Now allocate a separate type on the value stack to
prevent this error.
tcc would reject e.g.,
void f(){ struct {_Bool x:_Generic(({0;}),default:1);} my_x; }
with `expected constant`. This patch makes it accept it.
(The patch also makes tcc's _Generic a little more "generic" than that
of gcc and clang in that that tcc now also accepts
`struct {_Bool x:_Generic(({0;}),default:1);} my_x;` in file scope
while gcc and clang don't, but I think there's no harm in that
and gcc and clang might as well accept it in filescope too, given
that they have no problem with
e.g., `/*filescope:*/int x=1, y=2, z=_Generic(x+y, int:3);`)
The type within the cast (int (__attribute__((foo)) *)(void))
was misparsed because of the presence of the attribute (parse_btype
prematurely concluded that (__attribute__() *) is a type.
Also see testcase. This construct is used in sqlite it seems.
linkers don't treat relocations using symindex 0 (undefined)
very well, it can't be misused as indicator for an absolute number.
Just don't bother with special casing this, rather emit an indirect
call/jump right away. ARM64 needs the same (and didn't handle
calls via constant absolute func pointers before).
The testcase as is doesn't fail without the patch, it actually
needs separate compilation (to -fPIC .o file, then to shared lib)
to fail.
misc fixes including:
- tcc.c: fix "tcc -vv" for libtcc1.a on win32/PE
- tccelf.c: fix a crash when GOT has no relocs (witn -nostdlib)
- tccelf.c: fix stab linkage for zero n_strx
- tccgen.c: fix stdcall decoration for array parameters
int __stdcall func(char buf[10]) is _func@4 (was _func@12)
- tccgen.c: fix static variables with nocode/nodata_wanted
see tests2/96_nodata_wanted.c
- tccrun.c: align sections using sh_addralign (for reliable function_alignment)
- tests2/Makefile sort 100 after 99
- win32/include/sys/stat.h fix _stat and _wstat
- x86_64-gen.c: win64/gfunc_call: fix a bug with xmmN register args
previously overwrote valid other xmmN registers eventually
This patch makes tcc ignore them.
Normally (as per the C standard), They should
be only applicable inside parameter arrays
and affect (const/restrict) the pointer the
array gets converted to.
[matz: fix formatting, add volatile handling, add testcase,
add comment about above deficiency]
Code like:
#include <signal.h>
int main() { _Generic(signal, int: 0); }
should fail with
error: type 'extern void (*(int, void (*)(int)))(int)' does not match any association
not
error: type 'extern void *(int)(int, void *(int))' does not match any association
[matz: fix formatting, fix function-to-pointer decay for operands of
_Generic, add testcase for this]
win32/Makefile ("for cygwin") removed
- On cygwin, the normal ./configure && make can be used with either
cygwin's "GCC for Win32 Toolchain"
./configure --cross-prefix=i686-w64-mingw32-
or with an existing tcc:
./configure --cc=<old-tccdir>/tcc.exe
tcctest.c:
- exclude test_high_clobbers() on _WIN64 (does not work)
tests2/95_bitfield.c:
- use 'signed char' for ARM (where default 'char' is unsigned)
tests:
- remove -I "expr" diff option to allow tests with
busybox-diff.
libtcc.c, tcc.c:
- removed -iwithprefix option. It is supposed to be
combined with -iprefix which we don't have either.
tccgen.c:
- fix assignments and return of 'void', as in
void f() {
void *p, *q;
*p = *q:
return *p;
}
This appears to be allowed but should do nothing.
tcc.h, libtcc.c, tccpp.c:
- Revert "Introduce VIP sysinclude paths which are always searched first"
This reverts commit 1d5e386b0a.
The patch was giving tcc's system includes priority over -I which
is not how it should be.
tccelf.c:
- add DT_TEXTREL tag only if text relocations are actually
used (which is likely not the case on x86_64)
- prepare_dynamic_rel(): avoid relocation of unresolved
(weak) symbols
tccrun.c:
- for HAVE_SELINUX, use two mappings to the same (real) file.
(it was so once except the RX mapping wasn't used at all).
tccpe.c:
- fix relocation constant used for x86_64 (by Andrei E. Warentin)
- #ifndef _WIN32 do "chmod 755 ..." to get runnable exes on cygwin.
tccasm.c:
- keep forward asm labels static, otherwise they will endup
in dynsym eventually.
configure, Makefile:
- mingw32: respect ./configure options --bindir --docdir --libdir
- allow overriding tcc when building libtcc1.a and libtcc.def with
make XTCC=<tcc program to use>
- use $(wildcard ...) for install to allow installing just
a cross compiler for example
make cross-arm
make install
- use name <target>-libtcc1.a
build-tcc.bat:
- add options: -clean, -b bindir
tccgen.c:
doubles need to be aligned, on ARM. The section_reserve()
in init_putv does not do that.
-D ONE_SOURCE: is now the default and not longer needed. Also,
tcc.h now sets the default native target. These both make
compiling tcc simple as "gcc tcc.c -o tcc -ldl" again.
arm-asm.c:
enable pseudo asm also for inline asm
tests/tests2/Makefile:
disable bitfield tests except on windows and x86_64
and don't generate-always
tcc.c:
fix a loop with -dt on errors
configure:
print compiler version (as recognized)
tccpp.c:
actually define symbols for tcc -dt
clear static variables (needed for -dt or libtcc usage)
96_nodata_wanted.c:
use __label__ instead of asm
lib/files:
use native symbols (__i386__ etc.) instead of TCC_TARGET_...
* check that _Generic don't match unsigned char * with char *
this case is usefull as with -funsigned-char, 'char *' are unsigned
* change VT_LONG so it's now a qualifier
VT_LONG are never use for code generation, but only durring parsing state,
in _Generic we need to be able to make diference between
'long' and 'long long'
So VT_LONG is now use as a type qualifier, it's old behaviour is still
here, but we can keep trace of what was a long and what wasn't
* add TOK_CLONG and TOK_CULONG
tcc was directly converting value like '7171L' into TOK_CLLONG or
TOK_CINT depending of the machine architecture.
because of that, we was unable to make diference between a long and a
long long, which doesn't work with _Generic.
So now 7171L is a TOK_CLONG, and we can handle _Generic properly
* check that _Generic can make diference between long and long long
* uncomment "type match twice" as it should now pass tests on any platforms
* add inside_generic global
the point of this variable is to use VT_LONG in comparaison only
when we are evaluating a _Generic.
problem is with my lastest patchs tcc can now make the diference between
a 'long long' and a 'long', but in 64 bit stddef.h typedef uint64_t as
typedef signed long long int int64_t and stdint.h as unsigned long int, so tcc
break when stdint.h and stddef.h are include together.
Another solution woud be to modifie include/stddef.h so it define uint64_t as
unsigned long int when processor is 64 bit, but this could break some
legacy code, so for now, VT_LONG are use only inside generc.
* check that _Generic parse first argument correctly
* check that _Generic evaluate correctly exresion like "f() / 2"